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Chapter 10
Bayesian Philosophy
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10.1 Introduction
Up to now… Classical Approach: assumes θ is deterministic
This has a few ramifications:

• Variance of the estimate could depend on θ
• In Monte Carlo simulations:  

– M runs done at the same θ, 
– must do M runs at each θ of interest
– averaging done over data 
– no averaging over θ values

E{} is 
w.r.t. p(x;θ)

Bayesian Approach: assumes θ is random with pdf p(θ)
This has a few ramifications:

• Variance of the estimate CAN’T depend on θ
• In Monte Carlo simulations:  

– each run done at a randomly chosen θ, 
– averaging done over data AND over θ values

E{} is 
w.r.t. p(x,θ)

joint pdf
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Why Choose Bayesian?
1. Sometimes we have prior knowledge on θ ⇒ some values are 

more likely than others

2. Useful when the classical MVU estimator does not exist 
because of nonuniformity of minimal variance

θ

)(2
ˆ θθi

σ
1θ

2θ

3. To combat the “signal estimation problem”… estimate signal s

x = s + w If s is deterministic and is the 
parameter to estimate, then H = I

Classical Solution: ( ) xxIIIs ==
− TT 1ˆ Signal Estimate is 

the data itself!!!

The Wiener filter is a Bayesian method to combat this!!
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10.3 Prior Knowledge and Estimation

Bayesian Data Model:
• Parameter is “chosen” randomly w/ known “prior PDF”
• Then data set is collected
• Estimate value chosen for parameter

Every time you collect data, the parameter has a different value, 
but some values may be more likely to occur than others

This is how you think about it mathematically and how you run 
simulations to test it.

This is what you know ahead 
of time about the parameter.
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Ex. of Bayesian Viewpoint: Emitter Location 
Emitters are where they are and don’t randomly jump around each 

time you collect data.     So why the Bayesian model?

(At least) Three Reasons
1. You may know from maps, intelligence data, other sensors, 

etc.   that certain locations are more likely to have emitters
• Emitters likely at airfields, unlikely in the middle of a lake

2. Recall Classical Method:  Parm Est. Variance often depends 
on parameter
• It is often desirable (e.g. marketing) to have a single

number that measures accuracy.
3. Classical Methods try to give an estimator that gives low 

variance at each θ value.  However, this could give large 
variance where emitters are likely and low variance where 
they are unlikely. 
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Bayesian Criteria Depend on Joint PDF
There are several different optimization criteria within the 
Bayesian framework.  The most widely used is…

Minimize the Bayesian MSE: Bmse { }
∫∫ −=
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dθd,θpθθ

θθEθ
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2
Take E{} w.r.t. 

joint pdf of x and θ

Can Not Depend on θ Joint pdf of x and θ

To see the difference… compare to the Classical MSE:
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pdf of x parameterized by θCan Depend on θ
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Ex. Bayesian for DC Level Zero-Mean White Gaussian

Same as before…     x[n] = A + w[n] p(A)

-Ao

1/2Ao

Ao A

But here we use the following model: 
• that A is random w/ uniform pdf
• RVs A and w[n] are independent of each other

Now we want to find the estimator function that maps data x into 
the estimate of A that minimizes Bayesian MSE:

[ ] xxx

xx

dpdAApAA

dAdApAAABmse

∫ ∫

∫∫
−=

−=

)()|(]ˆ[

),(]ˆ[)ˆ(

2

2 Now use… 
p(x,A) = p(A|x)p(x)

Minimize this for each x value
This works because p(x) ≥ 0

So… fix x, take its partial derivative, set to 0
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Finding the Partial Derivative gives:
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Setting this equal to zero and solving gives:

{ }x

x

|

)|(ˆ

AE

dAAApA

=

= ∫
Conditional mean 
of A given data x

Bayesian Minimum MSE Estimate = The Mean of “posterior pdf”

MMSE So… we need to explore how to compute 
this from our data given knowledge of the 

Bayesian model for a problem



9

Compare this Bayesian Result to the Classical Result:
… for a given observed data vector x look at

MVUE = x

AAo�Ao

p(A|x)
p(x;A)

MMSE = E{A|x}

Before taking any data… what is the best “estimate” of A?
• Classical: No best guess exists!
• Bayesian: Mean of the Prior PDF… 

– observed data “updates” this “a priori” estimate into 
an “a posteriori” estimate that balances “prior” vs. data
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So… for this example we’ve seen that we need E{A|x}.
How do we compute that!!!??  Well…

