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Case Study  
TDOA/FDOA Location

• Overview
• Stage 1: Estimating TDOA/FDOA
• Stage 2: Estimating Geo-Location
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 Stage 1: Estimate TDOA/FDOA
 Stage 2: Estimate the emitter’s location from the info from stage 1.

Classical TDOA/FDOA Emitter Location:
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Stage 1: Estimating TDOA/FDOA
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SIGNAL MODEL
Will Process Equivalent Lowpass signal, BW = B Hz

– Representing RF signal with RF BW = B Hz

 Sampled at Fs > B complex samples/sec
 Collection Time T sec
 At each receiver:

BPF ADC
Make
LPE 

Signal
Equalize

cos(ω1t)

f

XRF(f)

X(f)

f

f

Xf
LPE(f)

B/2-B/2
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Tx Rx

s(t) sr(t) = s(t – τ(t))

R(t)

Propagation Time: τ(t) = R(t)/c

+++= 2)2/()( tavtRtR o

Use linear approximation – assumes small 
change in velocity over observation interval

)/]/1([)/][()( cRtcvscvtRtsts oor −−=+−=
Time 

Scaling
Time Delay:   τd

For Real BP Signals:

DOPPLER & DELAY MODEL 
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Analytic Signals Model

)]([)()(~ ttj cetEts φ+ω=

Now what?     Notice that v << c    (1 – v/c) ≈ 1
Say v = –300 m/s  (–670 mph)   then v/c = –300/3x108 = –10-6  (1 – v/c)=1.000001

Now assume E(t) & φ(t) vary slowly enough that 

)()]/1([
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ttcv
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DOPPLER & DELAY MODEL (continued)
Analytic Signal of Tx
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Analytic Signal of Rx

Called  Narrowband Approximation
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Transmitted Signal’s
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Time-Shifted by τd

Narrowband Analytic Signal Model

Narrowband Equivalent Lowpass Signal (ELPS) Model
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This is the signal that actually gets processed digitally

DOPPLER & DELAY MODEL (continued)
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Stein’s CRLB for TDOA
Most well-known form is for the C-T version of the problem:  

SNRBT B 
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BT = Time-Bandwidth Product    (≈ N,  number of samples in DT)
B = Noise Bandwidth of Receiver (Hz)
T = Collection Time (sec)

S. Stein, “Algorithms for Ambiguity Function 
Processing,” IEEE Trans. on ASSP, June 1981
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Problem with Stein’s CRLBs

Stein’s paper does not derive these CRLB results… rather they are just 
stated.  

There is no mention of what signal model is assumed….

And, it turns out that matters very much!!!

M. Fowler X. Hu, “Signal Models for TDOA/FDOA 
Estimation,” IEEE T. AES, Oct. 2008.
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TDOA/FDOA CRLB History Lesson

1970s 1980s 1990s 2000s

Sonar-Driven Research
Hann, Tretter, Knapp, Carter, 
Schultheis, Weinstein, Etc.

Radar/Comm-Driven Research
Stein, Chestnut, Berger, Blahut, 
Torrieri, Fowler, Yeredor, Etc.

Question: How much of the Sonar TDOA/FDOA estimation 
work can be carried over to the Radar/Comm arena??

Answer: Not as much as many Radar/Comm
researchers/practitioners think!

Next
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Signals: Sonar vs. RF

Two sampled passively-received complex-valued baseband signals:

1
1 1 1

2 2

[ ] ( ) [ ]
[ ] ( ) [ ]

j nTjr n e s nT e w n
r n s nT w n

νφ τ= − +
= +

This much is the same for each case…  
At least when the narrowband approximation can be used…  
which we assume here so we can focus on the impact of 
differences in the statistical model.

