Alternate Form for CRLB

1
E{|: oln p(x;6) :|2} See Appendix 3A
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PY: for Derivation

Sometimes it 1s easier to find the CRLB this way.

This also gives a new viewpoint of the CRLB:
on BB

From Gardner’s Paper (IEEE Trans. on Info Theory, July 1979)

Consider the Normalized version of this form of CRLB

We’ll “derive’N

Var(é’) > 1 this in a way
0% N2 that will re-
0°F [éﬂnp (x; 0)} interpret the

o0 CRLB




Consider the “Incremental Sensitivity” of p(x; &) to changes in 8

If & —> 6 +AQ, then 1t causes p(x;0) — p(x;0 +A6)

How sensitive 1s p(X; &) to that change??

{Ap(x;m}
NP(X A| p(x;0) | % changein p(x;0) _{Ap(x;é’)} 0
o [A_H} ~ %changeind | A6 | p(x;0)
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‘ Recall from Calculus; /() _ 1 o (x)
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- Interpretation
var(6) 1 _ 1 Norm. CRLB =

. TP 2 [ » ]2 Inverse Mean
HZE{[ 51112((;, 9)} } % E{ Sp (x) }< Square
Sensitivity /




Definition of Fisher Information

The denominator in CRLB is called the Fisher Information /(0)

It 1s a measure of the “expected goodness” of the data for the
purpose of making an estimate

o* In p(x;60)
Gl

1(0) = —E{

Has the needed properties for “info” (as does “Shannon Info”):
1. 1(@) =0 (easy to see using the alternate form of CRLB)
2. 1(@) is additive for independent observations

follows from: | .9)- IH{H p(x[n];e)} =>"In[p(x[n];0)]

If each [, (0) 1s the same: I(6) = NxI(0)



3.5 CRLB for Signals in AWGN

When we have the case that our data 1s “signal + AWGN” then
we get a simple form for the CRLB:

Signal Model: x[n]=s[n;0]+w[n], n=0,1,2, ..., N-1

White,
. . Gaussian,
Q: What 1s the CRLB? e i

First write the likelihood function:

| _q N ,
p(x;0) = )N/2 eXps —— Z(x[n] —S[n;é?])

2
(272'(72 20 n=0

: : : ™
Differentiate Log LF twice to get: Depends on
random x[7]

52 2sln-0 os[n: 0 2 so must take
Wlnp(x :0) = — - Z{ 01) a[;zz ] [S[n ]}} E{

_/
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5> ] A o%s[n:0] [ os[n;017
E{Elnp(x;é?)}:—z {E{x[n]}s[n;&’]} — { v } S

Then using this we get the CRLB for Signal in AWGN:

] 2
var(6) > © Note: | #9 tells how
( ) 1 060

- 2

s[n; 0] L .

Z 00 sensitive signal 1s to parameter
n=0

If signal 1s very sensitive to parameter change... then CRLB is small
... can get very accurate estimate!
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EX. 3.5: CRLB of Frequency of Sinusoid

Signal Model: x[n]= AcosQCrf,n+¢)+w[n] 0<f, <% n=0,1,2,...., N—1

V&I‘(é) > !

. N-1
Error in SNR x Z [27zn sin(2zf n + ¢)]2
Book n=0 (.
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3.6 Transformation of Parameters

Say there 1s a parameter ¢ with known CRLB,,

But imagine that we instead are interested in estimating
some other parameter « that 1s a function of &:

a=g(0)
Q: What1s CRLB ,?

Proved in

32(0)Y
var(a) 2 CRLB,, = (%—HJ CRLBy Appendix 3B

Captures the
sensitivity of o to 6

Large 0g/0 & — small error in & gives larger error in o
— increases CRLB (i.e., worsens accuracy)




Example: Speed of Vehicle From Elapsed Time

Laser
Known Distance D

Laser

Measure Elapsed Time T
Possible Accuracy Set by CRLB,

But... really want to measure speed V' =d/T
Find the CRLB:

CRLBy, =

or

e

T

2
j X CRLBT

Accuracy Bound

2
oy = %JCRLBT (m/s)

* Less accurate at High Speeds (quadratic)
» More accurate over large distances




Effect of Transformation on Efficiency

Suppose you have an efficient estimator of &: 0

But... you are really interested in estimating o = g(0)

Suppose you plan to use & = g(6)

Q: Is this an efficient estimator of « ??7?

A: Theorem: If g(6) has form g(8) = a6’ + b then & = g(0)
1s efficient.

“affine” transform

L2 13 ff‘ 9 29
Proof: because “efficient ’

AN

First: Var(&) = Var(aé’ + b): a’ Var(é’)z aZCRLBQ

Now, what is CRB_, ? Using transformation result:

0(a6+b)T
CRLB, ={ Y } CRLBy = a’CRLBy mm) |var(é)=CRLB,

DR Efficient!




Asymptotic Efficiency Under Transformation

If the mapping a = g( @) is not affine... this result does NOT hold

But... if the number of data samples used 1s large, then the
estimator 1s approximately efficient (“Asymptotically Efficient”)

G = 2(0). p(6) G = g(0), p(0)
A A
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