∫=
=

dAAAp

AEA

)|(

}|{ˆ

x

x

So… we need the posterior pdf of A given the data… which 
can be found using Bayes’ Rule:

∫
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=

dAApAp
ApAp
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Allows us to write one 
cond. PDF in terms of 
the other way around

Assumed KnownMore easily found than p(A|x)… very much 
the same structure as the parameterized PDF 

used in Classical Methods
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So now we need p(x|A)…   For x[n] = A + w[n]    we know that

( ) 
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For A known, x[n] is the 
known A plus random w[n]

PDF of x

Because w[n] and A are 
assumed Independent  

Because w[n] is White Gaussian they are independent… thus, the 
data conditioned on A is independent:
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Same structure as the parameterized PDF used in Classical Methods… 
But here A is an RV upon which we have conditioned the PDF!!! 
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Now we can use all this to find the MMSE for this problem:

MMSE Estimator…
A function that maps 
observed data into the 
estimate… No Closed 
Form for this Case!!!
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Prior 
PDF
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Idea
Easy!!

Hard to
�Build�
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How the Bayesian approach balances a priori and a posteriori info:

AAo�Ao

p(A)

E{A}

No Data

AAo�Ao

p(A|x)

E{A|x} x

Short Data
Record

AAo�Ao

p(A|x)

xx ≈}|{AE

Long Data
Record
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General Insights From Example
1. After collecting data: our knowledge is captured by the 

posterior PDF p(θ |x)

2. Estimator that minimizes the Bmse is E{θ |x}… the mean of 
the posterior PDF

3. Choice of prior is crucial: 
Bad Assumption of Prior   ⇒ Bad Bayesian Estimate!

(Especially for short data records)

4. Bayesian MMSE estimator always exists!
But not necessarily in closed form

(Then must use numerical integration)
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10.4 Choosing a Prior PDF
Choice is crucial:
1. Must be able to justify it physically

2. Anything other than a Gaussian prior will likely result in 
no closed-form estimates

We just saw that a uniform prior led to a non-closed form

We’ll see here an example where a Gaussian prior gives a 
closed form

So… there seems to be a trade-off between:
• Choosing the prior PDF as accurately as possible
• Choosing the prior PDF to give computable closed form
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Ex. 10.1: DC in WGN with Gaussian Prior PDF
We assume our Bayesian model is now:  x[n] = A + w[n]
with a prior PDF of

),(~ 2
AANA σµ

AWGN

So… for a given value of the RV A the conditional PDF is
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Then to get the needed conditional PDF we use this and the a 
priori PDF for A in Bayes’ Theorem:
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Then… after much algebra and gnashing of teeth we get:
See the 
Book( )
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= Weighted Combination of a 

priori and sample means

“Parallel” Combination of a 
priori and sample variances

So… the main point here so far is that by assuming:
• Gaussian noise
• Gaussian a priori PDF on the parameter

We get a Gaussian a posteriori PDF for Bayesian estimation!!
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Now recall that the Bayesian MMSE was the conditional 
a posteriori mean: { }x|ˆ AEA =

Because we now have a Gaussian a posteriori PDF it is easy to 
find an expression for this:
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After some algebra we get:

( ) 10,1

ˆ
2

2

2

2
2

2

<<−+=



















+

+



















+

=

αµαα

µ
σ

σ

σ

σ
σ

σ

A

A

AA

A

x

N

Nx

N

A

Easily Computable Estimator:
• Sample mean computed from data
• σ known from data model
• µA and σA known from prior model
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Much or Good Data:
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xANA ≈>> ˆ/22 σσ
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Comments on this Example for Gaussian Noise and Gaussian Prior
1. Closed-Form Solution for Estimate!
2. Estimate is… Weighted sum of prior mean & data mean
3. Weights balance between prior info quality and data quality
4. As N increases…

a. Estimate E{A|x} moves
b. Accuracy var{A|x} moves 

xA →µ
NA /22 σσ →

p(A|x)

A
1ÂxA ≈2

ˆ

N2 > N1 > 0
AoA µ=ˆ

No = 0
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General Result: Bmse = posterior variance averaged over PDF of x

In this case σA|x is not a function of x:
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The big thing that this example shows:

Gaussian Data & Gaussian Prior gives Closed-Form MMSE Solution
This will hold in general!
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