Noise Model
• Zero-mean WSS processes
• Gaussian
• Independent of each other

Next

M. Fowler X. Hu, “Signal Models 
for TDOA/FDOA Estimation,” 
IEEE T. AES, Oct. 2008.

1

2

 
=  
 

r
r

r



12/42

Signal Models: Sonar vs. RF

• Passive Sonar
– Signal = Sound from Boat
– “Erratic” signal behavior 
– Model as Random Process

• Zero-mean WSS
• Gaussian
• Independent of Noise

– Expected values taken over 
signal + noise ensemble

• Estimation accuracy is 
average over all possible 
noises and signals

• Passive Radar/Comm
– Signal = Pulse Train
– Structured signal behavior
– Model as Deterministic

• Specific pulse shape
• Pulse width & spacing

– Expected values taken over 
only noise ensemble

• Estimation accuracy is 
average over all possible 
noises for one specific signal

Next

M. Fowler X. Hu, “Signal Models 
for TDOA/FDOA Estimation,” 
IEEE T. AES, Oct. 2008.
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PDFs: Sonar vs. RF

Passive Sonar PDF:

Passive Radar/Comm PDF

• For both cases the received data vector… is Gaussian.
• But how TDOA/FDOA is embedded is very different.

This is the key… it impacts significant differences in:
• Fisher Info Matrix (FIM) / Cramer-Rao Bound (CRB)
• ML Estimator Structure

( ) ( ){ }11( ; ) exp ( )
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TDOA/FDOA in 
Covariance

TDOA/FDOA in 
Mean

Next

M. Fowler X. Hu, “Signal Models 
for TDOA/FDOA Estimation,” 
IEEE T. AES, Oct. 2008.
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FIM/CRB: Sonar vs. RF
• For complex Gaussian case the FIM elements are:

1 1 1[ ] 2 Re ( ) tr
H

gg ij
i j i jθ θ θ θ

− − −
     ∂ ∂ ∂ ∂ = +       ∂ ∂ ∂ ∂       

θ θ θ θ
θ θ

μ μ C CJ C θ C C

Passive Sonar FIM: Passive Radar/Comm FIM:

1[ ] 2 Re
H

radar ij
i jθ θ

−
   ∂ ∂ =    ∂ ∂     

θ θs sJ C1 1[ ] trsonar ij
i jθ θ

− − ∂ ∂
=   ∂ ∂ 

θ θ
θ θ

C CJ C C

• Leads to VERY different forms for the two cases:

First developed by Bangs.. falls out of general case
Difficult to assess… usually use “Whittles Theorem”
Depends on Noise PSD as well as Signal PSD

Easy to numerically assess…
Depends on specific signal structure

Next

M. Fowler X. Hu, “Signal Models 
for TDOA/FDOA Estimation,” 
IEEE T. AES, Oct. 2008.
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Correct CRLB for RF Signals A. Yeredor & E. Angel, “Joint TDOA 
and FDOA Estimation: A Conditional 
Bound and Its Use for Optimality 
Weighted Localization”, IEEE T. SP 
April 2011.

Fowler & Hu   Yeredor & Angel to consider “specific signal” case

“…bounds derived under an assumption of a stochastic source signal are 
associated with the “average” performance, averaged not only over noise 
realizations, but also over different source signal realizations, all drawn 
from the same statistical model.”

“It might be of greater interest to obtain a “signal-specific” bound, 
namely: for a given realization of the source signal, to predict the 
attainable performance when averaged only over different realizations of 
the noise. Such a bound can relate more accurately to the specific 
structure of the specific signal.”
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Noise Model
• Zero-mean WSS processes
• White (can generalize to colored noise)
• Gaussian
• Independent of each other
• Complex Baseband

Signal Model
• Deterministic
• Complex Baseband
• s[n] itself is UN-Known

- Must Estimate!

