Review of Probability

Random Variable

Definition

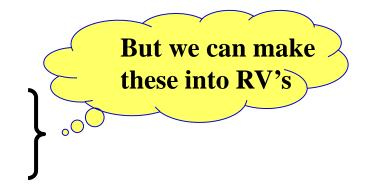
Numerical characterization of outcome of a random event

Examples

- 1) Number on rolled dice
- 2) Temperature at specified time of day
- 3) Stock Market at close
- 4) Height of wheel going over a rocky road

Random Variable

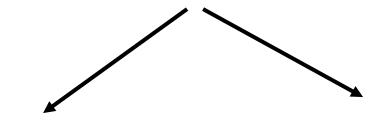
- Non-examples
 - 1) 'Heads' or 'Tails' on coin
 - 2) Red or Black ball from urn



- Basic Idea don't know how to completely determine what value will occur
 - Can only specify probabilities of RV values occurring.

Two Types of Random Variables

Random Variable



Discrete RV

- Die
- Stocks

Continuous RV

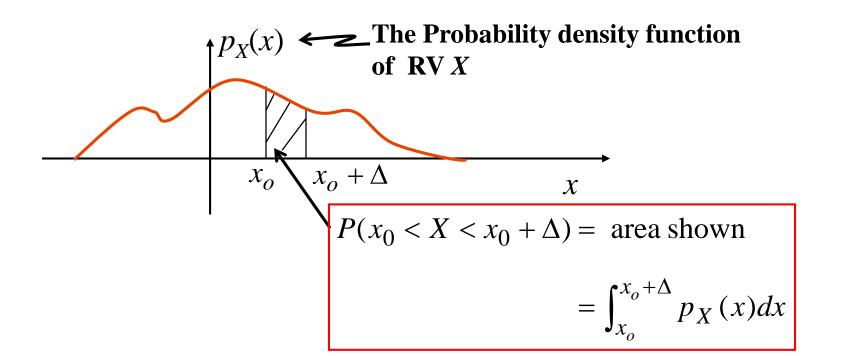
- Temperature
- Wheel height

PDF for Continuous RV

Given Continuous RV X...

What is the probability that $X = x_0$?

- Oddity : $P(X = x_0) = 0$
 - Otherwise the Prob. "Sums" to infinity
- Need to think of <u>Prob. Density Function</u> (PDF)



Most Commonly Used PDF: Gaussian

A RV X with the following PDF is called a Gaussian RV

$$p_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-m)^2/2\sigma^2}$$

 $m \& \sigma$ are parameters of the Gaussian pdf

m = Mean of RV X

 σ = Standard Deviation of RV X (Note: $\sigma > 0$)

 σ^2 = Variance of RV X

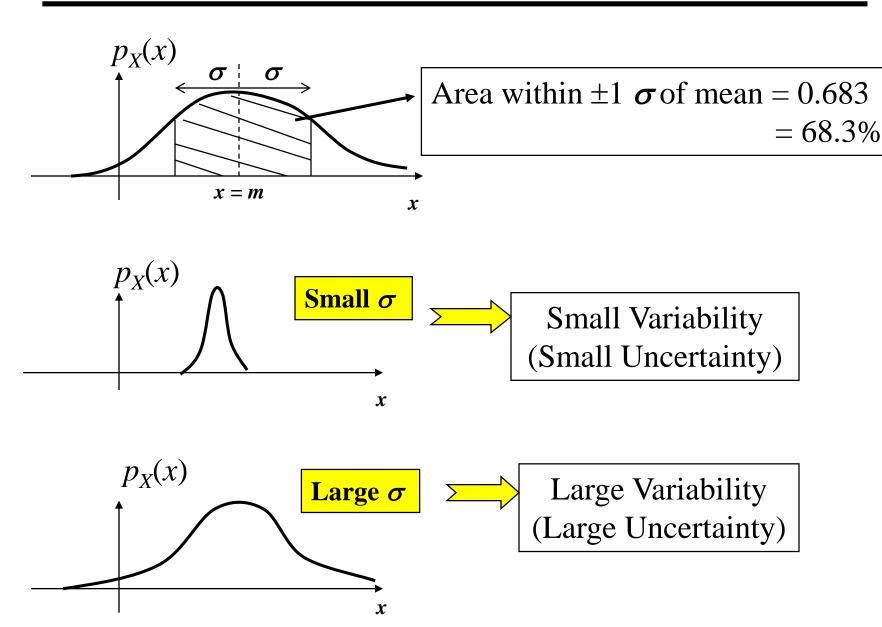
Notation: When *X* has Gaussian PDF we say $X \sim N(m, \sigma^2)$

