

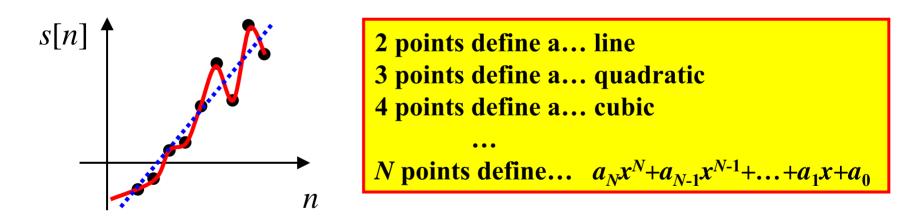
(# of parameters in model)

Choosing the Best Model Order

Q: Should you pick the order *p* that gives the smallest J_{min} ?? A: NO!!!!

Fact: $J_{min}(p)$ is monotonically non-increasing as order p increases

If you have any *N* data points... you can **perfectly** fit a p = N model to them!!!!



Warning: Don't "Fit the Noise"!!

Choosing the Order in Practice

<u>**Practice</u>**: use <u>simplest</u> model that adequately describes the data <u>**Scheme**</u>: Only increase order if cost reduction is "significant"</u>

► Increase to order p+1 only if $J_{min}(p) - J_{min}(p=1) > \epsilon$

user-set threshold

Also, in practice you may have some idea of the expected level of error \Rightarrow thus have some idea of expected J_{min} \Rightarrow use order p such that $J_{min}(p) \approx$ Expected J_{min}

Wasteful to independently compute the LS solution for each order

Drives Need for:

<u>Efficient</u> way to compute LS for many models

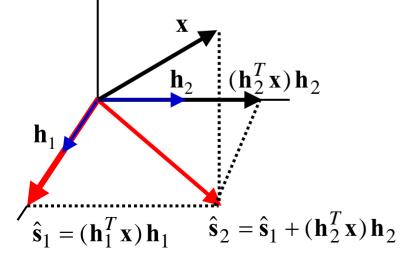
Q: If we have computed *p*-order model, can we use it to <u>recursively</u> compute (p+1)-order model?

A: YES!! \Rightarrow **Order-Recursive LS**

Define General Order-Increasing Models Define: $\mathbf{H}_{p+1} = [\mathbf{H}_{p} \mathbf{h}_{p+1}] \implies \mathbf{h}_{1}, \mathbf{h}_{2}, \mathbf{h}_{3}, \dots$ \mathbf{H}_{1} \mathbf{H}_{2} \mathbf{H}_{3} Etc.

Order-Recursive LS with Orthonormal Columns

If all h_i are $\perp \implies EASY !!$



$$p = 1 \qquad \hat{\mathbf{s}}_1 = (\mathbf{h}_1^T \mathbf{x}) \mathbf{h}_1$$

$$p = 2 \qquad \hat{\mathbf{s}}_2 = \hat{\mathbf{s}}_1 + (\mathbf{h}_2^T \mathbf{x}) \mathbf{h}_2$$

$$p = 3 \qquad \hat{\mathbf{s}}_3 = \hat{\mathbf{s}}_2 + (\mathbf{h}_3^T \mathbf{x}) \mathbf{h}_3$$

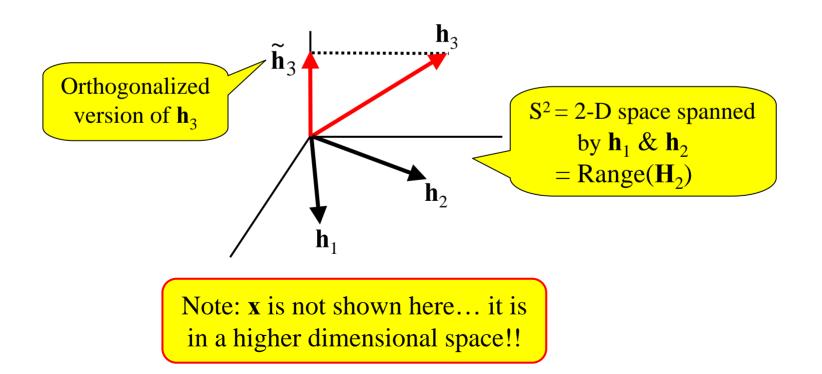
$$\vdots \qquad \vdots$$

Order-Recursive Solution for General H

If h_i are *Not* $\perp \Rightarrow$ Harder, but Possible!

