Alternate Form for CRLB

$$\operatorname{var}(\hat{\theta}) \geq \frac{1}{E\left\{\left[\frac{\partial \ln p(\mathbf{x};\theta)}{\partial \theta}\right]^2\right\}}$$

See Appendix 3A for Derivation

Posted

on BB

.

1

Sometimes it is easier to find the CRLB this way.

This also gives a new viewpoint of the CRLB:

From Gardner's Paper (IEEE Trans. on Info Theory, July 1979)

Consider the Normalized version of this form of CRLB

$$\frac{\operatorname{var}(\hat{\theta})}{\theta^2} \ge \frac{1}{\theta^2 E\left\{\left[\frac{\partial \ln p(\mathbf{x};\theta)}{\partial \theta}\right]^2\right\}}$$
 We'll "derive"
this in a way
that will re-
interpret the
CRLB

Consider the "Incremental Sensitivity" of $p(\mathbf{x}; \theta)$ to changes in θ :

If $\theta \to \theta + \Delta \theta$, then it causes $p(\mathbf{x}; \theta) \to p(\mathbf{x}; \theta + \Delta \theta)$

How sensitive is $p(\mathbf{x}; \theta)$ to that change??

Definition of Fisher Information

The denominator in CRLB is called the Fisher Information $I(\theta)$

It is a measure of the "expected goodness" of the data for the purpose of making an estimate

$$I(\theta) = -E\left\{\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial \theta^2}\right\}$$

Has the needed properties for "info" (as does "Shannon Info"):

- 1. $I(\theta) \ge 0$ (easy to see using the alternate form of CRLB)
- 2. $I(\theta)$ is additive for independent observations follows from: $\ln p(\mathbf{x};\theta) = \ln \left[\prod_{n} p(x[n];\theta) \right] = \sum_{n} \ln[p(x[n];\theta)]$

If each $I_n(\theta)$ is the same: $I(\theta) = N \times I(\theta)$

3.5 CRLB for Signals in AWGN

When we have the case that our data is "signal + AWGN" then we get a simple form for the CRLB:

Signal Model: $x[n] = s[n; \theta] + w[n], n = 0, 1, 2, ..., N-1$

Q: What is the CRLB?

White, Gaussian, Zero Mean

First write the likelihood function:

$$p(\mathbf{x};\theta) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{\frac{-1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n;\theta])^2\right\}$$

Differentiate Log LF twice to get:

$$\frac{\partial^2}{\partial \theta^2} \ln p(\mathbf{x};\theta) = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left\{ \left(x[n] - s[n;\theta] \right) \frac{\partial^2 s[n;\theta]}{\partial \theta^2} - \left[\frac{\partial s[n;\theta]}{\partial \theta} \right]^2 \right\}$$

Depends on random *x*[*n*] so must take E{}

$$E\left\{\frac{\partial^2}{\partial\theta^2}\ln p(\mathbf{x};\theta)\right\} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left\{ \underbrace{\left(\underbrace{E\{x[n]\} - s[n;\theta]}_{s[n;\theta]} - s[n;\theta]\right)}_{=0} \frac{\partial^2 s[n;\theta]}{\partial\theta^2} - \left[\frac{\partial s[n;\theta]}{\partial\theta}\right]^2 \right\}$$
$$= \frac{-\sum_{n=0}^{N-1} \left[\frac{\partial s[n;\theta]}{\partial\theta}\right]^2}{\sigma^2}$$

Then using this we get the **CRLB for Signal in AWGN**:

$$\operatorname{var}(\hat{\theta}) \geq \frac{\sigma^2}{\sum_{n=0}^{N-1} \left[\frac{\partial s[n;\theta]}{\partial \theta}\right]^2}$$

Note:
$$\left[\frac{\partial s[n;\theta]}{\partial \theta}\right]^2$$
 tells how
sensitive signal is to parameter

If signal is very sensitive to parameter change... then CRLB is small ... can get very accurate estimate!

Ex. 3.5: CRLB of Frequency of Sinusoid

Signal Model: $x[n] = A\cos(2\pi f_o n + \phi) + w[n] \quad 0 < f_o < \frac{1}{2} \quad n = 0, 1, 2, ..., N-1$

3.6 Transformation of Parameters

Say there is a parameter θ with known CRLB_{θ}

But imagine that we instead are interested in estimating some other parameter α that is a function of θ :

$$\alpha = g(\theta)$$

Q: What is $CRLB_{\alpha}$?

Large $\partial g/\partial \theta \rightarrow$ small error in θ gives larger error in α \rightarrow increases CRLB (i.e., worsens accuracy)

Example: Speed of Vehicle From Elapsed Time

But... really want to measure speed V = d/TFind the CRLB_V:

$$CRLB_V = \left[\frac{\partial}{\partial T} \left(\frac{D}{T}\right)\right]^2 \times CRLB_T$$

$$= \left(-\frac{D}{T}\right)^2 \times CRLB_T$$

$$= \frac{V^4}{D^2} \times CRLB_T$$

Accuracy Bound

$$\sigma_V \ge \frac{V^2}{D} \sqrt{CRLB_T} \quad (m/s)$$

- Less accurate at High Speeds (quadratic)
- More accurate over large distances

Effect of Transformation on Efficiency

Suppose you have an <u>efficient</u> estimator of θ : $\hat{\theta}$

But... you are really interested in estimating $\alpha = g(\theta)$

Suppose you plan to use $\hat{\alpha} = g(\hat{\theta})$

Q: Is this an efficient estimator of α ??? A: <u>**Theorem**</u>: If $g(\theta)$ has form $g(\theta) = a\theta + b$, then $\hat{\alpha} = g(\hat{\theta})$ is efficient. "affine" transform

<u>Proof</u>: First: $var(\hat{\alpha}) = var(a\hat{\theta} + b) = a^2 var(\hat{\theta}) = a^2 CRLB_{\theta}$ Now, what is CRB_a? Using transformation result:

$$CRLB_{\alpha} = \left[\frac{\partial(a\theta + b)}{\partial\theta}\right]^{2} CRLB_{\theta} = a^{2}CRLB_{\theta} \implies \operatorname{var}(\hat{\alpha}) = CRLB_{\alpha}$$

$$= a^{2}$$
Efficient!

Asymptotic Efficiency Under Transformation

If the mapping $\alpha = g(\theta)$ is <u>not affine</u>... this result <u>does NOT hold</u>

<u>**But</u></u>... if the number of data samples used is large, then the estimator is approximately efficient ("<u>Asymptotically Efficient</u>")</u>**