Zero-Mean Gaussian PDF

• Generally: take the noise to be Zero Mean

$$p_{x}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{x^{2}/2\sigma^{2}}$$

Effect of Variance on Gaussian PDF



Why Is Gaussian Used?

Central Limit theorem (CLT)

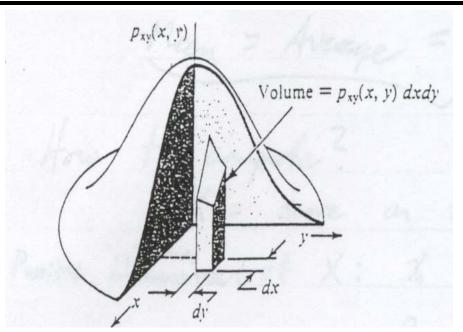
The sum of N independent RVs has a pdf that tends to be Gaussian as $N \to \infty$

So What! Here is what: Electronic systems generate internal noise due to random motion of electrons in electronic components. The noise is the result of summing the random effects of <u>lots</u> of electrons.

Joint PDF of RVs X and Y

Describes probabilities of joint events concerning X and Y. For example, the probability that X lies in interval [a,b] and Y lies in interval [a,b] is given by:

$$\Pr\{(a < X < b) \text{ and } (c < Y < d)\} = \int_{a}^{b} \int_{c}^{d} p_{XY}(x, y) dx dy$$



This graph shows a **Joint PDF**

Conditional PDF of Two RVs

When you have two RVs... often ask: What is the PDF of Y if X is constrained to take on a specific value.

In other words: What is the PDF of *Y* conditioned on the fact *X* is constrained to take on a specific value.

Ex.: Husband's salary X conditioned on wife's salary = \$100K?

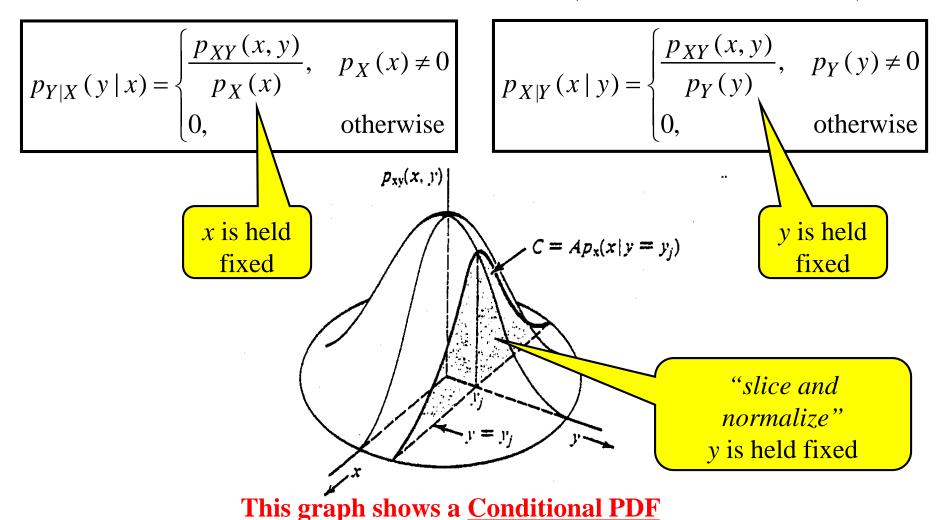
First find all wives who make EXACTLY \$100K... how are their husband's salaries distributed.

Depends on the joint PDF because there are two RVs... but it should only depend on the slice of the joint PDF at Y=\$100K.

