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Review of 
Matrices and Vectors
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Definition of Vector: A collection of complex or real numbers, 
generally put in a column
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Definition of Vector Addition: Add element-by-element

Vectors & Vector Spaces
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Definition of Scalar: A real or complex number.  

If the vectors of interest are complex valued then the set of 
scalars is taken to be complex numbers; if the vectors of 
interest are real valued then the set of scalars is taken to be 
real numbers.

Multiplying a Vector by a Scalar :
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�changes the vector�s length if |α| ≠ 1 

� �reverses� its direction if α < 0
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Arithmetic Properties of Vectors: vector addition and 
scalar multiplication exhibit the following properties pretty 
much like the real numbers do

Let x, y, and z be vectors of the same dimension and let α
and β be scalars; then the following properties hold:
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1. Commutativity 

2. Associativity

3. Distributivity

4. Scalar Unity &   
Scalar Zero
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Definition of a Vector Space: A set V of N-dimensional vectors 
(with a corresponding set of scalars) such that the set of vectors 
is:

(i) �closed� under vector addition
(ii) �closed� under scalar multiplication

In other words:
� addition of vectors � gives another vector in the set
� multiplying a vector by a scalar � gives another vector in the set

Note: this means that ANY �linear combination� of vectors in the 
space results in a vector in the space�
If v1, v2, and v3 are all vectors in a given vector space V, then

∑
=

=++=
3

1
332211

i
iivvvvv αααα

is also in the vector space V.
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Axioms of Vector Space: If V is a set of vectors satisfying the above 
definition of a vector space then it satisfies the following axioms:

1. Commutativity (see above)

2. Associativity (see above)

3. Distributivity (see above)

4. Unity and Zero Scalar (see above)

5. Existence of an Additive Identity � any vector space V must 
have a zero vector

6. Existence of Negative Vector: For every vector v in V its 
negative must also be in V

So� a vector space is nothing more than a set of vectors with 
an �arithmetic structure�
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Def. of Subspace: Given a vector space V, a subset of vectors in V
that itself is closed under vector addition and scalar 
multiplication (using the same set of scalars) is called a 
subspace of V.

Examples:  

1. The space R2 is a subspace of R3. 

2. Any plane in R3 that passes through the origin is a subspace

3. Any line passing through the origin in R2 is a subspace of R2 

4. The set R2 is NOT a subspace of C2 because R2 isn�t closed 
under complex scalars (a subspace must retain the original 
space�s set of scalars)
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Length of a Vector (Vector Norm): For any vector v in CN

we define its length (or �norm�) to be 
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Geometric Structure of Vector Space
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Distance Between Vectors:  the distance between two 
vectors in a vector space with the two norm is defined by: 
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v2

v1 v1 � v2
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Angle Between Vectors & Inner Product:

Motivate the idea in R2:
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Clearly we see that� This gives a measure of the angle 
between the vectors.  

Now we generalize this idea!
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Inner Product Between Vectors : 
Define the inner product between two complex vectors in CN  by: 
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Properties of  Inner Products:
1.  Impact of Scalar Multiplication:

2.  Impact of Vector Addition:

3. Linking Inner Product to Norm:

4. Schwarz Inequality:

5. Inner Product and Angle:       
(Look back on previous page!)
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Inner Product, Angle, and Orthogonality : 
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(i) This lies between �1 and 1; 

(ii) It measures directional alikeness of  u and v

= +1 when u and v point in the same direction

=  0 when u and v are a �right angle�

= �1 when u and v point in opposite directions

Two vectors u and v are said to be orthogonal when <u,v> = 0

If in addition, they each have unit length they are orthonormal
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Can we find a set of �prototype� vectors {v1, v2, �, vM} from 
which we can build all other vectors in some given vector space V 
by using linear combinations of the vi? 

Same �Ingredients�� just different amounts of them!!!
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We want to be able to do is get any vector just by changing the 
amounts� To do this requires that the set of �prototype�
vectors {v1, v2, �, vM} satisfy certain conditions.