Correct CRLB for RF Signals A. Yeredor & E. Angel

Define:
1 1

2 2 2

1 1
2 2 2

T
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N N Ns s s

N N Ns s sτ τ τ τ

      − − + −            

      − − + −            

s

s
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Correct CRLB for RF Signals
Now using property of DFT: H

τ τ=s F D Fs

A. Yeredor & E. Angel

F is (unitary) DFT matrix:

𝐃𝐃𝜏𝜏 is “delay” matrix:

𝐃𝐃𝜈𝜈 is “doppler” matrix:  

1 2exp Tj
NN
π = − ⋅ 

 
F nn

2expdiag j
Nτ
π τ  = − ⋅ ⋅  

  
D n

2

1
2
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2

N
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 − 
 
 − +
 
 
 
 −  
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Then get:

(Pad zeros to account
for DFT circular nature)

1 1

2 2
j Hae φ

ν τ

= +

 = + 

r s v

r D F D F s v

Models DelayModels Doppler

Unit: “samples”Unit: “rad/sample”
( ),π π−

( ){ }expdiag jν ν= − ⋅ ⋅D n
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Correct CRLB for RF Signals A. Yeredor & E. Angel

,

1 1

2 2
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Recall: Must treat s as Unknown!

Parameters to Estimate: { } { }Re Im[ ]a φ τ ν=
γ

θ s s




Data Vector (Gaussian): 1 2
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General Gaussian FIM elements:
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No 𝛉𝛉 dependence!

This term 
is zero!

Easy Inversion!
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Correct CRLB for RF Signals A. Yeredor & E. Angel
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Now could get the CRLB matrix for full parameter vector:
1−=θ θCRLB J

But we really only want w.r.t. 𝛄𝛄
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Correct CRLB for RF Signals A. Yeredor & E. Angel

Then.. use a “math trick” called “Schur Complement” we get

1
Re{ },Im{ }
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−

−
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s s
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J
CRLB

J
Define: 1−=γ γCRLB J

2 2 2
1 2
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Evaluating  the elements in 𝐆𝐆𝐻𝐻𝐆𝐆 leads to noting this form:

, ,

aJ

φ τ ν

 
=  
 

γ

0
J

0 J
Amplitude parameters virtually 

always decouple like this!

So… really only need this!
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Correct CRLB for RF Signals A. Yeredor & E. Angel

The final result for the 
FIM of interest is:
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{ }diag=N n

So… use all these 
boxes to compute this 
J then invert it to get 

the CRLB!
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Correct CRLB for RF Signals A. Yeredor & E. Angel

We can interpret some of these FIM terms:
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Correct CRLB for RF Signals A. Yeredor & E. Angel

CRBs: “specific”
CRBFH: Fowler-Hu
CRBs: Wax for WSS Gaussian
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MLE: Sonar vs. Radar/Comm
• For general Gaussian case set

• Passive Sonar
– Derived by Weinstein, Wax
– Showed trace term = 0

• Passive Radar/Comm
– Derived by Stein

[ ] [ ] [ ]1 1 1 1tr 2 Re 0H H

i i iθ θ θ
− − − −  ∂ ∂ ∂

− + − − + − =  ∂ ∂ ∂  
θ θ θ
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sr s C
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Seem Very Different… but not as much as you’d think Next

M. Fowler X. Hu, “Signal Models 
for TDOA/FDOA Estimation,” 
IEEE T. AES, Oct. 2008.
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MLE: Sonar vs. Radar/Comm

• Both lead to cross-correlation with pre-filtering

• Passive Sonar
– Pre-Filters depend on interplay 

between Noise PSD & Signal PSD
– Becomes Std Cross-Correlator 

when Noise and Signal are white

• Passive Radar/Comm
– Pre-Filters depend only on Noise 

PSD, not on signal structure
– Becomes Std Cross-Correlator 

when Noise is white… regardless 
of signal

H( f )

H( f )

Cross 
Correlate

Find Peak

Next

M. Fowler X. Hu, “Signal Models 
for TDOA/FDOA Estimation,” 
IEEE T. AES, Oct. 2008.
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ML Estimator for TDOA/FDOA S. Stein, “Differential Delay/Doppler 
ML Estimation with Unknown 
Signals,” IEEE Trans. on SP, 1993.

