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Chapter 7
Maximum Likelihood Estimate

(MLE)
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Motivation for MLE
Problems:  1.  MVUE often does not exist or can’t be found

<See Ex. 7.1 in the textbook for such a case>
2. BLUE may not be applicable (x ≠ Hθ + w) 

Solution: If the PDF is known, then MLE can always be used!!!

This makes the MLE one of the most popular practical methods

• Advantages: 1.  It is a “Turn-The-Crank” method
2.  “Optimal” for large enough data size

• Disadvantages:  1.  Not optimal for small data size
2.  Can be computationally complex

- may require numerical methods
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Rationale for MLE
Choose the parameter value that: 

makes the data you did observe…
the most likely data to have been observed!!!

Consider 2 possible parameter values:  θ1 & θ2

Ask the following:  If θi were really the true value, what is the 
probability that I would get the data set I really got ?

Let this probability be Pi

So if Pi is small… it says you actually got a data set that was 
unlikely to occur!  Not a good guess for θi!!!

But  p1 = p(x;θ1) dx

p2 = p(x;θ2) dx
⇒ pick          so that  is largestMLθ̂ )ˆ;( MLp θx
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Definition of the MLE
is the value of θ that maximizes the “Likelihood 

Function” p(x;θ) for the specific measured data x
MLθ̂

maximizes the 
likelihood function

MLθ̂p(x;θ)

θMLθ̂

Note:  Because ln(z) is a monotonically increasing function…

maximizes the log likelihood function ln{p(x; θ)}MLθ̂

General Analytical Procedure to Find the MLE

1.  Find log-likelihood function: ln p(x;θ) 

2.  Differentiate w.r.t θ and set to 0:   ∂ln p(x;θ)/∂θ = 0

3.  Solve for θ value that satisfies the equation
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Ex. 7.3: Ex. of MLE When MVUE Non-Existent
x[n] = A + w[n] ⇒ x[n] ~ N(A,A)

WGN
~N(0,A) 

Likelihood Function:

!!!!!! "!!!!!! #$











−−= ∑

−

=

1

0

2

2

)][(
2
1exp

)2(

1);(
N

n
N Anx

A
A

Ap

π

x

To take ln of this… use log properties:

Take ∂/∂A, set = 0, and change A to Â
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Manipulate to get: 0][1ˆˆ
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Solve quadratic equation to get MLE:

Can show this estimator biased (see bottom of p. 160)
But it is asymptotically unbiased…

Use the  “Law of Large Numbers”:  
Sample Mean → True Mean
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So can use this to show:

Asymptotically…Unbiased & 
Efficient



7

7.5 Properties of the MLE (or… “Why We Love MLE”)

The MLE is asymptotically:

1.  unbiased

2.  efficient (i.e. achieves CRLB)

3.  Gaussian PDF

Also, if a truly efficient estimator exists, then the ML procedure 
finds it !

The asymptotic properties are captured in Theorem 7.1:

If p(x;θ ) satisfies some “regularity” conditions, then the 
MLE is asymptotically distributed according to

))(,(~ˆ 1 θIθNθ a
ML

−

where   I(θ ) = Fisher Information Matrix
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Size of N to Achieve Asymptotic

This Theorem only states what happens asymptotically…
when N is small there is no guarantee how the MLE behaves

Q:  How large must N be to achieve the asymptotic properties?

A:  In practice:  use “Monte Carlo Simulations” to answer this 
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Monte Carlo Simulations:  see Appendix 7A

Not just for the MLE!!!
A methodology for doing computer simulations to evaluate 
performance of any estimation method 
Illustrate for deterministic signal s[n; θ ] in AWGN

Monte Carlo Simulation:

Data Collection:

1.  Select a particular true parameter value, θtrue
- you are often interested in doing this for a variety of values of θ
so you would run one MC simulation for each θ value of interest

2.  Generate signal having true θ: s[n;θt] (call it s in matlab)

3.  Generate WGN having unit variance
w = randn ( size(s) );

4.  Form measured data:  x = s + sigma*w;
- choose σ to get the desired SNR
- usually want to run at many SNR values 

→ do one MC simulation for each SNR value
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Data Collection (Continued):

5.  Compute estimate  from data x

6.  Repeat steps 3-5 M times 

- (call M “# of MC runs” or just “# of runs”) 

7.  Store all M estimates in a vector EST (assumes scalar θ) 

Statistical Evaluation:

1.  Compute bias

2.  Compute error RMS

3.  Compute the error Variance

4. Plot Histogram or Scatter Plot (if desired)
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Now explore (via plots) how:  Bias, RMS, and VAR vary with: 
θ value, SNR value, N value, Etc.

Is B ≈ 0 ?
Is RMS ≈ (CRLB)½ ?
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Ex. 7.6: Phase Estimation for a Sinusoid
Some Applications:  
1.  Demodulation of phase coherent modulations 

(e.g., DSB, SSB, PSK, QAM, etc.)
2.  Phase-Based Bearing Estimation

Signal Model:x[n] = Acos(2πfon + φ) + w[n], n = 0, 1,…, N-1

A and fo known, φ unknown White
~N(0,σ2) 

( )
SNRNNA ⋅

=≥
12ˆvar 2

2σφRecall CRLB:

For this problem… all methods for finding the MVUE will fail!!
⇒ So… try MLE!!
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So first we write the likelihood function:
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… equivalent to 
minimizing this 

End up in same 
place if we 
maximize LLF

GOAL:  Find φ that 
maximizes this
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Interpret via inner product or correlation
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Now…using a Trig Identity and then re-arranging gives:
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Or… Recall: This is the 
approximate MLE

Don’t need to know 
A or σ2 but do need 

to know fo
LPF

LPF

yi(t)

yq(t)

x(t)
cos(2πfot)

-sin(2πfot)

Recall: I-Q Signal Generation

The “sums” in the above equation 
play the role of the LPF’s in the 
figure (why?)
Thus, ML phase estimator can be 
viewed as: atan of ratio of Q/I
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Monte Carlo Results for ML Phase Estimation

See figures 7.3 & 7.4 in text book
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