Alternate Form for CRLB

See Appendix 3A for Derivation

Sometimes it is easier to find the CRLB this way.
This also gives a new viewpoint of the CRLB:
From Gardner's Paper (IEEE Trans. on Info Theory, July 1979)
Consider the Normalized version of this form of CRLB

Consider the "Incremental Sensitivity" of $p(\mathbf{x} ; \theta)$ to changes in θ :
If $\theta \rightarrow \theta+\Delta \theta$, then it causes $p(\mathbf{x} ; \theta) \rightarrow p(\mathbf{x} ; \theta+\Delta \theta)$
How sensitive is $p(\mathbf{x} ; \theta)$ to that change??

$$
\widetilde{S}_{\theta}^{p}(\mathbf{x})=\frac{\left.\Delta \frac{\Delta p(\mathbf{x} ; \theta)}{p(\mathbf{x} ; \theta)}\right]}{\left[\frac{\Delta \theta}{\theta}\right]}=\frac{\% \text { change in } p(\mathbf{x} ; \theta)}{\% \text { change in } \theta}=\left[\frac{\Delta p(\mathbf{x} ; \theta)}{\Delta \theta}\right]\left[\frac{\theta}{p(\mathbf{x} ; \theta)}\right]
$$

Now let $\Delta \theta \rightarrow 0: S_{\theta}^{p}(\mathbf{x})=\lim _{\Delta \theta \rightarrow 0} \widetilde{S}_{\theta}^{p}(\mathbf{x})\left[\frac{\partial p(\mathbf{x} ; \theta)}{\partial \theta}\right]\left[\frac{\theta}{p(\mathbf{x} ; \theta)}\right]=\theta \frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}$

$$
\text { Recall from Calculus: } \frac{\partial \ln f(x)}{\partial x}=\frac{1}{f(x)} \frac{\partial f(x)}{\partial x}
$$

$\left.\frac{\operatorname{var}(\hat{\theta})}{\theta^{2}} \geq \frac{1}{\theta^{2} E\left\{\left[\frac{\partial \ln p(\mathbf{x} ; \theta)}{\partial \theta}\right]^{2}\right\}}=\frac{1}{\theta^{2} E\left\{\left[S_{\theta}^{p}(\mathbf{x})\right]^{2}\right\}}\right] \quad$| Interpretation
 Norm. CRLB $=$
 Inverse Mean
 Square
 Sensitivity |
| :---: |

Definition of Fisher Information

The denominator in CRLB is called the Fisher Information $I(\theta)$
It is a measure of the "expected goodness" of the data for the purpose of making an estimate

$$
I(\theta)=-E\left\{\frac{\partial^{2} \ln p(\mathbf{x} ; \theta)}{\partial \theta^{2}}\right\}
$$

Has the needed properties for "info" (as does "Shannon Info"):

1. $I(\theta) \geq 0$ (easy to see using the alternate form of CRLB)
2. $\quad I(\theta)$ is additive for independent observations
follows from: $\ln p(\mathbf{x} ; \theta)=\ln \left[\prod_{n} p(x[n] ; \theta)\right]=\sum_{n} \ln [p(x[n] ; \theta)]$
If each $I_{n}(\theta)$ is the same: $I(\theta)=N \times I(\theta)$

3.5 CRLB for Signals in AWGN

When we have the case that our data is "signal + AWGN" then we get a simple form for the CRLB:

Signal Model: $x[n]=s[n ; \theta]+w[n], \quad n=0,1,2, \ldots, N-1$

Q: What is the CRLB?

> White, Gaussian,
> Zero Mean

First write the likelihood function:

$$
p(\mathbf{x} ; \theta)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left\{\frac{-1}{2 \sigma^{2}} \sum_{n=0}^{N-1}(x[n]-s[n ; \theta])^{2}\right\}
$$

Differentiate Log LF twice to get:
$\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)=\frac{1}{\sigma^{2}} \sum_{n=0}^{N-1}\left\{(x[n]-s[n ; \theta]) \frac{\partial^{2} s[n ; \theta]}{\partial \theta^{2}}-\left[\frac{\partial s[n ; \theta]}{\partial \theta}\right]^{2}\right\}$

