10.5 Properties of Gaussian PDF

To help us develop some general MMSE theory for the Gaussian Data/Gaussian Prior case, we need to have some solid results for joint and conditional Gaussian PDFs.

We'll consider the bivariate case but the ideas carry over to the general N-dimensional case.

Bivariate Gaussian Joint PDF for 2 RV's X and Y

$$
p(x, y)=\frac{1}{2 \pi|\mathbf{C}|^{1 / 2}} \exp (-\frac{1}{2} \underbrace{\left[\begin{array}{c}
x-\mu_{x} \\
y-\mu_{y}
\end{array} \mathbf{C}^{T}\left[\begin{array}{c}
x-\mu_{x} \\
y-\mu_{y}
\end{array}\right]\right.}_{\text {quadratic form }})\}\left\{\left[\begin{array}{l}
X \\
Y
\end{array}\right]\right\}=\left[\begin{array}{c}
\mu_{X} \\
\mu_{Y}
\end{array}\right]
$$

$$
\mathbf{C}=\left[\begin{array}{cc}
\operatorname{var}(X) & \operatorname{cov}(X, Y) \\
\operatorname{cov}(Y, X) & \operatorname{var}(Y)
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{X}^{2} & \sigma_{X Y} \\
\sigma_{Y X} & \sigma_{Y}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right]
$$

Marginal PDFs of Bivariate Gaussian

What are the marginal (or individual) PDFs?
We know that we can get them by integrating:

$$
p(x)=\int_{-\infty}^{\infty} p(x, y) d y \quad p(y)=\int_{-\infty}^{\infty} p(x, y) d x
$$

After performing these integrals you get that:

$$
X \sim N\left(\mu_{\mathrm{x}}, \operatorname{var}\{X\}\right) \quad Y \sim N\left(\mu_{V}, \operatorname{var}\{Y\}\right)
$$

Comment on "Jointly" Gaussian

We have used the term "Jointly" Gaussian...

See Reading Notes on "Counter Example" posted on BB

Q: EXACTLY what does that mean?
A: That the RVs have a joint PDF that is Gaussian

$$
p(x, y)=\frac{1}{2 \pi|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}\left[\begin{array}{c}
x-\mu_{x} \\
y-\mu_{y}
\end{array}\right]^{T} \mathbf{C}^{-1}\left[\begin{array}{c}
x-\mu_{x} \\
y-\mu_{y}
\end{array}\right]\right) \quad \begin{gathered}
\text { Example for } \\
2 \mathrm{RVs}
\end{gathered}
$$

We've shown that jointly Gaussian RVs also have Gaussian marginal PDFs

Q: Does having Gaussian Marginals imply Jointly Gaussian?
In other words... if X is Gaussian and Y is Gaussian is it always true that X and Y are jointly Gaussian???

A: No!!!!!

We'll construct a counterexample: start with a zero-mean, uncorrelated 2-D joint Gaussian PDF and modify it so it is no longer 2-D Gaussian but still has Gaussian marginals.

$$
p_{X Y}(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y}} \exp \left\{\frac{-1}{2}\left(\frac{x^{2}}{\sigma_{X}^{2}}+\frac{y^{2}}{\sigma_{Y}^{2}}\right)\right\}
$$

But if we modify it by:

- Setting it to 0 in the shaded regions
- Doubling its value elsewhere

We get a 2-D PDF that is not a joint Gaussian but the marginals are the same as the original!!!!

Conditional PDFs of Bivariate Gaussian

What are the conditional PDFs?
If you know that X has taken value $X=x_{o}$, how is Y distributed?