Now... we have to adjust this to account for the fact that the joint PDF (even its slice) reflects how likely it is that Y=\$100K will occur (e.g., if $Y=10^5$ is unlikely then $p_{XY}(x,10^5)$ will be small); so... if we divide by $p_Y(10^5)$ we adjust for this.

Conditional PDF (cont.)

Thus, the conditional PDFs are defined as ("slice and normalize"):



Independent RV's

Independence should be thought of as saying that:

Neither RV impacts the other statistically – thus, the values that one will likely take should be irrelevant to the value that the other *has* taken.

In other words: conditioning doesn't change the PDF!!!

$$p_{Y|X=x}(y \mid x) = \frac{p_{XY}(x, y)}{p_X(x)} = p_Y(y)$$

$$p_{X|Y=y}(x \mid y) = \frac{p_{XY}(x, y)}{p_Y(y)} = p_X(x)$$

$$p_{X|Y=y}(x | y) = \frac{p_{XY}(x, y)}{p_Y(y)} = p_X(x)$$

Independent and Dependent Gaussian PDFs

Independent (zero mean)

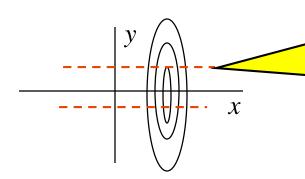
 $\frac{1}{x}$

If X & Y are independent, then the contour ellipses

Contours of $p_{XY}(x,y)$.

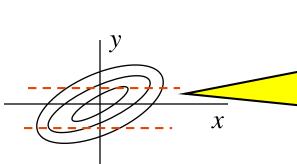
are aligned with either the x or y axis

Independent (non-zero mean)



Different slices
give
same normalized
curves

Dependent



Different slices
give
different normalized
curves

An "Independent RV" Result

RV's *X* & *Y* are independent if:

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$

Here's why:

$$p_{Y|X=x}(y|x) = \frac{p_{XY}(x,y)}{p_X(x)} = \frac{p_X(x)p_Y(y)}{p_X(x)} = p_Y(y)$$

Characterizing RVs

- PDF tells everything about an RV
 - but sometimes they are "more than we need/know"
- So... we make due with a few Characteristics
 - Mean of an RV (Describes the centroid of PDF)
 - Variance of an RV (Describes the spread of PDF)
 - Correlation of RVs (Describes "tilt" of joint PDF)

Mean = Average = Expected Value

Symbolically: $E\{X\}$

Motivating Idea of Mean of RV

Motivation First w/ "Data Analysis View"

Consider RV X = Score on a test Data: $x_1, x_2, ... x_N$

Possible values of RV
$$X : V_0 V_1 V_2... V_{100}$$

0 1 2 ... 100

Test Average =
$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{N_0 V_0 + N_1 V_1 + ... N_n V_{100}}{N} = \sum_{i=0}^{100} V_i \frac{N_i}{N}$$

$$N_i$$
 = # of scores of value V_i
 $N = \sum_{i=1}^{n} N_i$ (Total # of scores)

This is called <u>Data Analysis View</u>
But it motivates the <u>Data Modeling View</u>

Statistics

Probability

 $\approx P(X = V_i)$

Theoretical View of Mean

<u>Data Analysis View</u> leads to <u>Probability Theory</u>:

■ For Discrete random Variables:

Data Modeling

$$E\{X\} = \sum_{n=1}^{n} x_i P_X \underbrace{(x_i)}_{}$$

Probability Function

■ This Motivates form for Continuous RV:

