3.11 CRLB Examples

We’ll now apply the CRLB theory to several examples of
practical signal processing problems.

We’ll revisit these examples in Ch. 7... we’ll derive ML
estimators that will get close to achieving the CRLB

1. Range Estimation
— sonar, radar, robotics, emitter location

2. Sinusoidal Parameter Estimation (Amp., Frequency, Phase)
—  sonar, radar, communication receivers (recall DSB Example), etc.
3. Bearing Estimation
—  sonar, radar, emitter location

4.  Autoregressive Parameter Estimation
—  speech processing, econometrics



Ex. 1 Range Estimation Problem
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Range Estimation D-T Signal Model
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Range Estimation CRLB
Now apply standard CRLB result for signal + WGN:

Plug in... and keep }
non-zero terms
2 2

var(zo) = N - 2 T M-t - 2
—{ 0S[N;7,] ° 0S(NA —17,)
nZ;‘I 07, ] ngnlo [ 07 j
_ o
no%/lll[as(t)
iy ot

Exploit Calculus!!! 1 Use approximation: t,= A n,
Then do change of variables!!




Range Estimation CRLB (cont.)

Assume sample spacing is small... approx. sum by integral...
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Range Estimation CRLB (cont.)

Using these ideas we arrive at the CRLB on the delay:

1
var(7,) > R B (sec?)

rms

This “SNR” Is not our usual ratio of powers... so let’s convert to

| form:
our usual form ESZIOTSSZ(t)dt ‘ P——f dt—

Pz%xQ&

Thus... sNR="=y = g [SNR. =2BT,SNR]
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Range Estimation CRLB (cont.)

To get the CRLB on the range... use “transf. of parms” result:

2 A C2/4
.| R Wi - var(R) > m°
CRLB; _(aroJ CRLB; with R=cz,/2 R ( ) 2BT.SNR x B2 ( )
CRLB is inversely proportional to: ™
So the CRLB tells us...

e SNR Measure
 RMS BW Measure

* Choose signal with large B,
 Ensure that SNR is large
« Better on Nearby/large targets
» Which is better?
— Double transmitted energy/power?
\ — Double RMS bandwidth? /




Ex. 2 Sinusoid Estimation CRLB Problem

Given DT signal samples of a sinusoid in noise....
Estimate its amplitude, frequency, and phase

x[n]:Acos(S}On+¢)+w[\n] n=0,1...,N-1

Q, is DT frequency in DT White Gaussian Noise
rad/sample: 0<Q, <= Zero Mean & Variance of 62

Multiple parameters... so parameter vector: g =[A Q, ¢]T

Recall... SNR of sinusoid in noise Is:

2 2
SNR:PS :A 22: A2
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Sinusold Estimation CRLB Approach

Approach:
 Find Fisher Info Matrix
e Invert to get CRLB matrix
 Look at diagonal elements to get bounds on parm variances

Recall: Result for FIM for general Gaussian case specialized to
signal in AWGN case:

-
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Sinusoid Estimation Fisher Info Elements
Taking the partial derivatives and using approximations given in

book (valld when o, is not near 0 or ) : 0=[A Q, 4]
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Sinusoid Estimation Fisher Info Matrix

Fisher Info Matrix then is:

0=[A Q, ¢]'

Recall...

— 0 0
A2 N -1 2 N-1
1(0)~| 0 Al AT
( ) 2(72 n=0 2(72 nZ:(:)
0 A2 NZ—:1n NA2
202 = 202
IX:
SNR = — and closed form results for these sums

20

11



Sinusoid Estimation CRLBS | singco-factor & det

approach... helped by 0s)

Inverting the FIM by hand gives the CRLB matrix... and then
extracting the diagonal elements gives the three bounds:

. 2
var(A) > 2% (volts?)

12
SNR x N (N? —1)

2\ To convert to Hz2 }
((rad/sample)z) multiply by (F,/2r)?

20N-1) 4
SNRxN(N +1) SNRx N

var(f)o) >

(rad?)

var(¢3) >

-

\_

~

Amp. Accuracy: Decreases as 1/N, Depends on Noise Variance (not SNR)

Freg. Accuracy: Decreases as 1/N3, Decreases as as 1/SNR

Phase Accuracy: Decreases as 1/N, Decreases as as 1/SNR
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Freguency Estimation CRLBs and Fs [ Netin Book]
The CRLB for Freq. Est. referred back to the CT Is

12F2
(27)?SNR x N(N? —1)

var(f,) > (Hz?)

Does that mean we do worse if we sample faster than Nyquist?