Basic Idea: Given current-order estimate:

- map new column of **H** into an ON version
- use it to find new "estimate," -
- orthogonalized model • then transform to correct for orthogonalization



Quotes here because

this estimate is for the

Geometrical Development of Order-Recursive LS

The Geometry of Vector Space is indispensable for DSP!

Current-Order = k

 $\Rightarrow \qquad \mathbf{H}_k = [\mathbf{h}_1 \ \mathbf{h}_2 \ \dots \ \mathbf{h}_k] \qquad (\text{not necessarily } \bot)$

Recall:
$$\underbrace{\mathbf{P}_{k} = \mathbf{H}_{k} (\mathbf{H}_{k}^{T} \mathbf{H}_{k})^{-1} \mathbf{H}_{k}^{T}}_{\mathbf{Y}}$$

<u>Projector</u> onto $S^k = \text{Range}(\mathbf{H}_k)$

See App. 8A for *Algebraic* Development

Yuk! Geometry is Easier!

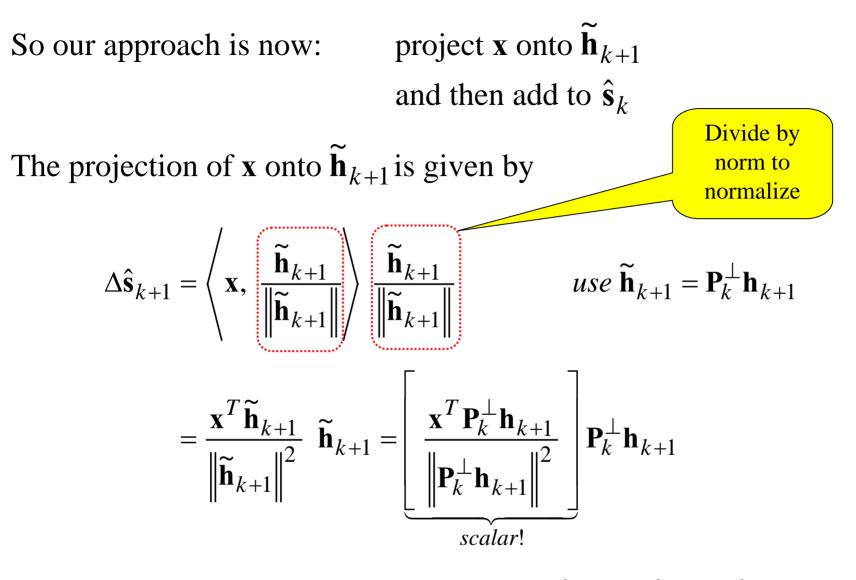
Given next column: \mathbf{h}_{k+1} Find $\tilde{\mathbf{h}}_{k+1}$, which is \perp to S^k

$$\widetilde{\mathbf{h}}_{k+1} = \mathbf{h}_{k+1} - \mathbf{P}_k \mathbf{h}_{k+1} = \underbrace{(\mathbf{I} - \mathbf{P}_k)}_{\mathbf{P}_k^{\perp}} \mathbf{h}_{k+1}$$

$$\widetilde{\mathbf{h}}_{k+1} = \mathbf{P}_k^{\perp} \mathbf{h}_{k+1}$$

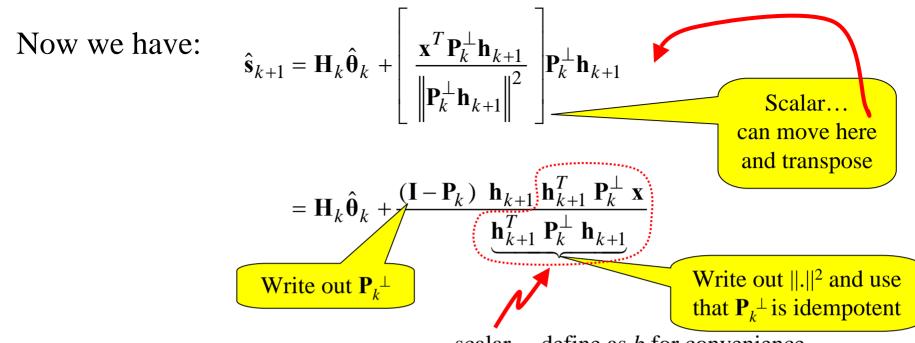
$$\widetilde{\mathbf{h}}_{k+1} \perp S^k \implies \widetilde{\mathbf{h}}_{k+1} \perp \widehat{\mathbf{s}}_k$$

