CRLB Example:
 Single-Rx Emitter Location via Doppler

- Received Signal Parameters Depend on Location
- Estimate $\underline{R x}$ Signal Frequencies: $f_{1}, f_{2}, f_{3}, \ldots, f_{N}$
- Then Use Measured Frequencies to Estimate Location

Problem Background

Radar to be Located: at Unknown Location (X, Y, Z) Transmits Radar Signal at Unknown Carrier Frequency f_{o}

Signal is intercepted by airborne receiver with:
Known (Navigation Data):
Antenna Positions: $\left(X_{p}(t), Y_{p}(t), Z_{p}(t)\right)$
Antenna Velocities: $\left(V_{x}(t), V_{y}(t), V_{z}(t)\right)$

Goal: Estimate Parameter Vector $\mathrm{x}=\left[\begin{array}{l}X \\ Y\end{array} \mathrm{Z}_{0}\right]^{\mathrm{T}}$

Physics of Problem

Relative motion between emitter and receiver causes a Doppler shift of the carrier frequency:

$$
\begin{aligned}
f(t, \mathbf{x}) & =f_{o}-\frac{f_{o}}{c} \mathbf{v}(t) \bullet \mathbf{u}(t) \\
& =f_{o}-\frac{f_{o}}{c}\left[\frac{V_{x}(t)\left(X_{p}(t)-X\right)+V_{y}(t)\left(Y_{p}(t)-Y\right)+V_{z}(t)\left(Z_{p}(t)-Z\right)}{\sqrt{\left(X_{p}(t)-X\right)^{2}+\left(Y_{p}(t)-Y\right)^{2}+\left(Z_{p}(t)-Z\right)^{2}}}\right] .
\end{aligned}
$$

Because we estimate the frequency there is an error added:

$$
\tilde{f}\left(t_{i}, \mathbf{x}\right)=f\left(t_{i}, \mathbf{x}\right)+v\left(t_{i}\right)
$$

Estimation Problem Statement

Given:
Data Vector: $\tilde{\mathbf{f}}(\mathbf{x})=\left[\tilde{f}\left(t_{1}, \mathbf{x}\right) \tilde{f}\left(t_{2}, \mathbf{x}\right) \cdots \tilde{f}\left(t_{N}, \mathbf{x}\right)\right]^{T}$
Navigation Info: $X_{p}\left(t_{1}\right), X_{p}\left(t_{2}\right), \cdots, X_{p}\left(t_{N}\right)$

$$
\begin{aligned}
& Y_{p}\left(t_{1}\right), Y_{p}\left(t_{2}\right), \cdots, Y_{p}\left(t_{N}\right) \\
& Z_{p}\left(t_{1}\right), Z_{p}\left(t_{2}\right), \cdots, Z_{p}\left(t_{N}\right) \\
& V_{x}\left(t_{1}\right), V_{x}\left(t_{2}\right), \cdots, V_{x}\left(t_{N}\right) \\
& V_{y}\left(t_{1}\right), V_{y}\left(t_{2}\right), \cdots, V_{y}\left(t_{N}\right) \\
& V_{z}\left(t_{1}\right), V_{z}\left(t_{2}\right), \cdots, V_{z}\left(t_{N}\right)
\end{aligned}
$$

Estimate:
Parameter Vector: $\left[X Y Z f_{o}\right]^{\top}$

Right now only want to consider the CRLB

The CRLB

Note that this is a "signal" plus noise scenario:

- The "signal" is the noise-free frequency values
- The "noise" is the error made in measuring frequency

Assume zero-mean Gaussian noise with covariance matrix C:

- Can use the "General Gaussian Case" of the CRLB
- Of course validity of this depends on how closely the errors of the frequency estimator really do follow this

Our data vector is distributed according to: $\tilde{\mathbf{f}}(\mathbf{x}) \sim N(\mathbf{f}(\mathbf{x}), \mathbf{C})$
Only need the first term in the CRLB equation:

$$
[\mathbf{J}]_{i j}=\left[\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{i}}\right]^{T} \mathbf{C}^{-1}\left[\frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_{j}}\right]
$$

Only Mean Shows Dependence on parameter \mathbf{x} !

I use \mathbf{J} for the FIM instead of \mathbf{I} to avoid confusion with the identity matrix.

Convenient Form for FIM

To put this into an easier form to look at... Define a matrix \mathbf{H} :

$$
\mathbf{H}=\left.\frac{\partial}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x})\right|_{\mathbf{x}=\text { true value }}=\left[\mathbf{h}_{1}\left|\mathbf{h}_{2}\right| \mathbf{h}_{3} \mid \mathbf{h}_{4}\right]
$$

where

$$
\mathbf{h}_{j}=\left[\begin{array}{c}
\frac{\partial}{\partial x_{j}} f\left(t_{1}, \mathbf{x}\right) \\
\frac{\partial}{\partial x_{j}} f\left(t_{2}, \mathbf{x}\right) \\
\vdots \\
\frac{\partial}{\partial x_{j}} f\left(t_{N}, \mathbf{x}\right)
\end{array} \|_{\mathbf{x}=\text { true value }}\right.
$$

Then it is east to verify that the FIM becomes:

$$
\mathbf{J}=\mathbf{H}^{T} \mathbf{C}^{-1} \mathbf{H}
$$

CRLB Matrix

The Cramer-Rao bound covariance matrix then is:

$$
\begin{aligned}
\mathbf{C}_{C R B}(\mathbf{x}) & =\mathbf{J}^{-1} \\
& =\left[\mathbf{H}^{T} \mathbf{C}^{-1} \mathbf{H}\right]^{-1}
\end{aligned}
$$

A closed-form expression for the partial derivatives needed for \mathbf{H} can be computed in terms of an arbitrary set of navigation data - see "Reading Version" of these notes (on BlackBoard).

