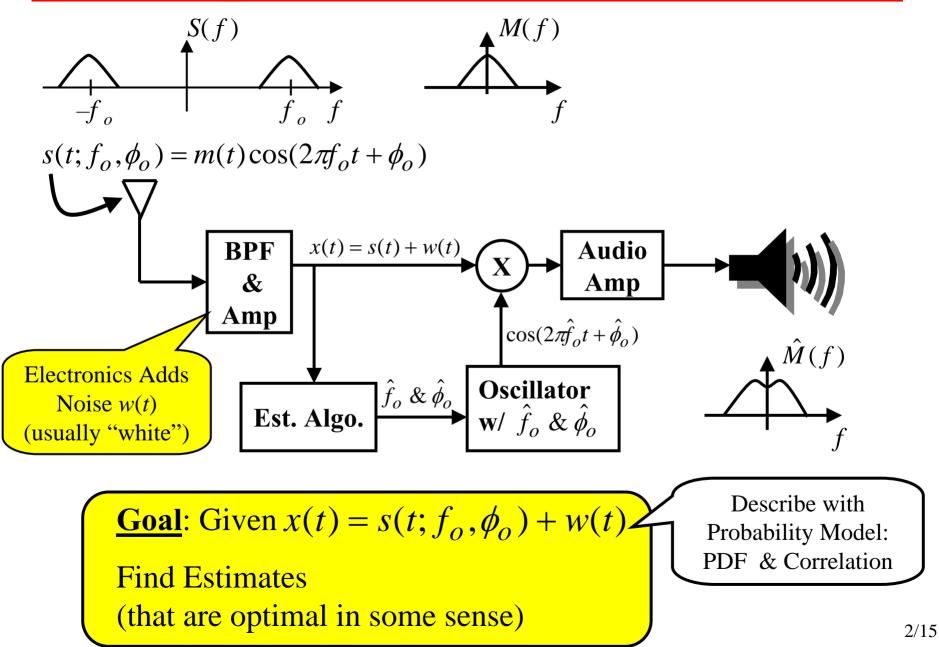
Ch. 1 Introduction to Estimation

An Example Estimation Problem: DSB Rx



Discrete-Time Estimation Problem

These days, almost always work with samples of the observed signal (signal plus noise): $x[n] = s[n; f_o, \phi_o] + w[n]$

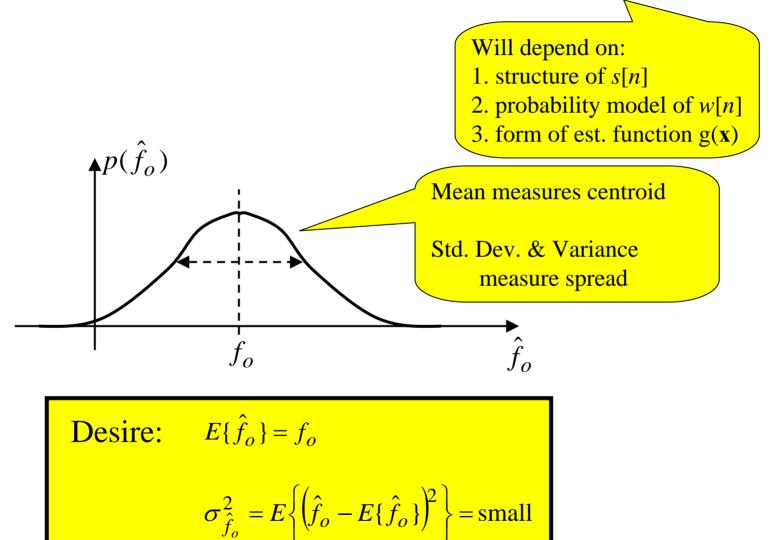
<u>Our "Thought" Model</u>: Each time you "observe" x[n] it contains same s[n] but different "realization" of noise w[n], so the estimate is different each time.

<u>**Our Job**</u>: <u>Given</u> finite data set x[0], x[1], ..., x[N-1]<u>Find</u> estimator functions that map data into estimates:

$$\hat{f}_o = g_1(x[0], x[1], \dots, x[N-1]) = g_1(\mathbf{x})$$
These are RVs...
Need to describe w/
probability model
These are RVs...

PDF of Estimate

Because estimates are RVs we describe them with a PDF...



1.2 Mathematical Estimation Problem

General Mathematical Statement of Estimation Problem:

For... Measured Data $\mathbf{x} = [x[0] x[1] \dots x[N-1]]$

Unknown Parameter $\theta = [\theta_1 \ \theta_2 \ \dots \ \theta_p]$

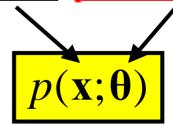
- θ is Not Random
- **x** is an *N*-dimensional random data vector

Q: What captures all the statistical information needed for an estimation problem ?

A: Need the <u>N-dimensional PDF of the data</u>, <u>parameterized by θ </u>

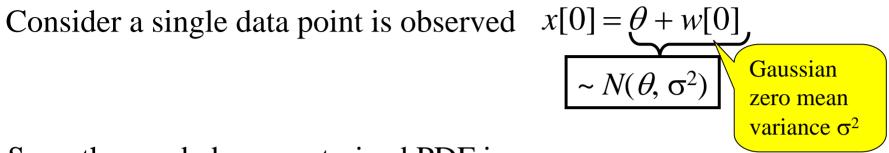
In practice, not given PDF!!! Choose a suitable <u>model</u>

- Captures Essence of Reality
- Leads to Tractable Answer



We'll use $p(\mathbf{x}; \boldsymbol{\theta})$ to find $\hat{\boldsymbol{\theta}} = g(\mathbf{x})$

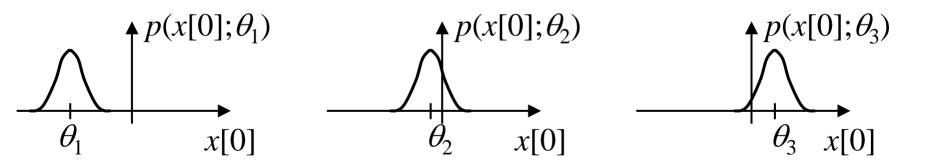
Ex. Estimating a DC Level in Zero Mean AWGN



So... the needed parameterized PDF is:

 $p(x[0];\theta)$ which is Gaussian with mean of θ

So... in this case the parameterization changes the data PDF mean:

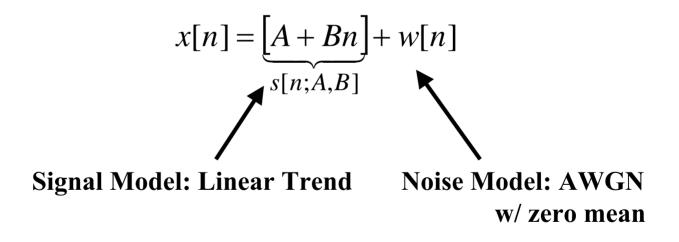


Ex. Modeling Data with Linear Trend

See Fig. 1.6 in Text

Looking at the figure we see what looks like a linear trend perturbed by some noise...

So the engineer proposes signal and noise models:



AWGN = "Additive White Gaussian Noise" "White" = x[n] and x[m] are uncorrelated for $n \neq m$ $\rightarrow E\left\{(\mathbf{w} - \overline{\mathbf{w}})(\mathbf{w} - \overline{\mathbf{w}})^T\right\} = \sigma^2 \mathbf{I}$

Typical Assumptions for Noise Model

- W and G is always easiest to analyze
 - Usually assumed unless you have reason to believe otherwise
 - Whiteness is usually first assumption removed
 - Gaussian is less often removed due to the validity of Central Limit Thm
- Zero Mean is a nearly universal assumption
 - Most practical cases have zero mean

- But if not...
$$w[n] = w_{zm}[n] + \mu$$

Non-Zero Mean of μ Zero Mean Now group into signal model

- Variance of noise doesn't always have to be known to make an estimate
 - BUT, must know to assess expected "goodness" of the estimate
 - Usually perform "goodness" analysis as a function of noise variance (or SNR = Signal-to-Noise Ratio)
 - Noise variance sets the SNR level of the problem

Classical vs. Bayesian Estimation Approaches

If we view θ (parameter to estimate) as Non-Random

 \rightarrow Classical Estimation Provides no way to include *a priori* information about θ

If we view θ (parameter to estimate) as Random

 \rightarrow Bayesian Estimation Allows use of some *a priori* PDF on θ

The first part of the course: Classical Methods

• Minimum Variance, Maximum Likelihood, Least Squares

Last part of the course: Bayesian Methods

• MMSE, MAP, Wiener filter, Kalman Filter

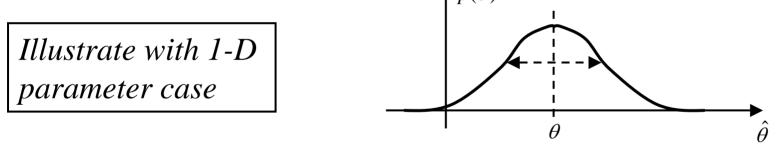
1.3 Assessing Estimator Performance

Can only do this when the value of θ is known:

• Theoretical Analysis, Simulations, Field Tests, etc.