$$E\{X\} = \int_{-\infty}^{\infty} x \ p_X(x) dx$$

Probability Density Function

Notation: $E\{X\} = \overline{X}$

Shorthand Notation

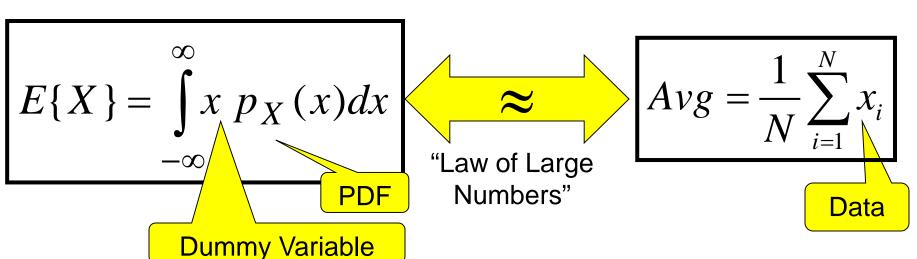
Aside: Probability vs. Statistics

Probability Theory

- » Given a PDF Model
- » <u>Describe</u> how the data <u>will likely</u> behave

Statistics

- » Given a set of <u>Data</u>
- » <u>Determine</u> how the data did behave



There is no DATA here!!!

The <u>PDF models</u> how the data <u>will likely</u> behave

There is no PDF here!!!

The <u>Statistic measures</u> how the data <u>did</u> behave

Variance of RV

There are similar Data vs. Theory Views here...

But let's go right to the theory!!

Variance: Characterizes how much you expect the RV to Deviate Around the Mean

Variance:
$$\sigma^2 = E\{(X - m_x)^2\}$$

= $\int (x - m_x)^2 p_X(x) dx$

Note: If zero mean...

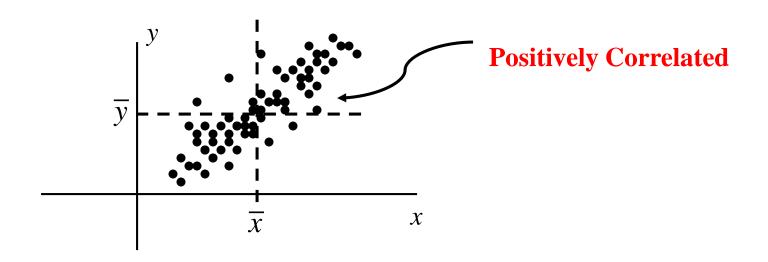
$$\sigma^{2} = E\{X^{2}\}\$$
$$= \int x^{2} p_{X}(x) dx$$

Motivating Idea of Correlation

Motivate First w/ Data Analysis View

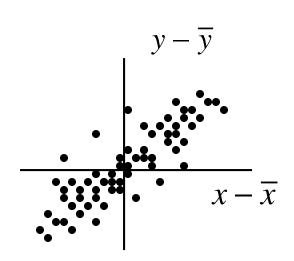
Consider a random experiment that observes the outcomes of <u>two RVs</u>:

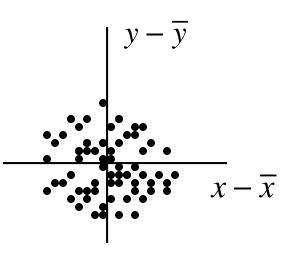
Example: 2 RVs X and Y representing height and weight, respectively

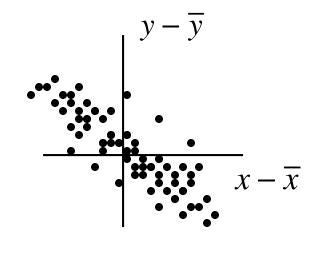


Illustrating 3 Main Types of Correlation

Data Analysis View:
$$C_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})$$







Positive Correlation "Best Friends"

GPA &
Starting Salary

Zero Correlation
i.e. uncorrelated
"Complete Strangers"

Height & sin Pocket

Negative Correlation "Worst Enemies"

Student Loans &
Parents' Salary

Prob. Theory View of Correlation

To capture this, define <u>Covariance</u>:

$$\sigma_{XY} = E\{(X - \overline{X})(Y - \overline{Y})\}$$

$$\sigma_{XY} = \int \int (x - \overline{X})(y - \overline{Y}) p_{XY}(x, y) dx dy$$

If the RVs are both Zero-mean:

$$\sigma_{XY} = \mathrm{E}\{XY\}$$

If
$$X = Y$$
:

$$\sigma_{XY} = \sigma_X^2 = \sigma_Y^2$$

If *X* & *Y* are independent, then:

$$\sigma_{XY} = 0$$

If
$$\sigma_{XY} = E\{(X - \overline{X})(Y - \overline{Y})\} = 0$$

Then... Say that *X* and *Y* are "uncorrelated"