Next

Two received CT signals in  ELPS form (complex) 
observed over (0,T):

Complex 
Amplitude

Delay DopplerParameters:

x(t) itself is unknown!

Delay

The signal x(t) has bandwidth of B Hz 
The time-BW product is assumed large: BT >>1 
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S. Stein, “Differential Delay/Doppler ML Estimation with Unknown Signals,” IEEE Trans. on SP, 1993.

Next

DFT View:
Recall: X unknown!

𝚫𝚫𝒇𝒇 is DFT spacing
Doppler

Assume the Doppler shift 
is an integer multiple (F) 
of the DFT spacing

Benefit of converting to Frequency Domain:  
{Nim}, m = 0, 1, …,N-1 are independent RVs!

(Even when noise is correlated in time!!!)

CTFT View:

BT >> 1 yileds a common trick: analysis in freq domain is easier. 

Now convert this into a DFT view for the DT problem

Covariances: { }0 1 1diag , , , , 1,2i i i iNP P P i− =C  
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S. Stein, “Differential Delay/Doppler ML Estimation with Unknown Signals,” IEEE Trans. on SP, 1993.

Next

Because of the independence (due to the DFT trick) it is easy to 
write the PDF of the two observed signals’ vectors 

where:

m

Minimize!

Re-write L1:

where:

X only in here!

Other Parms
only in here!

No Parm or Signal in here!
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S. Stein, “Differential Delay/Doppler ML Estimation with Unknown Signals,” IEEE Trans. on SP, 1993.

Next

Remember we need to estimate the signal DFT X too!
It only shows up in second term in L1:

This is minimized (to 0) by choosing the signal estimate to be

When we plug into (8) the ML estimates for delay, 
Doppler, amplitude we get a signal estimate 

“Undo” Doppler and delay to align!

So…
• First term of L1 is not needed
• Second term of L1 led to signal estimate
• Third term of L1 … look at now!
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S. Stein, “Differential Delay/Doppler ML Estimation with Unknown Signals,” IEEE Trans. on SP, 1993.

Next

Third term of L1 … look at now!

where:

It follows that we need to maximize |K|… equivalent to maxmizing

For white noise the denominator is constant and this becomes
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Ambiguity Function

τ
ω
ωd

τd

Find
Peak

of
|A(ω,τ)|

ML Estimator for TDOA/FDOA

)(1 d
tjj tsee d τωα −=

Delay
τ

Doppler
ω

“Compare”
Signals
For all 

Delays & 
Dopplers

)(1 ts

)(2 ts

LPE Rx
Signals
At Two 

Receivers

dtetstsA
T

tj∫ −+=
0

21 )()(),( ωττω

S. Stein, “Differential Delay/Doppler 
ML Estimation with Unknown 
Signals,” IEEE Trans. on SP, 1993.

Next
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COMPUTING THE AMBIGUITY FUNCTION

Direct computation based on the equation for the ambiguity 
function leads to computationally inefficient methods.

In Prof. Fowler’s EECE 521 notes it is shown how to use 
decimation to efficiently compute the ambiguity function
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Stage 2: Estimating Geo-Location



34/42Next

Data Link

Data 
Link

TDOA/FDOA LOCATION

Data 
Link

Centralized Network of P
• “P-Choose-2” Pairs 
 “P-Choose-2”  TDOA Measurements
 “P-Choose-2”  FDOA Measurements
• Warning: Watch out for Correlation 
Effect Due to  Signal-Data-In-Common
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TDOA/FDOA LOCATION
Pair-Wise Network of P
• P/2 Pairs 
 P/2  TDOA Measurements
 P/2  FDOA Measurements
• Many ways to select P/2 pairs
• Warning: Not all pairings are equally 
good!!!    The Dashed Pairs are Better
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TDOA/FDOA Measurement Model
Given N TDOA/FDOA measurements with corresponding 2×2 Cov. Matrices