Recall that the estimate $\hat{\theta} = g(\mathbf{x})$ is a random variable

Thus it has a PDF of its own... and that PDF <u>completely</u> displays the quality of the estimate. $\mathbf{A}_{p(\hat{\theta})}$



Often just capture quality through <u>mean</u> and <u>variance</u> of $\hat{\theta} = g(\mathbf{x})$

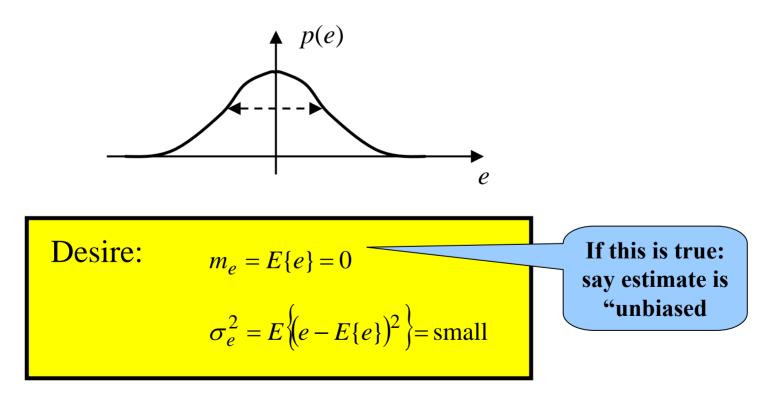
Desire:
$$m_{\hat{\theta}} = E\{\hat{\theta}\} = \theta$$

 $\sigma_{\hat{\theta}}^2 = E\{(\hat{\theta} - E\{\hat{\theta}\})^2\} = \text{small}$
If this is true:
say estimate is
"unbiased"
10/15

Equivalent View of Assessing Performance

Define estimation error:
$$e = \hat{\theta} - \theta$$
 ($\hat{\theta} = \theta + e$)
RV RV Not RV

Completely describe estimator quality with error PDF: p(e)



Example: DC Level in AWGN

Model: x[n] = A + w[n], n = 0, 1, ..., N - 1

Gaussian, zero mean, variance σ^2 White (uncorrelated sample-to-sample)

PDF of an individual data sample:

$$p(x[i]) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x[i] - A)^2}{2\sigma^2}\right]$$

Uncorrelated Gaussian RVs are Independent... so joint PDF is the product of the individual PDFs:

$$p(\mathbf{x}) = \prod_{n=0}^{N-1} \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x[n] - A)^2}{2\sigma^2} \right] \right\} = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[-\frac{\sum_{n=0}^{N-1} (x[n] - A)^2}{2\sigma^2} \right]$$

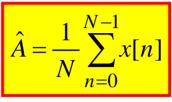
(property: prod of exp's gives sum inside exp)

Each data sample has the same $\underline{\text{mean}}(A)$, which is the thing we are trying to estimate... so, we can imagine trying to estimate

A by finding the <u>sample mean</u> of the data:

Statistics

• (



Let's analyze the quality of this estimator...

• Is it unbiased?

$$E\{\hat{A}\} = E\left\{\frac{1}{N}\sum_{n=0}^{N-1}x[n]\right\} = \frac{1}{N}\sum_{n}\underbrace{E\{x[i]\}}_{=A}$$

$$\Rightarrow E\{\hat{A}\} = A \qquad \text{Yes! Unbiased!} \qquad \text{Due to Indep.} (white \& Gauss.} \\ \Rightarrow \text{Indep.})$$

$$\operatorname{Var}(\hat{A}) = \operatorname{var}\left[\frac{1}{N}\sum_{n=0}^{N-1}x[n]\right] = \frac{1}{N^2}\sum_{n=0}^{N-1}\operatorname{var}(x[n]) = \frac{1}{N^2}\sum_{n=0}^{N-1}\sigma^2 = \frac{N\sigma^2}{N^2}$$

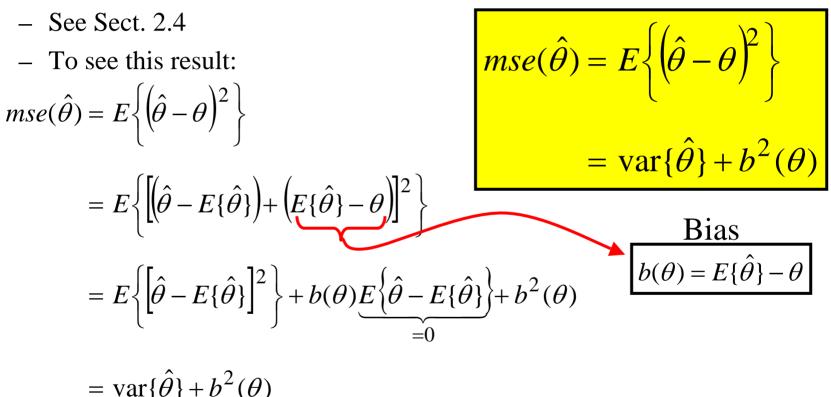
$$\Rightarrow \operatorname{var}(\hat{A}) = \frac{\sigma^2}{N} \qquad \text{Can make var small by increasing N!!!} \qquad 13/15$$

Theoretical Analysis vs. Simulations

- Ideally we'd like to be always be able to theoretically analyze the problem to find the bias and variance of the estimator
 - Theoretical results show how performance depends on the problem specifications
- But sometimes we make use of simulations
 - to verify that our theoretical analysis is correct
 - sometimes can't find theoretical results

Course Goal = Find "Optimal" Estimators

- There are several different definitions or criteria for optimality!
- Most Logical: Minimum MSE (Mean-Square-Error)



Although MSE makes sense, estimates usually rely on θ