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Chapter 4
Linear Models
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General Linear Model
Recall signal + WGN case:  x[n] = s[n;θ] + w[n]

x = s(θ) + w Here, dependence on θ is general

N×1 known “observation 
matrix” (N×p)

p×1 known “offset”(p×1)

Now we consider a special case: Linear �Observations�:
s(θ) = Hθ + b

The General Linear Model:

wbHθx ++=

Data 
Vector Known & 

Full Rank

To Be 
Estimated

~N(0,C)

zero-mean, 
Gaussian,

C is pos. def.

Note: �Gaussian� is part 
of the �Linear Model�

Known
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Need For Full-Rank H Matrix
Note: We must assume H is full rank

Q: Why?

A: If not, the estimation problem is “ill-posed”
…given vector s there are multiple θ vectors that give s:

If H is not full rank…
Then for any s :  ∃ θ1, θ2 such that s = Hθ1 = Hθ2
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Importance of The Linear Model

There are several reasons:

1. Some applications admit this model

2. Nonlinear models can sometimes be linearized

( ) ( )bxCHHCHθ −= −−− 111 ˆ TT
MVU … as we’ll see!!!

3. Finding Optimal Estimator is Easy
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MVUE for Linear Model
Theorem:  The MVUE for the General Linear Model and its 
covariance (i.e. its accuracy performance) are given by:  

( ) ( )bxCHHCHθ −= −−− 111 ˆ TT
MVU

( ) 11
ˆ  

−−= HCHCθ
T and achieves the CRLB.

Proof: We’ll do this for the b = 0 case but it can easily be done 
for the more general case.

First we have that x~N(Hθ,C) because:

E{x} = E{Hθ + w} = Hθ + Ε{w} = Hθ

cov{x} = E{(x – Hθ) (x – Hθ)T} = E{w wT} = C
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Recalling CRLB Theorem…  Look at the partial of LLF:

Constant 
w.r.t. θ

Linear 
w.r.t. θ

Quadratic w.r.t. θ
(Note: HTC-1H is symmetric)

Now use results in “Gradients and Derivatives” posted on BB:

The �CRLB Theorem� says that if we have this form we 
have found the MVU and it achieves the CRLB of I-1(θ)!!
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For simplicity… assume b = 0Whitening Filter Viewpoint
Assume C is positive definite (necessary for C-1 to exist)

Thus, from (A1.2):  for pos. def. C ∃ N×N invertible matrix D, s.t.

C-1  = DTD C = D-1(DT)-1

Transform data x using matrix D: wθHDwDHθDxx ~~~ +=+==

Claim: White!!{ } { } { }
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Whitening
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Ex. 4.1: Curve Fitting
Caution:  The “Linear” in “Linear Model”

does not come from fitting straight lines to data 

It is more general than that !!

n

x[n] Data

Model is Quadratic in Index n…
But Model is Linear in Parameters
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Ex. 4.2:  Fourier Analysis (not most general) 
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Now apply MVUE Theorem for Linear Model:

( ) xHHH TT
MVU

1ˆ −
=θ

I
2
N

=

Using standard 
orthogonality of 

sinusoids (see book)

xHT
MVU

N
2

ˆ =θ

Each Fourier coefficient 
estimate is found by the inner 
product of a column of H with 

the data vector x

Interesting!!! Fourier Coefficients for signal + AWGN are MVU 
estimates of the Fourier Coefficients of the noise-free signal

COMMENT: Modeling and Estimation    (are Intertwined)
• Sometimes the parameters have some physical significance (e.g. delay    

of a radar signal).
• But sometimes parameters are part of non-physical assumed model 

(e.g. Fourier)
• Fourier Coefficients for signal + AGWN are MVU estimates of the  

Fourier Coefficients of the noise-free signal
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H(z) +

w[n]

u[n]
Ex. 4.3: System Identification

x[n]

Observed 
Noisy Output

Known 
Input

Unknown 
System

Goal: Determine a model for the system 
Some Application Areas: 

• Wireless Communications (identify & equalize multipath)
• Geophysical Sensing (oil exploration)
• Speakerphone (echo cancellation)

In many applications: assume that the system is FIR (length p)

unknown, but here 
we’ll assume known][][][][
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Measured Estimation
Parameters

Known Input
Assume u[n] =0, n < 0

AWGN



12

Write FIR convolution in matrix form:
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Data

Known Input 
Signal Matrix

The Theorem for the Linear Model says:

( ) xHHHθ TT
MVU

1
 ˆ −

=

( ) 12
ˆ  

−
= HHCθ

Tσ and achieves the CRLB.
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Q:  What signal u[n] is best to use ?

A: The u[n] that gives the smallest estimated variances!!

Book shows:   Choosing u[n] s.t. HTH is diagonal will 
minimize variance

⇒ Choose u[n] to be pseudo-random noise (PRN)
u[n] is ⊥ to all its shifts u[n – m]

Proof uses: ( ) 12
ˆ  

−
= HHCθ

Tσ

And Cauchy-Schwarz Inequality (same as Schwarz Ineq.)

Note: PRN has approximately flat spectrum

So from a frequency-domain view a PRN signal equally probes at 
all frequencies
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