Also keep in mind that F, has effect on the noise structure:

/" PSD of w(t) ACFofw(t)
N /2
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Ex. 3 Bearing Estimation CRLB Problem

Figure 3.8 ﬁ"\
from textbook:

[ | e Targe: f Emits or reflects
\ E h i signal s(t)
\ \ s(t) = A cos(27f,t + ¢)
y  Planar
\ wavefronts Simple model
M )
—_——

Uniformly spaced linear array with M sensors:
» Sensor Spacing of d meters
e Bearing angle to target B radians

: : d
Propagation Time to n* Sensor: t,=t,—n—cosp  n=0,1,...,M -1

Signal at nt" Sensor:

C

Sp(t) = as(t—ty)

= Acos[27zf0 (t —tp + nicos,ﬁj + ¢]
C
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Bearing Estimation Snapshot of Sensor Signals

Now Instead of sampling each sensor at lots of time instants...
we Just grab one “snapshot” of all M sensors at a single instant t,

Sy (ts) = Acos£27zfo (ts —tp + nicos ﬂj + ¢j

C

= Acos (2 OCOS,B]d n+¢ :Acos(anJrg)

o ’ Spatial sinusoid w/
ey L spatial frequency €,

i 1

(" i . . i )
For sinusoidal transmitted signal... Bearing
Est. reduces to Frequency Est.

Spatial Freguencies:
* @, IS Inrad/meter
e Q. is In rad/sensor

kAnd... we already know its FIM & CRLB!!!)
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Bearing Estimation Data and Parameters
Each sample in the snapshot is corrupted by a noise sample...

and these M samples make the data vector x = [x[0] x[1] ... x[M-1] ]

X[n]=s,(t;) +w[n] = Acos(QSn - ¢7)+ wln]
e

{ Each w[n] is a noise sample that comes from a different sensor so... }

Model as uncorrelated Gaussian RVs (same as white temporal noise)
Assume each sensor has same noise variance c?

So... the parameters to consider are:  |[0=[A Qg ¢]'

{:A_ _______ Aeeseoy !
which get transformed to:  |a=g(0)=| 3 |= arccos(z(;?sdJi
Parameter of interest! = | ] 4 |



Bearing Estimation CRLB Result

Using the FIM for the sinusoidal parameter problem... together
with the transform. of parms result (see book p. 59 for details):

var(,é)z 12 >
(27)?SNR x M 'I:/'/I +1Gj sin?(B)

(rad?)

Define: L, = L/A
Array Length “in
wavelengths”

L = Array physical length in meters
M = Number of array elements
A =cl/f, Wavelength in meters (per cycle)

/- Bearing Accuracy: A
— Decreases as 1/SNR — Depends on actual bearing 8
— Decreases as 1/M » Best at B = n/2 (“Broadside”)

\ Decreases as.rl_/_Lzz\: » Impossible at g = 0! (“Endfirey

very large physical lengths to achieve good accuracy

< {Low-frequency (i.e., long wavelength) signals need J
17




Reading }

Ex. 4 AR Estimation CRLB Problem [Assignmem

In speech processing (and other areas) we often model the
signal as an AR random process and need to estimate the AR
parameters. An AR process has a PSD given by

2
Py (T;0) = %y

2

p .
1+ Za[m]e"z”fm
m=1

AR Estimation Problem: Given data x[0], x[1], ... , X[N-1]
estimate the AR parameter vector

O:[a[l] a[2] --- a[p] GS]T

This is a hard CRLB to find exactly... but it has been published.

The difficulty comes from the fact that there is no easy direct
relationship between the parameters and the data.

[ It is not a signal plus noise problem }
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AR Estimation CRLB Asymptotic Approach

Approach: The asymptotic result we discussed is perfect here:
* An AR process is WSS... is required for the Asymp. Result

 Gaussian is often a reasonable assumption... needed for Asymp. Result

» The Asymp. Result is in terms of partial derivatives of the PSD... and
that is exactly the form in which the parameters are clearly displayed!

[Ianx(f 0)] [Ianx(f;e)] i

\/

1+ Za[m]e J27m

m=1

Recall: |[1(®)]; = f

5 2
NP, (;0)= u

Inau —In

p |
1+ Za[m]e"z’ﬁm

m=1
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AR Estimation CRLB Asymptotic Result

After taking these derivatives... you get results that can be

simplified using properties of FT and convolution. (

The final result is:

2
var(é[k])z"N—U[R;iLk k=12,....p

~ 20
var(o-lf) >

Complicated
dependence on

—_ AC Matrix!!

A

Both Decrease J
as 1/N

To get a little insight... look at 15 order AR case (p = 1):

Im(z) 1

R

var(a[i]) > %(1— a2[1])

A

-
N

—a[1]

Ré(z)

|
ﬁoves as pole\

gets closer to
unit circle...
PSDs with

sharp peaks are

K easier to j

nctfirmato
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