If
$$\sigma_{XY} = E\{(X - \overline{X})(Y - \overline{Y})\} = 0$$

Then
$$E\{XY\} = \overline{X}\overline{Y}$$

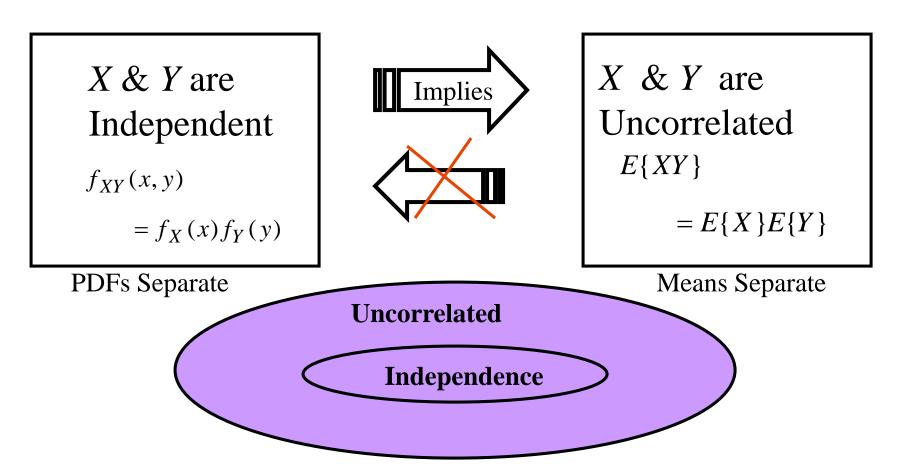
Called "Correlation of X & Y"

So... RVs X and Y are said to be uncorrelated

if
$$\sigma_{XY} = 0$$

or equivalently... if $E\{XY\} = E\{X\}E\{Y\}$

Independence vs. Uncorrelated



INDEPENDENCE IS A STRONGER CONDITION !!!!

Confusing Covariance and Correlation Terminology

Covariance:
$$\sigma_{XY} = E\{(X - \overline{X})(Y - \overline{Y})\}$$

Correlation:

$$E\{XY\}$$
 Same if zero mean

Correlation Coefficient:

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

$$-1 \le \rho_{XY} \le 1$$

Covariance and Correlation For Random Vectors...

$$\mathbf{x} = [X_1 \ X_1 \ \cdots \ X_N]^T$$

Correlation Matrix:

$$\mathbf{R}_{\mathbf{x}} = E\{\mathbf{x}\mathbf{x}^{T}\} = \begin{bmatrix} E\{X_{1}X_{1}\} & E\{X_{1}X_{2}\} & \cdots & E\{X_{1}X_{N}\} \\ E\{X_{2}X_{1}\} & E\{X_{2}X_{2}\} & \cdots & E\{X_{2}X_{N}\} \\ \vdots & \vdots & \ddots & \vdots \\ E\{X_{N}X_{1}\} & E\{X_{N}X_{2}\} & \cdots & E\{X_{N}X_{N}\} \end{bmatrix}$$

Covariance Matrix:

$$\mathbf{C}_{\mathbf{x}} = E\{(\mathbf{x} - \overline{\mathbf{x}})(\mathbf{x} - \overline{\mathbf{x}})^T\}$$

A Few Properties of Expected Value

$$E\{X + Y\} = E\{X\} + E\{Y\}$$

$$E\{aX\} = aE\{X\}$$

$$E\{f(X)\} = \int f(x)p_X(x)dx$$

$$\operatorname{var}\{X+Y\} = \begin{cases} \sigma_X^2 + \sigma_Y^2 + 2\sigma_{XY} \\ \\ \sigma_X^2 + \sigma_Y^2, & \text{if } X \& Y \text{ are uncorrelated} \end{cases}$$

$$\operatorname{var}\{aX\} = a^2 \sigma_X^2$$

$$\Rightarrow \operatorname{var}\{X+Y\} = E\left\{ \left(X+Y-\overline{X}-\overline{Y}\right)^{2}\right\}$$

