3.7 CRLB for Vector Parameter Case

Vector Parameter: $\boldsymbol{\theta}=\left[\begin{array}{llll}\theta_{1} & \theta_{2} & \cdots & \theta_{p}\end{array}\right]^{T}$
Its Estimate: $\hat{\boldsymbol{\theta}}=\left[\begin{array}{llll}\hat{\theta}_{1} & \hat{\theta}_{2} & \cdots & \hat{\theta}_{p}\end{array}\right]^{T}$
Assume that estimate is unbiased: $E\{\hat{\boldsymbol{\theta}}\}=\boldsymbol{\theta}$
For a scalar parameter we looked at its variance...
but for a vector parameter we look at its covariance matrix:

$$
\operatorname{var}\{\hat{\boldsymbol{\theta}}\}=E\left\{[\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}][\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}]^{T}\right\}=\mathbf{C}_{\hat{\boldsymbol{\theta}}}
$$

For example:

$$
\text { for } \theta=\left[\begin{array}{lll}
x & y & z
\end{array}\right]^{\mathrm{T}} \quad \mathbf{C}_{\hat{\boldsymbol{\theta}}}=\left[\begin{array}{ccc}
\operatorname{cov}(\hat{y}, \hat{x}) & \operatorname{var}(\hat{y}) & \operatorname{cov}(\hat{y}, \hat{z}) \\
\operatorname{cov}(\hat{z}, \hat{x}) & \operatorname{cov}(\hat{z}, \hat{y}) & \operatorname{var}(\hat{z})
\end{array}\right]
$$

Fisher Information Matrix

For the vector parameter case...
Fisher Info becomes the Fisher Info Matrix (FIM) I(θ) whose $m n^{\text {th }}$ element is given by:

$$
[\mathbf{I}(\boldsymbol{\theta})]_{m n}=-E\left\{\frac{\partial^{2} \ln [p(\mathbf{x} ; \boldsymbol{\theta})]}{\partial \theta_{n} \partial \theta_{m}}\right\}, \begin{gathered}
\text { Evaluate at } \\
\text { true value of } \theta
\end{gathered}
$$

The CRLB Matrix

Then, under the same kind of regularity conditions, the CRLB matrix is the inverse of the FIM: $C R L B=\mathbf{I}^{-1}(\boldsymbol{\theta})$

So what this means is: $\sigma_{\hat{\theta}_{n}}^{2}=\left[\mathbf{C}_{\hat{\boldsymbol{\theta}}}\right]_{n n} \geq\left[\mathbf{I}^{-1}(\boldsymbol{\theta})\right]_{n n}$
Diagonal elements of Inverse FIM bound the parameter variances, which are the diagonal elements of the parameter covariance matrix

More General Form of The CRLB Matrix

$$
\mathbf{C}_{\hat{\boldsymbol{\theta}}}-\mathbf{I}^{-1}(\boldsymbol{\theta}) \quad \text { is positive semi - definite }
$$

Mathematical Notation for this is:

$$
\mathbf{C}_{\hat{\boldsymbol{\theta}}}-\mathbf{I}^{-1}(\boldsymbol{\theta}) \geq \mathbf{0} \quad(* *)
$$

Note: property \#5 about p.d. matrices on p. 573
states that $(\boldsymbol{*} \boldsymbol{*}) \Rightarrow(\boldsymbol{*})$

CRLB Off-Diagonal Elements Insight

Let $\theta=\left[\begin{array}{ll}x_{e} & y_{e}\end{array}\right]^{T}$ represent the 2-D x-y location of a transmitter (emitter) to be estimated.

Consider the two cases of "scatter plots" for the estimated location:

Each case has the same variances... but location accuracy characteristics are very different. \Rightarrow This is the effect of the off-diagonal elements of the covariance

CRLB Matrix and Error Ellipsoids

Assume $\hat{\boldsymbol{\theta}}=\left[\begin{array}{ll}\hat{x}_{e} & \hat{y}_{e}\end{array}\right]^{T}$ is 2-D Gaussian w/ zero mean and a cov matrix $\mathbf{C}_{\hat{\boldsymbol{\theta}}} \quad$ Only For Convenience

Then its PDF is given by:

$$
p(\hat{\boldsymbol{\theta}})=\frac{1}{(2 \pi)^{N} \sqrt{\left|\mathbf{C}_{\hat{\boldsymbol{\theta}}}\right|}} \exp [-\frac{1}{2} \underbrace{\hat{\boldsymbol{\theta}}^{T} \mathbf{C}_{\hat{\boldsymbol{\theta}}}^{-1} \hat{\boldsymbol{\theta}}}]
$$