$$\widehat{\mathbf{s}}_k \qquad \mathbf{P}_k \mathbf{h}_{k+1}$$



Now add this to current signal estimate: $\hat{\mathbf{s}}_{k+1} = \hat{\mathbf{s}}_k + \Delta \hat{\mathbf{s}}_{k+1}$

$$=\mathbf{H}_{k}\hat{\mathbf{\theta}}_{k}+\Delta\hat{\mathbf{s}}_{k+1}$$



scalar... define as b for convenience

Finally: $\hat{\mathbf{s}}_k = \mathbf{H}_k \hat{\mathbf{\theta}}_k + \mathbf{h}_{k+1} b - \mathbf{H}_k (\mathbf{H}_k^T \mathbf{H}_k)^{-1} \mathbf{H}_k^T \mathbf{h}_{k+1} b$

$$= \underbrace{\left[\mathbf{H}_{k} \quad \mathbf{h}_{k+1}\right]}_{=\mathbf{H}_{k+1}} \begin{bmatrix} \hat{\mathbf{\theta}}_{k} - (\mathbf{H}_{k}^{T}\mathbf{H}_{k})^{-1}\mathbf{H}_{k}^{T}\mathbf{h}_{k+1}b \\ b \end{bmatrix}}_{\text{Clearly this is } \hat{\mathbf{\theta}}_{k+1}}$$

Order-Recursive LS Solution

$$\hat{\boldsymbol{\theta}}_{k+1} = \begin{bmatrix} \hat{\boldsymbol{\theta}}_k - (\mathbf{H}_k^T \mathbf{H}_k)^{-1} \mathbf{H}_k^T \mathbf{h}_{k+1} \left(\frac{\mathbf{h}_{k+1}^T \mathbf{P}_k^{\perp} \mathbf{x}}{\mathbf{h}_{k+1}^T \mathbf{P}_k^{\perp} \mathbf{h}_{k+1}} \right) \\ \frac{\mathbf{h}_{k+1}^T \mathbf{P}_k^{\perp} \mathbf{x}}{\mathbf{h}_{k+1}^T \mathbf{P}_k^{\perp} \mathbf{h}_{k+1}} \end{bmatrix}$$

Drawback: Needs Inversion Each Recursion See Eq. (8.29) and (8.30) for a way to avoid inversion <u>Comments:</u>

- 1. If $\mathbf{h}_{k+1} \perp \mathbf{H}_k \implies$ simplifies problem as we've seen (This equation simplifies to our earlier result)
- 2. Note: $\mathbf{P}_{k}^{\perp} \mathbf{x}$ above is residual of k-order model = part of \mathbf{x} not modeled by k-order model \Rightarrow Update recursion works solely with this *Makes Sense!!!*

8.7 Sequential LS

In Last Section:

- Data Stays Fixed
- Model Order Increases

In This Section:

- Data Length Increases
- Model Order Stays Fixed

You have received new data sample!

