
Chapter 3 
Cramer-Rao Lower Bound



Abbreviated: CRLB or sometimes just CRB

CRLB is a lower bound on the variance of any unbiased
estimator:

The CRLB tells us the best we can ever expect to be able to do 
(w/ an unbiased estimator)
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What is the Cramer-Rao Lower Bound



1. Feasibility studies ( e.g. Sensor usefulness, etc.) 
� Can we meet our specifications?

2. Judgment of proposed estimators
� Estimators that don�t achieve CRLB are looked 

down upon in the technical literature

3. Can sometimes provide form for MVU est.

4. Demonstrates importance of physical and/or signal 
parameters to the estimation problem

e.g. We�ll see that a signal�s BW determines delay est. accuracy
⇒ Radars should use wide BW signals

Some Uses of the CRLB



Q: What determines how well you can estimate θ ?

Recall: Data vector is x

3.3 Est. Accuracy Consideration

samples from a random 
process that depends on an θ

⇒ the PDF describes that  
dependence: p(x;θ )

Clearly if p(x;θ ) depends strongly/weakly on θ
�we should be able to estimate θ well/poorly.

See surface plots vs. x & θ for 2 cases:
1.  Strong dependence on θ
2.  Weak  dependence on θ

⇒ Should look at p(x;θ ) as a function of θ for 
fixed value of observed data x



Surface Plot Examples of p(x;θ )
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x[0] = A + w[0]

Ex. 3.1: PDF Dependence for DC Level in Noise
w[0] ~ N(0,σ2)

Then the parameter-dependent PDF of the data point x[0] is:

A x[0]

A3

p(x[0]=3;θ )

Say we observe x[0] = 3�
So �Slice� at x[0] = 3



The LF = the PDF p(x;θ )

�but as a function of parameter θ w/ the data vector x fixed

Define: Likelihood Function (LF)

We will also often need the Log Likelihood Function (LLF):

LLF = ln{LF} = ln{ p(x;θ )}



LF Characteristics that Affect Accuracy 
Intuitively: �sharpness� of the LF sets accuracy� But How???
Sharpness is measured using curvature: ( )
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Curvature ↑ ⇒ PDF concentration  ↑ ⇒ Accuracy ↑

But this is for a particular set of data� we want �in general�:
So�Average over random vector to give the average curvature:

( )

valuetrue
2

2 ;ln

=












∂

∂
−

θ
θ

θxpE
�Expected sharpness 

of LF�

E{�} is  w.r.t  p(x;θ )



Theorem 3.1 CRLB for Scalar Parameter

Assume �regularity� condition is met: θ
θ
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E{�} is  w.r.t  p(x;θ )
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3.4 Cramer-Rao Lower Bound
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1. Write log 1ikelihood function as a function of θ: 
� ln p(x;θ )

2. Fix x and take 2nd partial of LLF: 
� ∂2ln p(x;θ )/∂θ 2

3. If result still depends on x:
� Fix θ and take expected value w.r.t. x
� Otherwise skip this step

4. Result may still depend on θ: 
� Evaluate at each specific value of θ desired.  

5. Negate and form reciprocal

Steps to Find the CRLB



Need likelihood function:
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Example 3.3 CRLB for DC in AWGN
x[n] = A + w[n],    n = 0, 1, � , N � 1

w[n] ~ N(0,σ2)
& white

Due to 
whiteness

Property 
of exp
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Now take ln to get LLF:
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Now take first partial w.r.t. A:
sample 
mean
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Doesn�t depend 
on x so we don�t 
need to do E{�} 



Since the result doesn�t depend on x or A all we do is negate 
and form reciprocal to get CRLB:
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� Doesn�t depend on A
� Increases linearly with σ 2

� Decreases inversely with N

CRLB

For fixed N

σ 2

A

CRLB

For fixed N & σ 2

CRLB Doubling Data
Halves CRLB!

N

For fixed σ 2



Continuation of Theorem 3.1 on CRLB
There exists an unbiased estimator that attains the CRLB iff:
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for some functions I(θ ) and g(x)

Furthermore, the estimator that achieves the CRLB is then given 
by:

)(� xg=θ
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Since no unbiased estimator can do better� this 
is the MVU estimate!!

This gives a possible way to find the MVU:
� Compute ∂ln p(x;θ )/∂θ (need to anyway)
� Check to see if it can be put in  
form like (!)

� If so� then g(x) is the MVU esimator
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Revisit Example 3.3 to Find MVU Estimate
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For DC Level in AWGN we found in (!) that:
Has form of 

I(A)[g(x) � A]

[ ]∑
−

=
===

1

0

1)(�
N

n
nx

N
xg xθCRLB

N
ANAI ==⇒=

2

2 }�var{)( σ
σ

So� for the DC Level in AWGN: 
the sample mean is the MVUE!!



Definition: Efficient Estimator

An estimator that is:

� unbiased and

� attains the CRLB

is said to be an �Efficient Estimator�

Notes:

� Not all estimators are efficient (see next example: Phase Est.)

� Not even all MVU estimators are efficient

So� there are times when our 
�1st partial test� won�t work!!!!



Example 3.4: CRLB for Phase Estimation
This is related to the DSB carrier estimation problem we used 
for motivation in the notes for Ch. 1
Except here� we have a pure sinusoid and we only wish to 
estimate only its phase

Signal Model: ][)2cos(][
];[

nwnfAnx
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φ

φπ AWGN w/ zero 
mean & σ 2

Assumptions:
1. 0 < fo < ½ ( fo is in cycles/sample)

2. A and fo are known (we�ll remove this assumption later)

Signal-to-Noise Ratio: 
Signal Power = A2/2
Noise Power = σ 2 2

2

2σ
ASNR =



Problem: Find the CRLB for estimating the phase.

We need the PDF:
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Exploit 
Whiteness 
and Exp. 

Form 

Now taking the log gets rid of the exponential, then taking 
partial derivative gives (see book for details):
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Taking partial derivative again:
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Still depends on random vector x� so need E{}



Taking the expected value:
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E{x[n]} = A cos(2π fon + φ )

So� plug that in, get a cos2 term, use trig identity, and get
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fo not near 0 or ½
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Now� invert to get CRLB:
SNRN ×

≥
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CRLB Doubling Data
Halves CRLB!

N

For fixed SNR

Non-dB

CRLB Doubling SNR
Halves CRLB!

SNR (non-dB)

For fixed N Halve CRLB 
for every 3B 

in SNR



Does an efficient estimator exist for this problem?  The CRLB 
theorem says there is only if
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Our earlier result was:

Efficient Estimator does NOT exist!!!

We�ll see later though, an estimator for which CRLB→}�var{φ
as N →∞ or as SNR →∞

Such an estimator is called an �asymptotically efficient� estimator
(We�ll see such a phase estimator in Ch. 7 on MLE)
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