We�d also like to have the smallest number of members in the 
set of �prototype� vectors. 

Building Vectors From Other Vectors
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Span of a Set of Vectors: A set of vectors {v1, v2, �, vM} is said to 
span the vector space V if it is possible to write each vector v in V as 
a linear combination of vectors from the set:
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This property establishes if there are enough vectors in the 
proposed prototype set to build all possible vectors in V.

It is clear that:

1.  We need at least N vectors to 
span CN or RN but not just any N
vectors.

2.  Any set of N mutually orthogonal 
vectors spans CN or RN (a set of 
vectors is mutually orthogonal if all 
pairs are orthogonal).Does not 

Span R2
Spans R2

Examples in R2
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Linear Independence:  A set of vectors {v1, v2, �, vM} is said to 
be linearly independent if none of the vectors in it can be written as 
a linear combination of the others. 

If a set of vectors is linearly dependent then there is �redundancy� 
in the set�it has more vectors than needed to be a �prototype� set!

For example, say that we have a set of four vectors {v1, v2, v3, v4} 
and lets say that we know that we can build v2 from v1 and v3�
then every vector we can build from {v1, v2, v3, v4} can also be built 
from only {v1, v3, v4}.

It is clear that:

1.  In CN or RN we can have no 
more than N linear independent 
vectors.

2.  Any set of mutually 
orthogonal vectors is linear 
independent (a set of vectors is 
mutually orthogonal if all pairs 
are orthogonal).

Linearly 
Independent

Not Linearly 
Independent

Examples in R2
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Basis of a Vector Space: A basis of a vector space is a set of 
linear independent vectors that span the space.

� �Span� says there are enough vectors to build everything

� �Linear Indep� says that there are not more than needed 

Orthonormal (ON) Basis: If a basis of a vector space contains 
vectors that are orthonormal to each other (all pairs of basis 
vectors are orthogonal and each basis vector has unit norm).

Fact: Any set of N linearly independent vectors in CN (RN) is a 
basis of CN (RN).

Dimension of a Vector Space: The number of vectors in any
basis for a vector space is said to be the dimension of the space.  
Thus, CN and RN each have dimension of N.
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Fact: For a given basis {v1, v2, �, vN}, the expansion of a vector v
in V is unique.  That is, for each v there is only one, unique set of 
coefficients {α1, α2, � , αN} such that ∑
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In other words, this �expansion� or �decomposition� is unique.  
Thus, for a given basis we can make a 1-to-1 correspondence 
between vector v and the coefficients {α1, α2, � , αN}.  

We can write the coefficients as a vector, too: [ ]TNαα !1=α
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Expansion can be viewed as a mapping (or 
transformation) from vector v to vector α.

We can view this transform as taking us 
from the original vector space into a new 
vector space made from the coefficient 
vectors of all the original vectors.

Expansion and Transformation
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Fact: For any given vector space there are an infinite number of 
possible basis sets.  

The coefficients with respect to any of them provides complete 
information about a vector�

some of them provide more insight into the vector and are therefore 
more useful for certain signal processing tasks than others.

Often the key to solving a signal processing problem lies in finding 
the correct basis to use for expanding� this is equivalent to finding 
the right transform.     See discussion coming next linking DFT to 
these ideas!!!!
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DFT from Basis Viewpoint:

If we have a discrete-time signal x[n] for n = 0, 1, � N-1  

Define vector:

Define a orthogonal basis from the exponentials used in the IDFT: 
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Then the IDFT equation can be viewed as an expansion of the 
signal vector x in terms of this complex sinusoid basis:
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What�s So Good About an ON Basis?: Given any basis       
{v1, v2, �, vN} we can write any v in V as
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Given the vector v how do we find the α�s?
� In general � hard! But for ON basis � easy!!  