Theorem 10.1: Conditional PDF of Bivariate Gaussian

Let X and Y be random variables distributed jointly Gaussian with mean vector $[E\{X\} \quad E\{Y\}]^{T}$ and covariance matrix

$$
\mathbf{C}=\left[\begin{array}{cc}
\operatorname{var}(X) & \operatorname{cov}(X, Y) \\
\operatorname{cov}(Y, X) & \operatorname{var}(Y)
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{X}^{2} & \sigma_{X Y} \\
\sigma_{Y X} & \sigma_{Y}^{2}
\end{array}\right]
$$

Then $p(y \mid x)$ is also Gaussian with mean and variance given by:

$$
\begin{aligned}
E\left\{Y \mid X=x_{o}\right\} & =E\{Y\}+\frac{\sigma_{X Y}}{\sigma_{X}^{2}}\left(x_{o}-E\{X\}\right) \\
& =E\{Y\}+\frac{\rho \sigma_{Y}}{\sigma_{X}}\left(x_{o}-E\{X\}\right)
\end{aligned} \text { Slope of Line }
$$

$$
\begin{aligned}
\operatorname{var}\left\{Y \mid X=x_{o}\right\} & =\sigma_{Y}^{2}-\frac{\sigma_{X Y}^{2}}{\sigma_{X}^{2}} \\
& =\sigma_{Y}^{2}-\rho^{2} \sigma_{Y}^{2}=\left(1-\rho^{2}\right) \sigma_{Y}^{2}
\end{aligned} \quad \text { Reduction } \underline{\text { Amount of Reduction }}
$$

Impact on MMSE

We know the MMSE of RV Y after observing the RV $X=x_{o}$:

$$
\hat{Y}=E\left\{Y \mid X=x_{o}\right\}
$$

So... using the ideas we have just seen:
if the data and the parameter are jointly Gaussian, then

$$
\hat{Y}_{M M S E}=E\left\{Y \mid X=x_{o}\right\}=E\{Y\}+\frac{\sigma_{X Y}}{\sigma_{X}^{2}}\left(x_{o}-E\{X\}\right)
$$

It is the correlation between the $\mathrm{RVs} X$ and Y that allow us to perform Bayesian estimation.

Theorem 10.2: Conditional PDF of Multivariate Gaussian

Let $\mathbf{X}(k \times 1)$ and $\mathbf{Y}(l \times 1)$ be random vectors distributed jointly Gaussian with mean vector $\left[E\{\mathbf{X}\}^{T} E\{\mathbf{Y}\}^{T}\right]^{T}$ and covariance matrix

$$
\mathbf{C}=\left[\begin{array}{ll}
\mathbf{C}_{\mathbf{X X}} & \mathbf{C}_{\mathbf{X Y}} \\
\mathbf{C}_{\mathbf{Y X}} & \mathbf{C}_{\mathbf{Y Y}}
\end{array}\right]=\left[\begin{array}{ll}
(k \times k) & (k \times l) \\
(l \times k) & (l \times l)
\end{array}\right]
$$

Then $p(\mathbf{y} \mid \mathbf{x})$ is also Gaussian with mean vector and covariance matrix given by:
$E\left\{\mathbf{Y} \mid \mathbf{X}=\mathbf{x}_{o}\right\}=E\{\mathbf{Y}\}+\mathbf{C}_{\mathbf{Y X}} \mathbf{C}_{\mathbf{X X}}^{-1}\left(\mathbf{x}_{o}-E\{\mathbf{X}\}\right)$

$$
E\left\{Y \mid X=x_{o}\right\}=E\{Y\}+\frac{\sigma_{X Y}}{\sigma_{X}^{2}}\left(x_{o}-E\{X\}\right)
$$

$$
\mathbf{C}_{\mathbf{Y} \mid \mathbf{X}=\mathbf{x}_{o}}=\mathbf{C}_{\mathbf{Y Y}}-\mathbf{C}_{\mathbf{Y X}} \mathbf{C}_{\mathbf{X X}}^{-1} \mathbf{C}_{\mathbf{X Y}}
$$

$$
\operatorname{var}\left\{Y \mid X=x_{o}\right\}=\sigma_{Y}^{2}-\frac{\sigma_{X Y}^{2}}{\sigma_{X}^{2}}
$$

Compare to Bivariate Results

For the Gaussian case... the cond. covariance does not depend on the conditioning x-value!!!

10.6 Bayesian Linear Model

Now we have all the machinery we need to find the MMSE for the "Bayesian Linear Model"

Clearly, \mathbf{x} is Gaussian and θ is Gaussian...
But are they jointly Gaussian???
If yes... then we can use Theorem 10.2 to get the MMSE for $\theta!!!$
Answer = Yes!!