$$\operatorname{var}\{a+X\} = \sigma_X^2$$

$$= E \{ (X_z)^2 + (Y_z)^2 + 2X_zY_z \}$$

$$= E\{(X_z)^2\} + E\{(Y_z)^2\} + 2E\{X_zY_z\}$$

 $= E\{(X_z + Y_z)^2\} \text{ where } X_z = X - \overline{X}$

$$=\sigma_X^2+\sigma_Y^2+2\sigma_{XY}$$

Joint PDF for Gaussian

Let $\mathbf{x} = [X_1 \ X_2 \ ... \ X_N]^T$ be a vector of random variables. These random variables are said to be jointly Gaussian if they have the following PDF

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{N}{2}} \sqrt{\det(\mathbf{C}_x)}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_x)^T \mathbf{C}_x^{-1} (\mathbf{x} - \boldsymbol{\mu}_x)\right\}$$

where μ_x is the mean vector and \mathbf{C}_x is the covariance matrix:

$$\mu_{x} = E\{\mathbf{x}\}$$
 $\mathbf{C}_{x} = E\{(\mathbf{x} - \mu_{x})(\mathbf{x} - \mu_{x})^{T}\}$

For the case of two jointly Gaussian RVs X_1 and X_2 with

$$E\{X_i\} = \mu_i$$
 $var\{X_i\} = \sigma_i^2$ $E\{(X_1 - \mu_1)(X_2 - \mu_2)\} = \sigma_{12}$ $\rho = \sigma_{12}/(\sigma_1 \sigma_2)$

Then...

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right] \right\}$$

It is easy to verify that X_1 and X_2 are uncorrelated (and independent!) if $\rho = 0$

Linear Transform of Jointly Gaussian RVs

Let $\mathbf{x} = [X_1 \ X_2 \ ... \ X_N]^T$ be a vector of jointly Gaussian random variables with mean vector $\mathbf{\mu}_x$ and covariance matrix \mathbf{C}_x ...

Then the linear transform y = Ax + b is also jointly Gaussian with

$$\boldsymbol{\mu}_{v} = E\{\mathbf{y}\} = \mathbf{A}\boldsymbol{\mu}_{x} + \mathbf{b}$$

$$\mathbf{C}_{y} = E\{(\mathbf{y} - \boldsymbol{\mu}_{y})(\mathbf{y} - \boldsymbol{\mu}_{y})^{T}\} = \mathbf{A}\mathbf{C}_{x}\mathbf{A}^{T}$$

A special case of this is the <u>sum of jointly Gaussian RVs</u>... which can be handled using $A = \begin{bmatrix} 1 & 1 & 1 & ... & 1 \end{bmatrix}$

Moments of Gaussian RVs

Let X be zero mean Gaussian with variance σ^2

Then the moments $E\{X^k\}$ are as follows:

$$E\{X^k\} = \begin{cases} 1 \cdot 3 \cdots (k-1)\sigma^k, & k \text{ even} \\ 0, & k \text{ odd} \end{cases}$$

Let $X_1 X_2 X_3 X_4$ be any four jointly Gaussian random variables with zero mean Then...

$$E\{X_1X_2X_3X_4\} = E\{X_1X_2\}E\{X_3X_4\} + E\{X_1X_3\}E\{X_2X_4\} + E\{X_1X_4\}E\{X_2X_3\}$$

Note that this can be applied to find $E\{X^2Y^2\}$ if X and Y are jointly Gaussian

Chi-Squared Distribution

Let $X_1 X_2 ... X_N$ be a set of zero-mean independent jointly Gaussian random variables each with unit variance.

Then the RV $Y = X_1^2 + X_2^2 + ... + X_N^2$ is called a chi-squared (χ^2) RV of N degrees of freedom and has PDF given by

$$p(y) = \begin{cases} \frac{1}{2^{N/2} \Gamma(N/2)} y^{(N/2)-1} e^{-y/2}, & y \ge 0\\ 0, & y < 0 \end{cases}$$

For this RV we have that:

$$E\{Y\} = N$$
 and $var\{Y\} = 2N$