Quadratic Form!!

$$
\begin{aligned}
& \text { Let : } \\
& \mathbf{C}_{\hat{\boldsymbol{\theta}}}^{-1}=\mathbf{A} \\
& \text { for ease }
\end{aligned}
$$

(recall: it's scalar valued)
So the "equi-height contours" of this PDF are given by the values of $\hat{\boldsymbol{\theta}}$ such that:

$$
\hat{\boldsymbol{\theta}}^{T} \mathbf{A} \hat{\boldsymbol{\theta}}=k
$$

Note: \mathbf{A} is symmetric so $a_{12}=a_{21}$
...because any cov. matrix is symmetric and the inverse of symmetric is symmetric

What does this look like? $a_{11} \hat{x}_{e}^{2}+2 a_{12} \hat{x}_{e} \hat{y}_{e}+a_{22} \hat{y}_{e}^{2}=k$
An Ellipse!!! (Look it up in your calculus book!!!)

Recall: If $a_{12}=0$, then the ellipse is aligned $\mathrm{w} /$ the axes \& the a_{11} and a_{22} control the size of the ellipse along the axes
Note: $a_{12}=0 \Rightarrow \mathbf{C}_{\hat{\boldsymbol{\theta}}}^{-1}=\left[\begin{array}{cc}a_{11} & 0 \\ 0 & a_{22}\end{array}\right] \Rightarrow \mathbf{C}_{\hat{\boldsymbol{\theta}}}=\left[\begin{array}{cc}\frac{1}{a_{11}} & 0 \\ 0 & \frac{1}{a_{22}}\end{array}\right]$
$\Rightarrow \quad \hat{x}_{e} \& \hat{y}_{e}$ are uncorrelated

Note: $a_{12} \neq 0 \quad \Rightarrow \quad \hat{x}_{e} \& \hat{y}_{e}$ are correlated

$$
\mathbf{C}_{\hat{\boldsymbol{\theta}}}=\left[\begin{array}{cc}
\sigma_{\hat{x}_{e}}^{2} & \sigma_{\hat{x}_{e} \hat{y}_{e}} \\
\sigma_{\hat{y}_{e} \hat{x}_{e}} & \sigma_{\hat{y}_{e}}^{2}
\end{array}\right]
$$

Error Ellipsoids and Correlation

Choosing k Value

 For the 2-D case...$$
k=-2 \ln \left(1-P_{e}\right)
$$

where P_{e} is the prob. that the estimate will lie inside the ellipse

Ellipsoids and Eigen-Structure

Consider a symmetric matrix $\mathbf{A} \&$ its quadratic form $\mathbf{x}^{\mathrm{T}} \mathbf{A x}$

$$
\Rightarrow \text { Ellipsoid: } \mathbf{x}^{T} \mathbf{A x}=k \quad \text { or }\langle\mathbf{A x}, \mathbf{x}\rangle=k
$$

Principle Axes of Ellipse are orthogonal to each other... and are orthogonal to the tangent line on the ellipse:

Theorem: The principle axes of the ellipsoid $\mathbf{x}^{\mathrm{T}} \mathbf{A x}=k$ are eigenvectors of matrix \mathbf{A}.

Proof: From multi-dimensional calculus: gradient of a scalar-valued function $\phi\left(x_{1}, \ldots, x_{n}\right)$ is orthogonal to the surface:

$\operatorname{grad} \phi\left(x_{1}, \ldots, x_{n}\right)=\nabla_{\mathbf{x}} \phi(\mathbf{x})=\frac{\partial \phi(\mathbf{x})}{\partial \mathbf{x}}=$

$$
=\left[\begin{array}{lll}
\frac{\partial \phi}{\partial x_{1}} & \cdots & \frac{\partial \phi}{\partial x_{n}}
\end{array}\right]^{T}
$$

See handout posted on Blackboard on Gradients and Derivatives

For our quadratic form function we have:

$$
\begin{equation*}
\phi(\mathrm{x})=\mathrm{x}^{T} \mathrm{Ax}=\sum_{i} \sum_{j} a_{i j} x_{i} x_{j} \Rightarrow \frac{\partial \phi}{\partial x_{k}}=\sum_{i} \sum_{j} a_{i j} \frac{\partial\left(x_{i} x_{j}\right)}{\partial x_{k}} \tag{*}
\end{equation*}
$$