Given: Emitter Location \& Platform Trajectory and Measurement Cov C

- Compute Matrix H
- Compute the CRLB covariance matrix $\mathbf{C}_{\mathrm{CRB}}(\mathbf{x})$
- Compute eigen-analysis of $\mathbf{C}_{\mathrm{CRB}}(\mathbf{x})$
- Determine the 4-D error ellipsoid.

Can't really plot a 4-D ellipsoid!!!

But... it is possible to project this 4-D ellipsoid down into a 2-D ellipse so that you can see the effect of geometry.

Projection of Error Ellipsoids See also "Slice of Error Ellipsoids"

A zero-mean Gaussian vector of two vectors $\mathbf{x} \& \mathbf{y}: \boldsymbol{\theta}=\left[\begin{array}{ll}\mathbf{x}^{T} & \mathbf{y}^{T}\end{array}\right]^{T}$ The the PDF is:

$$
p(\boldsymbol{\theta})=\frac{1}{(2 \pi)^{N / 2} \sqrt{\operatorname{det}\left(\mathbf{C}_{\boldsymbol{\theta}}\right)}} \exp \left\{-\frac{1}{2} \boldsymbol{\theta}^{T} \mathbf{C}_{\boldsymbol{\theta}}^{-1} \boldsymbol{\theta}\right\} \quad \mathbf{C}_{\boldsymbol{\theta}}=\left[\begin{array}{ll}
\mathbf{C}_{\mathbf{x}} & \mathbf{C}_{\mathrm{xy}} \\
\mathbf{C}_{\mathrm{yx}} & \mathbf{C}_{\mathbf{y}}
\end{array}\right]
$$

The quadratic form in the exponential defines an ellipse:

$$
\boldsymbol{\theta}^{T} \mathbf{C}_{\boldsymbol{\theta}}^{-1} \boldsymbol{\theta}=k\left\{\begin{array}{c}
\text { Can choose } k \text { to make size of } \\
\begin{array}{c}
\text { ellippoid such that } \theta \text { falls inside } \\
\text { the ellipsoid with a desired } \\
\text { probability }
\end{array}
\end{array}\right.
$$

Q: If we are given the covariance \mathbf{C}_{θ} how is \mathbf{x} alone is distributed?
$\underline{\text { A }}$: Extract the sub-matrix $\mathbf{C}_{\mathbf{x}}$ out of $\mathbf{C}_{\boldsymbol{\theta}}$

Projection Example

Full Vector: $\boldsymbol{\theta}=\left[\begin{array}{ll}x & y z\end{array}\right]^{T} \quad$ Sub-Vector: $\mathbf{x}=\left[\begin{array}{ll}x & y\end{array}\right]^{T}$
We want to project the 3-D ellipsoid for $\boldsymbol{\theta}$
...down into a 2-D ellipse for \mathbf{x}
Projections of 3-D Ellipsoids onto 2-D Space

Finding Projections

To find the projection of the CRLB ellipse:

1. Invert the FIM to get $\mathbf{C}_{\mathrm{CRB}}$
2. Select the submatrix $\mathbf{C}_{\mathrm{CRB} \text {,sub }}$ from $\mathbf{C}_{\mathrm{CRB}}$
3. Invert $\mathbf{C}_{\mathrm{CRB}, \text { sub }}$ to get $\mathbf{J}_{\text {proj }}$
4. Compute the ellipse for the quadratic form of $\mathbf{J}_{\text {proj }}$

Mathematically:

$$
\begin{aligned}
& \mathbf{C}_{C R B, \text { sub }}=\mathbf{P C}_{C R B} \mathbf{P}^{T} \\
& =\mathbf{P J}^{-1} \mathbf{P}^{T}
\end{aligned}
$$

$$
\longmapsto \mathbf{J}_{\text {proj }}=\left(\mathbf{P J}^{-1} \mathbf{P}^{T}\right)^{-1}
$$

\mathbf{P} is a matrix formed from the identity matrix:
keep only the rows of the variables projecting onto
For this example, frequency-based emitter location: $\left[X Y Z f_{o}\right]^{\mathrm{T}}$ To project this 4-D error ellipsoid onto the $\mathrm{X}-\mathrm{Y}$ plane:

$$
\mathbf{P}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Projections Applied to Emitter Location

Slices of Error Ellipsoids

Q: What happens if one parameter were perfectly known.
Capture by setting that parameter's error to zero
\Rightarrow slice through the error ellipsoid.

