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8.6 Order-Recursive LS s[n]

nWant to fit a polynomial to data.., 
but which one is the right model?

! Constant ! Quadratic
! Linear ! Cubic, Etc. 

Motivate this idea with Curve Fitting
Given data: n = 0, 1, 2, . . ., N-1

s[0], s[1], . . ., s[N-1]

Try each model, look at Jmin … which one works “best”
Jmin(p) Constant

Line Quadratic Cubic

p 3

(# of parameters in model)

1 2 4
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Choosing the Best Model Order
Q: Should you pick the order p that gives the smallest Jmin??
A: NO!!!!
Fact: Jmin(p) is monotonically non-increasing as order p increases

If you have any N data points… 
you can perfectly fit a p = N model to them!!!!

s[n]

n

2 points define a� line
3 points define a� quadratic
4 points define a� cubic

�
N points define�  aNxN+aN-1xN-1+…+a1x+a0

Warning: Don�t �Fit the Noise�!!Warning: Don�t �Fit the Noise�!!
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Choosing the Order in Practice
Practice:  use simplest model that adequately describes the data
Scheme:  Only increase order if cost reduction is “significant”

" Increase to order p+1 only if Jmin(p) – Jmin(p=1) > ε

" Also, in practice you may have some idea of the expected level of error 
⇒ thus have some idea of expected Jmin
⇒ use order p such that Jmin(p)  ≈ Expected Jmin

user-set 
threshold

Wasteful to independently compute the LS solution for each order

Drives Need for:  
Efficient way to compute LS for many models

Q:  If we have computed p-order model, can we use it to 
recursively compute (p+1)-order model?

A:  YES!! ⇒ Order-Recursive LS
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Define General Order-Increasing Models 
Define: Hp+1 = [ Hp hp+1 ]       ⇒ h1,   h2,    h3, . . .

H1

H2 Etc.
H3

Order-Recursive LS with Orthonormal Columns
If all hi are ⊥ ⇒ EASY !!

h1

h2
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+==

==



5

Order-Recursive Solution for General H
If hi are Not ⊥ ⇒ Harder, but Possible!

Basic Idea:  Given current-order estimate: 
• map new column of H into an ON version 
• use it to find new “estimate,”
• then transform to correct for orthogonalization

Quotes here because 
this estimate is for the
orthogonalized model 

h1

h3

h2

3
~h

Orthogonalized 
version of h3 S2 = 2-D space spanned  

by h1 & h2
= Range(H2)

Note: x is not shown here… it is 
in a higher dimensional space!!
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Geometrical Development of Order-Recursive LS 
The Geometry of Vector Space is indispensable  for DSP!

Current-Order = k
⇒ Hk = [h1 h2 . . . hk] (not necessarily ⊥)

See App. 8A 
for Algebraic
Development

Yuk! 
Geometry is 

Easier!"""" #"""" $%
T
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Projector onto Sk = Range(Hk)

Recall: 

Given next column: hk+1  Find        , which is ⊥ to Sk
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So our approach is now: project x onto
and then add to  

1
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kŝ

The projection of x onto         is given by1
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sssNow add this to current signal estimate:
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Scalar…

can move here 
and transpose

Write out Pk
⊥

scalar… define as b for convenience

Now we have:

Write out ||.||2 and use 
that Pk

⊥ is idempotent
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Order-Recursive LS Solution

Drawback:  Needs Inversion Each Recursion
See Eq. (8.29) and (8.30) for a way to avoid inversion

Comments:

1.  If hk+1 ⊥ Hk ⇒ simplifies problem as we’ve seen
(This equation simplifies to our earlier result)

2.  Note:  P⊥
k x above is residual of k-order model

= part of x not modeled by k-order model
⇒ Update recursion works solely with this 

Makes Sense!!!
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8.7 Sequential LS
In Last Section: In This Section:
• Data Stays Fixed • Data Length Increases
• Model Order Increases • Model Order Stays Fixed

You have 
received 
new data 
sample!

Say we have             based on {x[0], . . ., x[N-1]}

If we get x[N]… can we compute        based on             and x[N]?
(w/o solving using full data set!)

]1[ˆ −Nθ

][ˆ Nθ ]1[ˆ −Nθ

])[],1[ˆ(][ˆ NxNfN −= θθWe want… 

Approach Here:
1. Derive for DC-Level case
2. Interpret Results
3. Write Down General Result w/o Proof
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Sequential LS for DC-Level Case

∑
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Weighted Sequential LS for DC-Level Case
This is an even better illustration… w[n] has unknown PDF 

but has known time-
dependent variance

2]}[var{][][ nnwnwAnx σ=+=Assumed model:
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With manipulations similar to the above case we get:
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kN is a “Gain” term that 
reflects “goodness” of 

new data 
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Exploring The Gain Term

∑
−

=

−











=

1

0
2

1
1

1)ˆvar(
N

n n

NA

σ

We know that … and using it in kN …

&
datanew the
ofvariance

2
1

1

)ˆvar(
)ˆvar(

NN

N
N

A
Ak

σ+
=

−

−

“poorness” of 
current estimate

…we get that
“poorness” of 

new data

Note: 0 ≤ K[N] ≤ 1

⇒ Gain depends on Relative Goodness Between:
o Current Estimate
o New Data Point
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Extreme Cases for The Gain Term

""" #""" $%"#"$%
errorpredictionestimateold
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General Sequential LS Result See App. 8C for derivation 

Diagonal 
Covariance

(Sequential LS 
requires this)

At time index n-1 we have: 
[ ]

{ } estimate of measurequality ˆcov

 using  EstimateLSˆ

},,,diag{
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At time index n we get x[n]: 
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−1 Tack on row 
at bottom to 
show how θ
maps to x[n]



16

Iterate these Equations:
2

11 ][ˆ
nnnn nx σhΣθ −−Given the Following:

1

1
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Prediction of x[n] 
using current 

parameter estimate

Update the Estimate:

Compute the Gain:

Update the Est. Cov.:

Initialization: (Assume p parameters)
• Collect first p data samples x[0], . . ., x[p-1]
• Use “Batch” LS to compute:
• Then start sequential processing

11
ˆ

−− pp Σθ

Gain has same kind of 
dependence on Relative
Goodness between:

o Current Estimate
o New Data Point
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Sequential LS Block Diagram

kn Σ

z-1

1
ˆ
−nθ

+

+

x[n]

2
1 ,, nnn σhΣ −

Compute 
Gain 

1
ˆ][ −− n
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nh1
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( )11
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Predicted 
Observation Previous 
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nh
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