)ˆ,ˆ(,),ˆ,ˆ(),ˆ,ˆ( 2211 NN ντντντ 

For notational purposes… define the 2N measurements r(n) n = 1, 2, …, 2N 

Nnr

Nnr

nn

nn

,,2,1,ˆ

,,2,1,ˆ

2

12





==

==−

ν

τ

NCCC ,,, 21 

T
Nrrr ][ 221 =r

Data Vector

Now, those are the TDOA/FDOA estimates…  so the true values are notated as:

),(,),,(),,( 2211 NN ντντντ 

Nns

Nns

nn

nn

,,2,1,

,,2,1,

2

12





==

==−

ν

τ
T

Nsss ][ 221 =s

“Signal” Vector

Assume pair-wise network, so…
TDOA/FDOA pairs are uncorrelated
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TDOA/FDOA Measurement Model (cont.)
Each of these measurements r(n) has an error ε(n) associated with it, so…



















==

N

N

C00

00

00C

CCCC 

1

21 },,,diag{

εsr +=
Because these measurements were estimated using an ML estimator (with 
sufficiently large number of signal samples) we know that error vector ε is a 
zero-mean Gaussian vector with cov. matrix C given by:

The true TDOA/FDOA values depend on:
Emitter Parms: (xe, ye, ze) and transmit frequency fe      xe = [ xe ye ze    fe ]T

Receivers’ Nav Data (positions & velocities):  The totality of it called  xr

εxxsr += );( re • Deterministic “Signal” + Gaussian Noise
• “Signal” is nonlinearly related to parms

Assumes that 
TDOA/FDOA 
pairs are 
uncorrelated!!!

To complete the model… we need to know how s(xe;xr)  depends on xe and xr.
Thus we need to find TDOA & FDOA as functions of xe and xr
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TDOA/FDOA Measurement Model (cont.)

Two Receivers with:  (x1, y1, Vx1, Vy1) and (x2, y2, Vx2, Vy2)
Emitter with: (xe, ye) 

(Let Ri be the range between Receiver i and the emitter; c is the speed of light.)

The TDOA and FDOA are given by:
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Here we’ll simplify to the x-y plane… extension is straight-forward.
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CRLB  for Geo-Location via TDOA/FDOA
Recall: For the General Gaussian Data case the CRLB depends on a FIM that 
has structure like this:

Here we have a deterministic “signal” plus Gaussian noise so we only have the 
1st term… Using the notation introduced here gives…

1
1 )()()(
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e
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eCRLB x
xsC

x
xsxC

Called the “Jacobian”   …  for the 3-D location with 
TDOA/FDOA will be a 2N × 4 matrix whose columns 
are derivatives of s  w.r.t. each of the 4 parameters.

()

HHT
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TDOA/FDOA Jacobian:
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CRLB  for Geo-Loc. via TDOA/FDOA (cont.)

Jacobian can be computed for any desired Rx-Emitter Scenario 
Then… plug it into () to compute the CRLB for that scenario:

[ ] 11)(
−−= HCHxC T

eCRLB
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CRLB  for Geo-Loc. via TDOA/FDOA (cont.)

Geometry and TDOA vs. FDOA Trade-Offs
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Estimator for Geo-Location via TDOA/FDOA
Because we have used the ML estimator to get the TDOA/FDOA 
estimates the ML’s asymptotic properties tell us that we have 
Gaussian TDOA/FDOA measurements

Because the TDOA/FDOA measurement model is nonlinear it is 
unlikely that we can find a truly optimal estimate…  so we again 
resort to the ML.  For the ML of a Nonlinear Signal in Gaussian we 
generally have to proceed numerically.  

One way to do Numerical MLE is ML Newton-Raphson (need vector 
version):
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However, the “Hessian” requires a second derivative…
This can add complexity in practice…  Alternative:

Gauss-Newton Nonlinear Least Squares based on linearizing the model.

Gradient: p×1 vectorHessian: p×p matrix
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