Depends on random $x[n]$ so must take E\{\}

$$
\begin{aligned}
E\left\{\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x} ; \theta)\right\} & =\frac{1}{\sigma^{2}} \sum_{n=0}^{N-1}\{(\underbrace{(\underbrace{E\{x[n]\}}_{s[n ; \theta]}-s[n ; \theta])}_{=0} \frac{\partial^{2} s[n ; \theta]}{\partial \theta^{2}}-\left[\frac{\partial s[n ; \theta]}{\partial \theta}\right]^{2}\} \\
& =\frac{-\sum_{n=0}^{N-1}\left[\frac{\partial s[n ; \theta]}{\partial \theta}\right]^{2}}{\sigma^{2}}
\end{aligned}
$$

Then using this we get the CRLB for Signal in AWGN:

$$
\operatorname{var}(\hat{\theta}) \geq \frac{\sigma^{2}}{\sum_{n=0}^{N-1}\left[\frac{\partial s[n ; \theta]}{\partial \theta}\right]^{2}}
$$

Note: $\left[\frac{\partial s[n ; \theta]}{\partial \theta}\right]^{2}$ tells how sensitive signal is to parameter

If signal is very sensitive to parameter change... then CRLB is small ... can get very accurate estimate!

Ex. 3.5: CRLB of Frequency of Sinusoid

Signal Model: $x[n]=A \cos \left(2 \pi f_{o} n+\phi\right)+w[n] \quad 0<f_{o}<\frac{1}{2} \quad n=0,1,2, \ldots, N-1$

3.6 Transformation of Parameters

Say there is a parameter θ with known CRLB $_{\theta}$
But imagine that we instead are interested in estimating some other parameter α that is a function of θ :

$$
\alpha=g(\theta)
$$

$\mathrm{Q}:$ What is CRLB_{α} ?

$$
\operatorname{var}(\alpha) \geq C R L B_{\alpha}=\left(\frac{\partial g(\theta)}{\partial \theta}\right)^{2} C R L B_{\theta} \quad \begin{gathered}
\text { Proved in } \\
\text { Appendix 3B }
\end{gathered}
$$

Large $\partial \mathrm{g} / \partial \theta \rightarrow$ small error in θ gives larger error in α \rightarrow increases CRLB (i.e., worsens accuracy)

Example: Speed of Vehicle From Elapsed Time

Measure Elapsed Time T
 Possible Accuracy Set by CRLB $_{T}$

But... really want to measure speed $V=d / T$
Find the CRLB_{V} :

$$
\begin{aligned}
C R L B_{V} & =\left[\frac{\partial}{\partial T}\left(\frac{D}{T}\right)\right]^{2} \times C R L B_{T} \\
& =\left(-\frac{D}{T}\right)^{2} \times C R L B_{T} \\
& =\frac{V^{4}}{D^{2}} \times C R L B_{T}
\end{aligned}
$$

Accuracy Bound

$$
\sigma_{V} \geq \frac{V^{2}}{D} \sqrt{C R L B_{T}} \quad(\mathrm{~m} / \mathrm{s})
$$

- Less accurate at High Speeds (quadratic)
- More accurate over large distances

Effect of Transformation on Efficiency

Suppose you have an efficient estimator of $\theta: \hat{\theta}$
But... you are really interested in estimating $\alpha=g(\theta)$
Suppose you plan to use $\hat{\alpha}=g(\hat{\theta})$
$\mathrm{Q}:$ Is this an efficient estimator of $\alpha ? ? ?$
A: Theorem: If $g(\theta)$ has form $g(\theta)=a \theta+b$, then $\hat{\alpha}=g(\hat{\theta})$ is efficient.
"affine" transform
Proof:
First: $\operatorname{var}(\hat{\alpha})=\operatorname{var}(a \hat{\theta}+b)=a^{2} \operatorname{var}(\hat{\theta})=a^{2} C R L B_{\theta}$
Now, what is $C R B_{\alpha}$? Using transformation result:

$$
C R L B_{\alpha}=\underbrace{\left[\frac{\partial(a \theta+b)}{\partial \theta}\right]^{2}}_{=a^{2}} C R L B_{\theta}=a^{2} C R L B_{\theta} \Rightarrow \operatorname{var}_{\text {Eficient! }}^{\operatorname{var}(\hat{\alpha})=C R L B_{\alpha}}
$$

Asymptotic Efficiency Under Transformation

If the mapping $\alpha=g(\theta)$ is not affine \ldots this result does NOT hold
But... if the number of data samples used is large, then the estimator is approximately efficient ("Asymptotically Efficient")

Small N Case PDF is widely spread over nonlinear mapping

Large N Case
PDF is concentrated onto linearized section

