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Ch. 1 Introduction to Estimation
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An Example Estimation Problem: DSB Rx
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Discrete-Time Estimation Problem
These days, almost always work with samples of the observed 
signal (signal plus noise): ][],;[][ nwfnsnx oo += φ

Our �Thought� Model:  Each time you “observe” x[n] it 
contains same s[n] but different “realization” of noise w[n], 
so the estimate is different each time. oof φ̂&ˆ are RVs

Our Job: Given finite data set x[0], x[1], … x[N-1] 
Find estimator functions that map data into estimates:
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PDF of Estimate
Because estimates are RVs we describe them with a PDF…

Will depend on: 
1. structure of s[n]
2. probability model of w[n]
3. form of est. function g(x)
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1.2 Mathematical Estimation Problem
General Mathematical Statement of Estimation Problem:

For… Measured Data   x = [ x[0] x[1] … x[N-1] ]

Unknown Parameter   θ = [θ1 θ2 … θp ]

θ is Not Random 
x is an N-dimensional random data vector

Q:  What captures all the statistical information needed for an 
estimation problem ?

A: Need the N-dimensional PDF of the data, parameterized by θ

);( θxpIn practice, not given PDF!!!
Choose a suitable model

• Captures Essence of Reality
• Leads to Tractable Answer We’ll use p(x;θ) to find )(ˆ xθ g=
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Ex. Estimating a DC Level in Zero Mean AWGN

]0[]0[ wx +=θConsider a single data point is observed
Gaussian
zero mean
variance σ2

~ N(θ, σ2)

So… the needed parameterized PDF is:    

p(x[0];θ )   which is Gaussian with mean of θ

So… in this case the parameterization changes the data PDF mean:

θ1

p(x[0];θ1)

x[0] θ2

p(x[0];θ2)

x[0] θ3

p(x[0];θ3)

x[0]
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Ex. Modeling Data with Linear Trend
See Fig. 1.6 in Text

Looking at the figure we see what looks like a linear trend 
perturbed by some noise…

So the engineer proposes signal and noise models:
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Signal Model: Linear Trend Noise Model: AWGN 
w/ zero mean

AWGN = “Additive White Gaussian Noise”
“White” = x[n] and x[m] are uncorrelated for n ≠ m { } Iwwww 2))(( σ=−− TE
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Typical Assumptions for Noise Model
• W and G is always easiest to analyze

– Usually assumed unless you have reason to believe otherwise
– Whiteness is usually first assumption removed
– Gaussian is less often removed due to the validity of Central Limit Thm

• Zero Mean is a nearly universal assumption 
– Most practical cases have zero mean
– But if not… µ+= ][][ nwnw zm

Non-Zero Mean of µ Zero Mean Now group into signal model

• Variance of noise doesn’t always have to be known to make an 
estimate
– BUT, must know to assess expected “goodness” of the estimate
– Usually perform “goodness” analysis as a function of noise variance (or 

SNR = Signal-to-Noise Ratio)
– Noise variance sets the SNR level of the problem
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Classical vs. Bayesian Estimation Approaches
If we view θ (parameter to estimate) as Non-Random

→ Classical Estimation
Provides no way to include a priori information about θ

If we view θ (parameter to estimate) as Random 
→ Bayesian Estimation
Allows use of some a priori PDF on θ

The first part of the course:  Classical Methods
• Minimum Variance, Maximum Likelihood, Least Squares 

Last part of the course: Bayesian Methods
• MMSE, MAP, Wiener filter, Kalman Filter
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1.3 Assessing Estimator Performance
Can only do this when the value of θ is known:

• Theoretical Analysis, Simulations, Field Tests, etc.

is a random variableRecall that the estimate )(ˆ xg=θ

Thus it has a PDF of its own… and that PDF completely displays 
the quality of the estimate.

Illustrate with 1-D 
parameter case

θ θ̂

)ˆ(θp

Often just capture quality through mean and variance of )(ˆ xg=θ

Desire:

( ) small }ˆ{ˆ
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Equivalent View of Assessing Performance
)ˆ(ˆ ee +=−= θθθθDefine estimation error:

RV RV Not RV

Completely describe estimator quality with error PDF: p(e)

p(e)
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Example: DC Level in AWGN
Model: x 1,,1,0],[][ −=+= NnnwAn …

Gaussian, zero mean, variance σ2

White (uncorrelated sample-to-sample)

PDF of an individual data sample: 
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Each data sample has the same mean (A), which is the thing we 
are trying to estimate…  so, we can imagine trying to estimate 
A by finding the sample mean of the data:

Statistics ∑
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Let’s analyze the quality of this estimator…
• Is it unbiased?  

AAE

ixE
N

nx
N

EAE
n A

N

n

=⇒

=








= ∑∑
=

−

=

}ˆ{

]}[{1][1}ˆ{
1

0
#$%

Yes! Unbiased!

N
A

N
N

N
nx

N
nx

N
A

N

n

N

n

N

n

2

2

21

0

2
2

1

0
2

1

0

)ˆvar(

1])[var(1][1var)ˆvar(

σ

σσ

=⇒

===











= ∑∑∑

−

=

−

=

−

=

Can make var small by increasing N!!!

Due to Indep.
(white & Gauss. 

⇒ Indep.)• Can we get a small variance?
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Theoretical Analysis vs. Simulations

• Ideally we’d like to be always be able to theoretically 
analyze the problem to find the bias and variance of the 
estimator
– Theoretical results show how performance depends on the problem 

specifications

• But sometimes we make use of simulations
– to verify that our theoretical analysis is correct
– sometimes can’t find theoretical results
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Course Goal = Find �Optimal� Estimators
• There are several different definitions or criteria for optimality!
• Most Logical: Minimum MSE (Mean-Square-Error)

– See Sect. 2.4
– To see this result: ( )
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Although MSE makes sense, estimates usually rely on θ
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