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3.11 CRLB Examples

1. Range Estimation 
– sonar, radar, robotics, emitter location

2. Sinusoidal Parameter Estimation (Amp., Frequency, Phase)
– sonar, radar, communication receivers (recall DSB Example), etc.

3. Bearing Estimation 
– sonar, radar, emitter location

4. Autoregressive Parameter Estimation
– speech processing, econometrics

We’ll now apply the CRLB theory to several examples of 
practical signal processing problems.

We’ll revisit these examples in Ch. 7… we’ll derive ML 
estimators that will get close to achieving the CRLB 
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Transmit Pulse:  s(t)      nonzero over t∈[0,Ts]

Receive Reflection:   s(t – τo)

Measure Time Delay: τo
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Ex. 1 Range Estimation Problem



3

Sample Every ∆ = 1/2B sec
w[n] = w(n∆)

DT White 
Gaussian Noise

Var σ2 = BNo

f 

ACF of w(t)

τ
1/2B

B–B
1/B 3/2B

PSD of w(t)
No/2 σ2 = BNo
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Range Estimation D-T Signal Model
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s[n;τo]… has M non-zero samples starting at no no = τo /∆
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Now apply standard CRLB result for signal + WGN:
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Plug in… and keep 
non-zero terms

Exploit Calculus!!! Use approximation: τo = ∆ no
Then do change of variables!!

Range Estimation CRLB
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Assume sample spacing is small… approx. sum by integral…
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Range Estimation CRLB (cont.)
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Define a BW measure:

Brms is “RMS BW”  (Hz)
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Using these ideas we arrive at the CRLB on the delay:

This “SNR” is not our usual ratio of powers… so let’s convert to 
our usual form:

Range Estimation CRLB (cont.)
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CRLB is inversely proportional to:
• SNR Measure
• RMS BW Measure

So the CRLB tells us…
• Choose signal with large Brms
• Ensure that SNR is large
• Better on Nearby/large targets
• Which is better?  

– Double transmitted energy/power?
– Double RMS bandwidth?

To get the CRLB on the range… use “transf. of parms” result: 
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1,,1,0][)cos(][ −=++Ω= NnnwnAnx o φ

Given DT signal samples of a sinusoid in noise….
Estimate its amplitude, frequency, and phase

DT White Gaussian Noise
Zero Mean  & Variance of σ2

Ωo is DT frequency in 
rad/sample:  0 < Ωo < π

Multiple parameters… so parameter vector: T
oA ][ φΩ=θ

Recall… SNR of sinusoid in noise is:
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Ex. 2 Sinusoid Estimation CRLB Problem
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Approach:
• Find Fisher Info Matrix 
• Invert to get CRLB matrix
• Look at diagonal elements to get bounds on parm variances

Recall: Result for FIM for general Gaussian case specialized to 
signal in AWGN case:
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Sinusoid Estimation CRLB Approach



10

Taking the partial derivatives and using approximations given in 
book (valid when Ωo is not near 0 or π) :
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Inverting the FIM by hand gives the CRLB matrix… and then 
extracting the diagonal elements gives the three bounds:

(using co-factor & det 
approach… helped by 0’s)

• Amp. Accuracy:  Decreases as 1/N, Depends on Noise Variance (not SNR)

• Freq. Accuracy:  Decreases as 1/N3, Decreases as as 1/SNR

• Phase Accuracy:  Decreases as 1/N, Decreases as as 1/SNR
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Sinusoid Estimation CRLBs
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The CRLB for Freq. Est. referred back to the CT is
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Not in Book

Does that mean we do worse if we sample faster than Nyquist?
NO!!!!!  For a fixed duration T of signal: N = TFs

Frequency Estimation CRLBs and Fs
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ACF of w(t)

τ
1/2B

B–B
1/B 3/2B

PSD of w(t)
No/2 σ2 = BNo

Also keep in mind that Fs has effect on the noise structure:
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Uniformly spaced linear array with M sensors: 
• Sensor Spacing of d meters
• Bearing angle to target β radians

Figure 3.8 
from textbook:

Simple model 

Emits or reflects 
signal s(t)
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Ex. 3 Bearing Estimation CRLB Problem
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Now instead of sampling each sensor at lots of time instants… 
we just grab one “snapshot” of all M sensors at a single instant ts
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Spatial Frequencies: 
• ωs is in rad/meter
• Ωs  is in rad/sensor

Spatial sinusoid w/ 
spatial frequency Ωs

For sinusoidal transmitted signal… Bearing 
Est. reduces to Frequency Est.

And… we already know its FIM & CRLB!!!

Bearing Estimation Snapshot of Sensor Signals
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Each sample in the snapshot is corrupted by a noise sample…

and these M samples make the data vector x = [x[0] x[1] … x[M-1] ]:

Each w[n] is a noise sample that comes from a different sensor so…  
Model as uncorrelated Gaussian RVs (same as white temporal noise)
Assume each sensor has same noise variance σ2  

So… the parameters to consider are: T
sA ]

~
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which get transformed to:
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Parameter of interest!

Bearing Estimation Data and Parameters
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Using the FIM for the sinusoidal parameter problem… together 
with the transform. of parms result (see book p. 59 for details):
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L  = Array physical length in meters
M = Number of array elements
λ = c/fo Wavelength in meters (per cycle)

Define: Lr = L/λ
Array Length “in 
wavelengths”

• Bearing Accuracy:  

– Decreases as 1/SNR – Depends on actual bearing β

– Decreases as 1/M  Best at β = π/2 (“Broadside”)

– Decreases as 1/Lr
2  Impossible at β = 0! (“Endfire”)

Low-frequency (i.e., long wavelength) signals need 
very large physical lengths to achieve good accuracy

Bearing Estimation CRLB Result
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In speech processing (and other areas) we often model the 
signal as an AR random process and need to estimate the AR 
parameters.  An AR process has a PSD given by
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AR Estimation Problem: Given data x[0], x[1], … , x[N-1] 
estimate the AR parameter vector

[ ]Tupaaa 2][]2[]1[ σ=θ

This is a hard CRLB to find exactly… but it has been published.  
The difficulty comes from the fact that there is no easy direct 
relationship between the parameters and the data.

It is not a signal plus noise problem

Ex. 4 AR Estimation CRLB Problem Reading 
Assignment
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Approach: The asymptotic result we discussed is perfect here: 
• An AR process is WSS… is required for the Asymp. Result

• Gaussian is often a reasonable assumption… needed for Asymp. Result

• The Asymp. Result is in terms of partial derivatives of the PSD… and 
that is exactly the form in which the parameters are clearly displayed!
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AR Estimation CRLB Asymptotic Approach
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After taking these derivatives… you get results that can be 
simplified using properties of FT and convolution.

The final result is: [ ]
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To get a little insight… look at 1st order AR case (p = 1):
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Complicated 
dependence on 
AC Matrix!!

Improves as pole 
gets closer to 
unit circle… 
PSDs with 

sharp peaks are 
easier to 
estimate
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AR Estimation CRLB Asymptotic Result
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