Say we have $\hat{\theta}[N-1]$ based on $\{x[0], \ldots, x[N-1]\}$

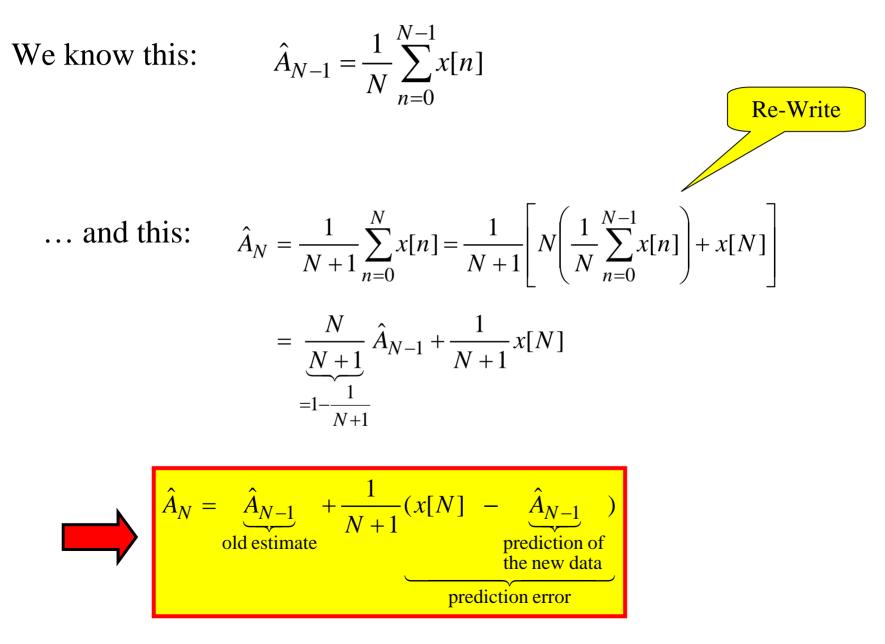
If we get x[N]... can we compute $\hat{\theta}[N]$ based on $\hat{\theta}[N-1]$ and x[N]? (w/o solving using full data set!)

We want...
$$\hat{\boldsymbol{\theta}}[N] = f(\hat{\boldsymbol{\theta}}[N-1], x[N])$$

Approach Here:

- 1. Derive for DC-Level case
- 2. Interpret Results
- 3. Write Down General Result w/o Proof

Sequential LS for DC-Level Case



Weighted Sequential LS for DC-Level Case

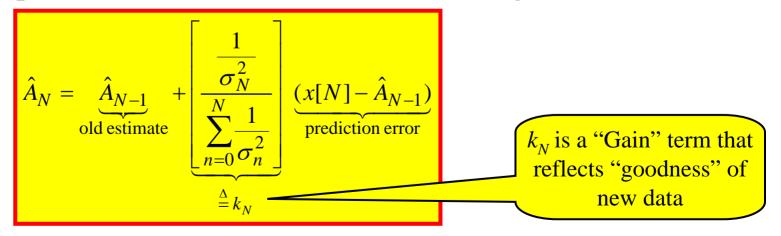
This is an even better illustration...

Assumed model: x[n] = A + w[n] $var\{w[n]\} = \sigma_n^2$

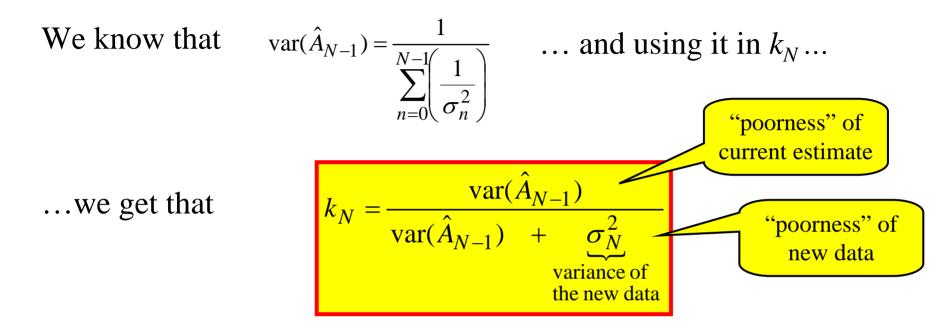
w[n] has unknown PDF
 but has known time dependent variance

Standard WLS gives:
$$\hat{A}_{N-1} = \frac{\sum_{n=0}^{N-1} \frac{x[n]}{\sigma_n^2}}{\sum_{n=0}^{N-1} \frac{1}{\sigma_n^2}}$$

With manipulations similar to the above case we get:



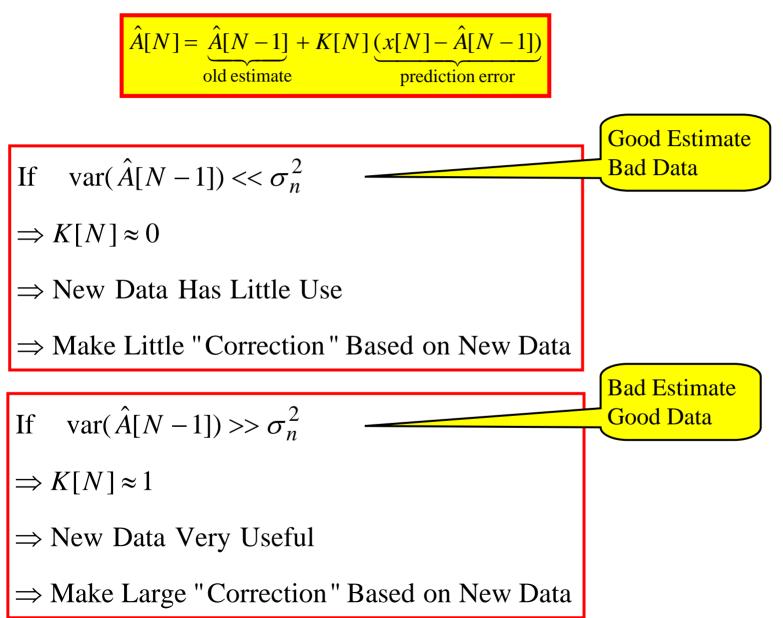
Exploring The Gain Term



Note: $0 \le K[N] \le 1$

- \Rightarrow Gain depends on <u>Relative</u> Goodness Between:
 - o Current Estimate
 - o New Data Point

Extreme Cases for The Gain Term



General Sequential LS ResultSee App. 8C for derivationAt time index n-1 we have: $\mathbf{x}_{n-1} = \begin{bmatrix} x[0] & x[1] & \cdots & x[n-1] \end{bmatrix}^T$ Diagonal
Covariance $\mathbf{x}_{n-1} = \mathbf{H}_{n-1}\mathbf{\theta} + \mathbf{w}_{n-1}$ $\mathbf{C}_{n-1} = \text{diag}\{\sigma_0^2, \sigma_1^2, \cdots, \sigma_{n-1}^2\}$ Diagonal
Covariance
(Sequential LS
requires this) $\hat{\mathbf{\theta}}_{n-1}$ LS Estimate using \mathbf{x}_{n-1} \mathbf{C}_{n-1}

 $\Sigma_{n-1} \triangleq \operatorname{cov} \{ \hat{\boldsymbol{\theta}}_{n-1} \}$ quality measure of estimate

At time index *n* we get *x*[*n*]:

$$\mathbf{x}_{n} = \mathbf{H}_{n}\mathbf{\theta} + \mathbf{w}_{n} = \begin{bmatrix} \mathbf{H}_{n-1} \\ \mathbf{h}_{n}^{T} \end{bmatrix} \mathbf{\theta} + \mathbf{w}_{n}$$
Tack on row at bottom to show how $\mathbf{\theta}$ maps to $x[n]$

Iterate these Equations:

Given the Following:
$$\hat{\theta}_{n-1} \Sigma_{n-1} x[n] \mathbf{h}_n \sigma_n^2$$

Update the Estimate: $\hat{\theta}_n = \hat{\theta}_{n-1} + \mathbf{k}_n (x[n] - \mathbf{h}_n^T \hat{\theta}_{n-1})$
Compute the Gain: $\mathbf{k}_n = \frac{\Sigma_{n-1}\mathbf{h}_n}{\sigma_n^2 + \mathbf{h}_n^T \Sigma_{n-1}\mathbf{h}_n}$
Update the Est. Cov.: $\Sigma_n = (\mathbf{I} - \mathbf{k}_n \mathbf{h}_n^T) \Sigma_{n-1}$
Gain has same kind of dependence on Relative Goodness between:
• Collect first p data samples $x[0], \dots, x[p-1]$
• Use "Batch" LS to compute: $\hat{\theta}_{p-1} \Sigma_{p-1}$

• Then start sequential processing

Sequential LS Block Diagram