If  {v1, v2, �, vN} is an ON basis then

i

ij

ij

N

j
j

ij

N

j
ji

α=

α=









α=

−δ
=

=

∑

∑

#$#%&
][

1

1

v,v

v,vvv,

ii vv,=α

ith coefficient = inner product with ith ON basis vector

Usefulness of an ON Basis
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Another Good Thing About an ON Basis: They preserve inner 
products and norms� (called �isometric�):

If {v1, v2, �, vN} is an ON basis and u and v are vectors 
expanded as

Then�.

1.  < v ,u > = < α , β >  (Preserves Inner Prod.)

2. ||v||2 = ||α||2 and ||u||2 = ||β||2 (Preserves Norms)
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So� using an ON basis provides:
� Easy computation via inner products
� Preservation of geometry (closeness, size, orientation, etc.
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Example: DFT Coefficients as Inner Products:

Recall:  N-pt. IDFT is an expansion of the signal vector in terms of 
N Orthogonal vectors. Thus
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See �reading notes� for some details about normalization issues in this case
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Matrix:  Is  an array of (real or complex) numbers organized in 
rows and columns. 

Here is a 3x4 example:

We�ll sometimes view a matrix as being built from its columns; 
The 3x4 example above could be written as:

[ ]4321 ||| aaaaA = [ ]Tkkkk aaa 321=a

We�ll take two views of a matrix:

1. �Storage� for a bunch of related numbers (e.g., Cov. Matrix)

2. A transform (or mapping, or operator) acting on a vector
(e.g., DFT, observation matrix, etc�. as we�ll see)
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Matrix as Transform: Our main view of matrices will be as 
�operators� that transform one vector into another vector.  

Consider the 3x4 example matrix above.  We could use that matrix 
to transform the 4-dimensional vector v into a 3-dimensional 
vector u:
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Clearly u is built from the columns 
of matrix A; therefore, it must lie 
in the span of the set of vectors that 
make up the columns of A.  

Note that the columns of A are 
3-dimensional vectors� so is u.
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Transforming a Vector Space: If we apply A to all the vectors in 
a vector space V we get a collection of vectors that are in a 
new space called U.

In the 3x4 example matrix above we transformed a 4-dimensional 
vector space V into a 3-dimensional vector space U

A 2x3 real matrix A would transform R3 into R2 :

Facts: If the mapping matrix A is square and its columns are 
linearly independent then 

(i) the space that vectors in V get mapped to (i.e., U) has the 
same dimension as V (due to �square� part)

(ii) this mapping is reversible (i.e., invertible); there is an inverse 
matrix A-1 such that v = A-1u (due to �square� & �LI� part)

A
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1x

1, −AA

1y
2x

2y

1, −AA

Transform = Matrix × Vector: a VERY useful viewpoint for all 
sorts of signal processing scenarios.  In general we can view many 
linear transforms (e.g., DFT, etc.) in terms of some invertible 
matrix A operating on a signal vector x to give another vector y:

ii Axy = ii yAx 1−=

We can think of A and A-1 as 
mapping back and forth 

between two vector spaces
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Basis Matrix & Coefficient Vector: 

Suppose we have a basis {v1, v2, �, vN} for a vector space V.  
Then a vector v in space V can be written as:

Another view of this:
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The �Basis Matrix� V transforms 
the coefficient vector into the 
original vector v

Matrix View & Basis View
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Three Views of Basis Matrix & Coefficient Vector:
View #1
Vector v is a linear combination of the columns of basis matrix V.

View #2
Matrix V maps vector α into vector v. 

View #3
There is a matrix, V-1, that maps vector v into vector α.
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Aside:  If a matrix A is square and has linearly independent columns, then A 
is �invertible� and A-1 exists such that A A-1 = A-1A = I where I is the identity 
matrix having 1�s on the diagonal and zeros elsewhere.

Now have 
a way to go 
back-and-
forth 
between 
vector v
and its 
coefficient 
vector α

Now have 
a way to go 
back-and-
forth 
between 
vector v
and its 
coefficient 
vector α
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Basis Matrix for ON Basis:  We get a special structure!!! 

