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Alternate Form for CRLB
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See Appendix 3A 
for Derivation

Sometimes it is easier to find the CRLB this way.

This also gives a new viewpoint of the CRLB:

From Gardner�s Paper (IEEE Trans. on Info Theory, July 1979)

Consider the Normalized version of this form of CRLB
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We�ll �derive� 
this in a way 
that will re-
interpret the 

CRLB
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Consider the �Incremental Sensitivity� of p(x;θ ) to changes in θ :

If θ → θ +∆θ, then it causes p(x;θ ) → p(x;θ +∆θ )

How sensitive is p(x;θ ) to that change??
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Now let ∆θ → 0:
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Recall from Calculus:
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Interpretation
Norm. CRLB = 
Inverse Mean 

Square 
Sensitivity
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Definition of Fisher Information

The denominator in CRLB is called the Fisher Information I(θ )

It is a measure of the �expected goodness� of the data for the 
purpose of making an estimate
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Has the needed properties for �info� (as does �Shannon Info�): 
1. I(θ ) ≥ 0  (easy to see using the alternate form of CRLB)
2. I(θ ) is additive for independent observations

follows from: [ ]∑∏ =
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If each In (θ ) is the same: I(θ ) = N×I(θ )
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3.5 CRLB for Signals in AWGN
When we have the case that our data is �signal + AWGN� then 
we get a simple form for the CRLB:

Signal Model:  x[n] = s[n;θ ] + w[n],    n = 0, 1, 2, � , N-1

White, 
Gaussian, 
Zero MeanQ: What is the CRLB?

First write the likelihood function:
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Differentiate Log LF twice to get:
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so must take 
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Then using this we get the CRLB for Signal in AWGN:
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sensitive signal is to parameter

If signal is very sensitive to parameter change� then CRLB is small
� can get very accurate estimate!
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Ex. 3.5: CRLB of Frequency of Sinusoid 
Signal Model: 1,,2,1,00][)2cos(][ 2
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3.6 Transformation of Parameters
Say there is a parameter θ with known CRLBθ

But imagine that we instead are interested in estimating 
some other parameter α that is a function of θ :

α = g(θ )

Q:  What is CRLBα ?

θα θ
θα CRLBgCRLB

2)()var( 
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Captures the 
sensitivity of α to θ

Proved in
Appendix 3B

Large ∂g/∂ θ → small error in θ gives larger error in α
→ increases CRLB (i.e., worsens accuracy)
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Example:  Speed of Vehicle From Elapsed Time

Known Distance D

start

Laser

Sensor Sensor

Laser

stop

Measure Elapsed Time T
Possible Accuracy Set by CRLBT

T

T

TV

CRLB
D
V

CRLB
T
D

CRLB
T
D

T
CRLB

×=

×





−=

×















∂
∂

=

2

4

2

2

But� really want to measure speed V = d/T
Find the CRLBV:
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V
TV ≥σ

Accuracy Bound

� Less accurate at High Speeds (quadratic)
� More accurate over large distances
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Effect of Transformation on Efficiency
Suppose you have an efficient estimator of θ : θ�

But� you are really interested in estimating α = g(θ )

Suppose you plan to use )�(� θα g=

Q: Is this an efficient estimator of α ???
A:  Theorem:  If g(θ ) has form g(θ ) = aθ +  b,  then
is efficient.

)�(� θα g=

�affine� transform

Proof:
First: ( ) ( ) ( ) θθθα CRLBaaba 22 �var�var�var ==+=

�=� because �efficient�

Now, what is CRBα ?   Using transformation result:
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Efficient!
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Asymptotic Efficiency Under Transformation
If the mapping α = g(θ ) is not affine� this result does NOT hold

But� if the number of data samples used is large, then the 
estimator is approximately efficient (�Asymptotically Efficient�)

θ�

)�(),�(� θθα pg=

θ� of pdf

Small N Case
PDF is widely spread 

over nonlinear mapping

θ�

)�(),�(� θθα pg=

θ� of pdf

Large N Case
PDF is concentrated 

onto linearized section


