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Parametric Methods

• Autoregressive (AR)
• Moving Average (MA)
• Autoregressive - Moving Average (ARMA)
LO-2.5, P-13.3 to 13.4 (skip 13.4.3 – 13.4.5)
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Time Series Models
“Time Series” = “DT Random Signal”
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Motivation for Time Series Models
Recall the result we had that related output PSD to input PSD for a 
linear, time-invariant system:

h[n]ε[n] x[n]

Input RP
WSS w/ Sε(ω) LTI System 

Impulse Response h(t)
Frequency Response H(ω) = F{h(t)}

Output RP
WSS w/ Sx(ω)

)()()( 2 ωωω εSHSx =

If the input ε[n] is white with power σ2 then: 22)()( σωω HSx =

Then… Shape of output PSD is completely set by H(ω)!!!

Signal 
Being 

Modeled
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Time Series Models (Parametric Models)
Thus, under this model… knowing the LTI system’s transfer 
function (or frequency response) tells everything about the PSD.

The transfer function of an LTI system is completely determined 
by a set of parameters {bk} and {ak}:

If (…if, if , if!!!) we can assure ourselves that the random 
processes we are to process can be modeled as the output of a LTI 
system driven by white noise, then…. 

“Estimating Parameters” = “Estimating PSD”
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Note: We’ll Limit Discussion to Real-Valued Processes
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Parametric PSD Models
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The most general parametric PSD model is then:
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Model Parameters

The output of the LTI system gives a time-domain model for the 
process:
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There are three special cases that are considered for these models:
• Autoregressive (AR)
• Moving Average (MA)
• Autoregressive Moving Average (ARMA)
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Autoregressive (AR) PSD Models
If the LTI system’s model is constrained to have only poles, then:
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Output depends 
“regressively” on itself

Order of the model is p: called AR(p) model
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TF has only Poles 

Poles Give Rise to 
PSD Spikes 

Examples: LO Fig. 2.11 & Fig. 2.12
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Moving Average (MA) PSD Models
If the LTI system’s model is constrained to have only zeros, then:
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Output is an “average” of 
values inside a moving window

Order of the model is q: called MA(q) model
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PSD Nulls 

Examples: LO Fig. 2.13 & Fig. 2.14
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Autoregressive Moving Average (ARMA)
If the LTI system’s model is allowed to have Poles & Zeros, then:

∑

∑

=

−

=

−

+

+

== p

k

k
k

q

k

k
k

za

zb

zA
zBzH

1

1

1

1

)(
)()(

Order of the model is p,q : called ARMA(p,q) model

Poles & Zeros 
Give Rise to PSD 
Spikes & Nulls
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ACF Model of a Process
So far we’ve seen relationships between:

• PSD Model
• Time-Domain Model

These models impart a corresponding model to the ACF:
Let the process obey an ARMA(p,q) model
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To get ACF: multiply both sides of this by x[n-k] & take E{}:
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ACF Model of a Process (cont.)
To evaluate this – write x[n] as output of filter with input ε[n]:
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ACF Model of a Process (cont.)
Using this result gives the Yule-Walker Equations for ARMA:

(ARMA)

These equations are the key to estimating the model parameters!!!

We now look at simplifications of these for the AR & MA cases.



12/21

ACF Model for an AR Process

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥−−

=+−−

=

∑

∑

=

=

1][

0][

][

1

2

1

klkra

klkra

kr
p

l
xl

p

l
xl

x

σ

Yule-Walker Equations (AR)

Specializing to the AR case, we set q = 0 and get:
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ACF Model for an AR Process (cont.)
If we look at k = 0, 1, … p for these AR Yule-Walker equations, 
we get p+1 simultaneous equations that can be solved for the 
p+1 model parameters of {ai}i=1,…,p and σ2:
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If we know the p×p AC 
Matrix, then we can 
solve these equations for 
the model parameters!!!

Yule-Walker Equations (AR)
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ACF Model for an MA Process
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Specializing to the MA case, we set p = 0 and get:

But… for the MA case the system is a FIR filter and we have
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Yule-Walker Equations (MA)



15/21

Parametric PSD Estimation
As mentioned above, the idea here is to find a good estimate of the 

model parameters and then use those to get an estimate of the 
PSD.  The basic idea holds regardless if it is ARMA, AR, or 
MA.

However, the derivation of the parameter estimates is quite hard
for the ARMA and MA cases.  So… we consider only the AR 
case – but even there we rely on intuition to some degree.

There has been a HUGE amount of research on how to estimate the 
AR model parameters.  EE522 discusses this to some extent; here 
we simply state a few particular methods.
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Parametric PSD Estimation (cont.)
Here is the general AR method: Given data {x[n], 0 ≤ n ≤ N-1}

1.  Estimate the p×p AC Matrix from the data:

2. Solve the AR Yule-Walker Equations for the AR Model

}0],[ˆ{}10],[{ pkkrNnnx

3.  Compute the PSD estimate from the model 
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Parametric PSD Estimation – AR Case (cont.)

∑
−−

=
≤≤+=

kN

i
x pkkixix

N
kr

1

0
0],[][1][ˆ

“Autocorrelation” Method
Estimate the ACF using:
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Solve Using:

Two common methods (but there are many others):
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Least Squares Method & Linear Prediction 
There is another method that is often used that comes at the 
problem from a little different direction.

Recall: The above idea was based on the Yule-Walker equations, 
which are in terms of the ACF (which is unknown in practice!!)

Thus we need to estimate the ACF to use this view

Least Squares provides a different way to estimate the AR 
parameters.

Recall: The output of an AR model is given by 
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LS Method & Linear Prediction (cont.) 
If we re-arrange this output equation we get:
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There are lots of applications where linear prediction is used:
• Data Compression • Target Tracking
• Noise Cancellation • Etc.

Goal: Find a set of prediction coefficients {ak} such that the 
sum of squares of the prediction error is minimized

Least Squares!!!
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LS Method & Linear Prediction (cont.) 
To choose the {ak} to minimize V we differentiate and set = 0
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LS Method & Linear Prediction (cont.) 
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So to solve the LS Linear Prediction problem we need:

Define: 
1. Matrix Γ with elements λlk
2. Vector λ with elements λl0
3. Vector a with elements a1,…, ap
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