Result: For an ON basis matrix V� V-1 = VH

(the superscript H denotes �hermitian transpose�, which consists   
of transposing the matrix and conjugating the elements)

To see this:
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Inner products are 0 or 1 
because this is an ON basis
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A unitary matrix is a complex matrix A whose inverse is A-1 = AH

For the real-valued matrix case� we get a special case of �unitary�
the idea of �unitary matrix� becomes �orthogonal matrix�
for which A-1 = AT

Two Properties of Unitary Matrices: Let U be a unitary matrix 
and let y1 = Ux1 and y2 = Ux2

1.  They preserve norms: ||yi|| = ||xi||.

2. They preserve inner products:  < y1, y2 > = < x1, x2 >

That is the �geometry� of the old space is preserved by the unitary 
matrix as it transforms into the new space.

(These are the same as the preservation properties of ON basis.)

Unitary and Orthogonal Matrices
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DFT from Unitary Matrix Viewpoint:

Consider a discrete-time signal x[n] for n = 0, 1, � N-1. 

We�ve already seen the DFT in a basis viewpoint:

Now we can view the DFT as a transform from the Unitary matrix 
viewpoint:
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(Acutally D is not unitary but N-1/2D is unitary� see reading notes)
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Geometry Preservation of Unitary Matrix Mappings

Recall� unitary matrices map in such a way that the sizes of 
vectors and the orientation between vectors is not changed.

1x

1, −AA

1y
2x

2y

1, −AA

Unitary mappings just 
�rigidly rotate� the space.
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1x

1, −AA

1y
2x

2y

1, −AA

Effect of Non-Unitary Matrix Mappings
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More on Matrices as Transforms

Axy =

m×1 m×n n×1

We�ll limit ourselves here to real-valued vectors and matrices

A maps any vector x in Rn

into some vector y in Rm

Rn Rm

x yA

Range(A): �Range Space of A� = 
set of all vectors in Rm that can be 
reached by mapping

vector y = weighted sum of columns of A

⇒ may only be able to reach certain y�s

Mostly interested in two cases:
1. �Tall Matrix� m > n
2. �Square Matrix� m = n
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Range of a �Tall Matrix� (m > n) 
Rn Rm

x yA

The range(A) ⊂ Rm

�Proof�: Since y is �built� from the n columns of A there are 
not enough to form a basis for Rm (they don�t span Rm) 

Range of a �Square Matrix� (m = n) 

If the columns of A are linearly indep�.The range(A) = Rm

�because the columns form a basis for Rm

Otherwise�.The range(A) ⊂ Rm

�because the columns don�t span Rm
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Rank of a Matrix: rank(A) = largest # of linearly independent 
columns (or rows) of matrix A

For an m×n matrix we have that rank(A) ≤ min(m,n)

An m×n matrix A has �full rank� when rank(A) = min(m,n)

Example:  This matrix has rank of 3 because the 4th column cam be 
written as a combination of the first 3 columns
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�Tall Matrix� (m > n) Case

If y does not lie in range(A), then there is No Solution

If y lies in range(A), then there is a solution (but not 
necessarily just one unique solution)

y∈range(A)y∉range(A)

No Solution

One Solution Many Solutions

A full 
rank

A not 
full rank

Characterizing �Tall Matrix� Mappings
We are interested in answering: Given a vector y, what vector x 
mapped into it via matrix A?

Axy =
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Full-Rank �Tall Matrix� (m > n) Case

Rn Rm

x
y

A

Range(A)

Axy =

For a given y∈range(A)�
there is only one x that maps to it.