Bayesian Linear Model is Jointly Gaussian

θ and \mathbf{w} are each Gaussian and are independent
Thus their joint PDF is a product of Gaussians...
...which has the form of a jointly Gaussian PDF

Can now use: a linear transform of jointly Gaussian is jointly Gaussian

$$
\left[\begin{array}{l}
\mathbf{x} \\
\boldsymbol{\theta}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{H} & \mathbf{I} \\
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\theta} \\
\mathbf{w}
\end{array}\right] \xrightarrow{\text { Jointly Gaussian }}
$$

Thus, Thm. 10.2 applies! Posterior PDF is...
$>$ Joint Gaussian
$>$ Completely described by its mean and variance

Conditional PDF for Bayesian Linear Model

To apply Theorem 10.2, notationally let $\mathbf{X}=\mathbf{x}$ and $\mathbf{Y}=\theta$.
First we need

$$
E\{\mathbf{X}\}=\mathbf{H} E\{\theta\}+E\{\mathbf{w}\}=\mathbf{H} \mu_{\theta}
$$

$$
E\{\mathbf{Y}\}=E\{\theta\}=\mu_{\theta}
$$

And also

$$
\mathbf{C}_{\mathbf{Y Y}}=\mathbf{C}_{\boldsymbol{\theta}} \quad \mathbf{C}_{\mathbf{X X}}=E\left\{(\mathbf{x}-E\{\mathbf{x}\})(\mathbf{x}-E\{\mathbf{x}\})^{T}\right\}
$$

$$
=E\left\{\left[\mathbf{H}\left(\boldsymbol{\theta}-\boldsymbol{\mu}_{\boldsymbol{\theta}}\right)+\mathbf{w}\right]\left[\mathbf{H}\left(\boldsymbol{\theta}-\boldsymbol{\mu}_{\boldsymbol{\theta}}\right)+\mathbf{w}\right]^{T}\right\}
$$

Similarly... $\mathbf{C}_{\mathbf{Y X}}=\mathbf{C}_{\boldsymbol{\theta} \mathbf{x}}=E\left\{\left(\boldsymbol{\theta}-\boldsymbol{\mu}_{\boldsymbol{\theta}}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)^{T}\right\}$
Use $E\{\theta \mathbf{w}\}=\mathbf{0}$

$$
\begin{aligned}
& =E\left\{(\boldsymbol { \theta } - \boldsymbol { \mu } _ { \boldsymbol { \theta } }) \left(\mathbf{H} \boldsymbol{\theta}+\mathbf{w}-\mathbf{H} \boldsymbol{\mu}_{\boldsymbol{\theta}}\right.\right. \\
& =E\left\{\left(\boldsymbol{\theta}-\boldsymbol{\mu}_{\boldsymbol{\theta}}\right)\left(\boldsymbol{\theta}-\boldsymbol{\mu}_{\boldsymbol{\theta}}\right)^{T} \mathbf{H}^{T}\right\}
\end{aligned}
$$

Then Theorem 10.2 gives the conditional PDF's mean and cov (and we know the conditional mean is the MMSE estimate)

Ex. 10.2: DC in AWGN w/ Gaussian Prior

Data Model: $\quad x[n]=A+w[n] \quad A \& w[n]$ are independent

$$
\sim N\left(\mu_{A}, \sigma_{A}^{2}\right) \quad \sim N\left(0, \sigma^{2}\right)
$$

Write in linear model form:

$$
\mathbf{x}=\mathbf{1} A+\mathbf{w} \quad \text { with } \mathbf{H}=\mathbf{1}=\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right]^{T}
$$

Now General Result gives the MMSE estimate as:

$$
\begin{aligned}
\hat{A}_{M M S E}=E\{A \mid \mathbf{x}\} & =\mu_{A}+\sigma_{A}^{2} \mathbf{1}^{T}\left(\sigma_{A}^{2} \mathbf{1} \mathbf{1}^{T}+\sigma^{2} \mathbf{I}\right)^{-1}\left(\mathbf{x}-\mathbf{1} \mu_{A}\right) \\
& =\mu_{A}+\frac{\sigma_{A}^{2}}{\sigma^{2}} \mathbf{1}^{T}(\underbrace{\text { "The Matrix Inversion Lemma" }}_{\left.\begin{array}{c}
\text { Can simplify } \\
\left(\mathbf{I}+\frac{\sigma_{A}^{2}}{\sigma^{2}} \mathbf{1 1}^{T}\right.
\end{array}\right)^{-1}\left(\mathbf{x}-\mathbf{1} \mu_{A}\right)}
\end{aligned}
$$

Aside: Matrix Inversion Lemma

Special Case $(m=1)$:

Continuing the Example... Apply the Matrix Inversion Lemma:

$$
\begin{aligned}
& \hat{A}_{M M S E}=\mu_{A}+\frac{\sigma_{A}^{2}}{\sigma^{2}} \mathbf{1}^{T}\left(\mathbf{I}+\frac{\sigma_{A}^{2}}{\sigma^{2}} \mathbf{1 1}^{T}\right)^{-1}\left(\mathbf{x}-\mathbf{1} \mu_{A}\right) \\
&=\mu_{A}+\frac{\sigma_{A}^{2}}{\sigma^{2}} \mathbf{1}^{T}\left(\mathbf{I}-\frac{\mathbf{1 1}^{T}}{N+\sigma^{2} / \sigma_{A}^{2}}\right)\left(\mathbf{x}-\mathbf{1} \mu_{A}\right) \\
&=\mu_{A}+\frac{\sigma_{A}^{2}}{\sigma^{2}}\left(\mathbf{1}^{T}-\frac{N}{N+\sigma^{2} / \sigma_{A}^{2}} \mathbf{1}^{T}\right)\left(\mathbf{x}-\mathbf{1} \mu_{A}\right) \quad \begin{array}{r}
\text { Pass through } \mathbf{1}^{T} \\
\& \text { use } \mathbf{1}^{T} \mathbf{1}=N
\end{array} \\
&=\mu_{A}+\frac{\sigma_{A}^{2}}{\sigma^{2}}\left(1-\frac{N}{N+\sigma^{2} / \sigma_{A}^{2}}\right)\left(N \bar{x}-N \mu_{A}\right) \\
& \text { Factor Ouse } \mathbf{1}^{T} \mathbf{1}=N
\end{aligned}
$$

- When data is bad $\left(\sigma^{2} / N \gg \sigma_{A}^{2}\right)$, gain is small, data has little use

$$
\hat{A}_{M M S E} \approx \mu_{A}
$$

-When data is good $\left(\sigma^{2} / N \gg \sigma_{A}^{2}\right)$, gain is large, data has large use

$$
\hat{A}_{M M S E} \approx \bar{x}
$$

Using similar manipulations gives:

$$
\begin{gathered}
\operatorname{var}(A \mid \mathrm{x})=\frac{\left(\frac{\sigma^{2}}{N}\right) \sigma_{A}^{2}}{\sigma_{A}^{2}+\frac{\sigma^{2}}{N}}=\frac{1}{\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma^{2} / N}} \\
\begin{array}{l}
\text { Like } \| \text { resistors... small one wins! } \\
\Rightarrow \operatorname{var}(\mathrm{A} \mid \mathbf{x}) \text { is } \approx \text { the smaller of: } \\
\bullet \text { data estimate variance } \\
\bullet \text { prior variance }
\end{array}
\end{gathered}
$$

Or... looking at it another way:

$$
\frac{1}{\operatorname{var}(A \mid \mathrm{x})}=\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma^{2} / N}
$$

... additive "information"!

10.7 Nuisance Parameters

One difficulty in classical methods is that nuisance parameters must explicitly dealt with.

In Bayesian methods they are simply "Integrated Away"!!!!
Recall Emitter Location:
In Bayesian Approach...
From $p\left(x, y, z, f_{0} \mid \mathbf{x}\right)$ can get $p(x, y, z \mid \mathbf{x})$:

$$
p(x, y, z \mid \mathbf{x})=\int p\left(x, y, z, f_{0} \mid \mathbf{x}\right) d f_{0}
$$

Then... find conditional mean for the MMSE estimate!