Product rule: $\frac{\partial\left(x_{i} x_{j}\right)}{\partial x_{k}}=\underbrace{+\underbrace{}_{i} \frac{\partial x_{j}}{\partial x_{j}}}_{\substack{=\delta_{k}=\left\{\begin{array}{l}1 \\ 0 \\ 0 \\ i \neq k \\ i \neq k \\ \hline \delta_{j}\end{array}\right.} \frac{\partial x_{i}}{\partial x_{k}} x_{j}}$
$\operatorname{Using}(\boldsymbol{\oplus} \boldsymbol{\bullet})$ in ($\boldsymbol{\bullet}$) gives: $\frac{\partial \phi}{\partial x_{k}}=\sum_{j} a_{j k} x_{j}+\sum_{i} a_{i k} x_{j}$

$$
=2 \sum_{j} a_{k j} x_{j} \quad \begin{gathered}
\text { By Symmetry: } \\
a_{i k}=a_{k i}
\end{gathered}
$$

And from this we get:

$$
\nabla_{\mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)=2 \mathbf{A} \mathbf{x}
$$

Since grad \perp ellipse, this says $\mathbf{A x}$ is \perp ellipse:

When \mathbf{x} is a principle axis, then \mathbf{x} and $\mathbf{A x}$ are aligned:

< End of Proof >

Theorem: The length of the principle axis associated with eigenvalue λ_{i} is $\sqrt{k / \lambda_{i}}$

Proof: If \mathbf{x} is a principle axis, then $\mathbf{A x}=\lambda \mathbf{x}$. Take inner product of both sides of this with \mathbf{x} :

$$
\begin{aligned}
& \underbrace{\langle\mathbf{A x}, \mathbf{x}\rangle}_{=k}=\lambda\langle\mathbf{x}, \mathbf{x}\rangle \quad \underbrace{\langle\mathbf{x}, \mathbf{x}\rangle}_{=\|\mathbf{x}\|^{2}}=\frac{k}{\lambda} \Rightarrow\|\mathbf{x}\|=\sqrt{\frac{k}{\lambda}} \\
& \quad \text { < End of Proof }>
\end{aligned}
$$

Note: This says that if \mathbf{A} has a zero eigenvalue, then the error ellipse will have an infinite length principle axis \Rightarrow NOT GOOD!!

So... we'll require that all $\lambda_{i}>0$
$\Rightarrow \mathbf{C}_{\hat{\theta}}$ must be positive definite

Application of Eigen-Results to Error Ellipsoids

The Error Ellipsoid corresponding to the estimator covariance
matrix $\mathbf{C}_{\hat{\boldsymbol{\theta}}}$ must satisfy:

$$
\hat{\boldsymbol{\theta}}^{T} \mathbf{C}_{\hat{\boldsymbol{\theta}}}^{-1} \hat{\hat{\theta}}=k \mid
$$

Thus finding the eigenvectors/values of $\mathbf{C}_{\hat{\boldsymbol{\theta}}}^{-1}$ shows structure of the error ellipse

Recall: Positive definite matrix \mathbf{A} and its inverse \mathbf{A}^{-1} have the

- same eigenvectors
- reciprocal eigenvalues

Thus, we could instead find the eigenvalues of $\mathbf{C}_{\hat{\boldsymbol{\theta}}}=\mathbf{I}^{-1}(\boldsymbol{\theta})$ and then the principle axes would have lengths set by its eigenvalues not inverted

Illustrate with 2-D case: $\hat{\boldsymbol{\theta}}^{T} \mathbf{C}_{\hat{\boldsymbol{\theta}}}^{-1} \hat{\boldsymbol{\theta}}=k$

\mathbf{v}_{1}	$\&$	\mathbf{v}_{2}
λ_{1}	$\&$	λ_{2}

Eigenvectors/values for $\mathbf{C}_{\hat{\boldsymbol{\theta}}}$ (not the inverse!)

The CRLB/FIM Ellipse

Can make an ellipse from the CRLB Matrix... instead of the Cov. Matrix

This ellipse will be the smallest error ellipse that an unbiased estimator can achieve!

We can re-state this in terms of the FIM...

Once we find the FIM we can:

- Find the inverse FIM
- Find its eigenvectors... gives the Principle Axes
- Find its eigenvalues... Prin. Axis lengths are then $\sqrt{k \lambda_{i}}$