This is because the columns of A are linearly independent 
and we know from our studies of vector spaces that the 
coefficient vector of y is unique� x is that coefficient 
vector

By looking at y we can determine which x gave rise to it
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NonFull-Rank �Tall Matrix� (m > n) Case

Rn Rm

x1
y

A
Range(A)

Axy =

For a given y∈range(A) there is more than one x that maps 
to it

This is because the columns of A are linearly dependent 
and that redundancy provides several ways to combine 
them to create y 

x2
A

By looking at y we can not determine which x gave rise to it
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Characterizing �Square Matrix� Mappings

Q: Given any y∈Rn can we find an x∈Rn that maps to it?

A: Not always!!!

y∈range(A)y∉range(A)

No Solution

One Solution

Many Solutions

A full 
rank

A not 
full rank

Axy = Careful!!! This is quite a 
different flow diagram here!!!

When a square A is full rank then its range covers the 
complete new space� then, y must be in range(A) and 
because the columns of A are a basis there is a way to 
build y
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A Full-Rank Square Matrix is Invertible
A square matrix that has full rank is said to be�.

�nonsingular�, �invertible�
Then we can find the x that mapped to y using x = A-1y

Several ways to check if n×n A is invertible:
1. A is invertible if and only if (iff) its columns (or rows) are 

linearly independent (i.e., if it is full rank)
2. A is invertible iff det(A) ≠ 0
3. A is invertible if (but not only if) it is �positive definite� (see 

later)
4. A is invertible if (but not only if) all its eigenvalues are 

nonzero

Pos. Def.
Matrices

Invertible
Matrices
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Eigenvalues and Eigenvectors of Square Matrices
If matrix A is n×n, then A maps Rn → Rn

Q: For a given n×n matrix A, which vectors get mapped into 
being almost themselves???

More precisely� Which vectors get mapped to a scalar multiple 
of themselves???

Even more precisely� which vectors v satisfy the following:

vAv λ=

These vectors are �special� and are called the eigenvectors of A.
The scalar λ is that e-vector�s corresponding eigenvalue.

Input Output

v Av
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� If n×n real matrix A is symmetric, then
� e-vectors corresponding to distinct e-values are orthonormal 
� e-values are real valued
� can decompose A as 

� If, further, A is pos. def. (semi-def.), then
� e-values are positive (non-negative)
� rank(A) = # of non-zero e-values

� Pos. Def. ⇒ Full Rank (and therefore invertible)
� Pos. Semi-Def. ⇒ Not Full Rank (and therefore not invertible)

� When A is P. D., then we can write

�Eigen-Facts for Symmetric Matrices�

TVVΛA =

[ ]

{ }n

T
n

diag λλλ ,,, 21

21

…

!

=

==

Λ

IVVvvvV

TVVΛA 11 −− =

{ }
n

diag λλλ
1111 ,,,

21
…=−Λ

For P.D. A, A-1 has 
the same e-vectors and 
has reciprocal e-values
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We�ll limit our discussion to real-valued matrices and vectors

Quadratic Forms and Positive-(Semi)Definite Matrices

Quadratic Form = Matrix form for a 2nd-order multivariate 
polynomial

Example:















=
















=

2221

1211

2

1

aa

aa

x

x
Ax

fixedvariable

212112
2
222

2
111

2

1

2

1

21

)(

scalar  )11()12()22()21(),(

xxaaxaxaxxa

xxQ

i j
jiij

T

+++==

×=×⋅×⋅×=

∑∑
= =

AxxA

scalar

The quadratic form of matrix A is:

Other Matrix Issues
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� Values of the elements of matrix A determine the characteristics 
of the quadratic form QA(x)
� If QA(x) ≥ 0  ∀x ≠ 0� then say that QA(x) is �positive semi-definite�
� If QA(x) > 0  ∀x ≠ 0� then say that QA(x) is �positive definite�
� Otherwise say that QA(x) is �non-definite�

� These terms carry over to the matrix that defines the Quad Form
� If QA(x) ≥ 0  ∀x ≠ 0� then say that A is �positive semi-definite�
� If QA(x) > 0  ∀x ≠ 0� then say that A is �positive definite�


