Non-Classical
Non-Parametric Methods

 Minimum Variance Method (MVSE)
LO-2.4.3, H-8.3
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Recall: Family of Non-Parametric Methods

---------------------------------------
L4
»

“Classical” Methods
(FT-Based Methods)

O

Periodogram-Based ACF-Est.-Based

* Periodogram  Blackman-Tukey

* Modified ;
e Bartlett Tttt emennsnnrnrnennsrnrnrnnrnnsnnnenns®® ’
* Welch
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Minimum Variance Method
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Minimum Variance Method — Terminoloqy

The Minimum Variance Spectral Estimation (MVSE) method has
two other names:

e Maximum Likelihood Method (MLM)

e Capon’s Method

Note: The names MVSE and MLM are actually misnomers — this
method:

e does NOT minimize the variance of the estimate
e does NOT maximize the “likelihood function”
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Recall: Filter Bank View of Periodogram

See Fig. 8.4 & 8.3 of Hayes
The problem is leakage from nearby frequencies:

True PSD S, (®)

/

\ - -’ \ - -’

Filter Sidelobes Leak
“Out-of-Band” Power
Into Estimate at o,

H©IF

®
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Goal for MVVSE Method

Figure out a way to design each filter bank channel response to
minimize the leakage — this is thus a data-dependent design.
Collect Data =» “Design” Filters for Filter Bank

Want to “design” filters to minimize the sidelobes while keeping
the mainlobe height at 1:

“Design” Goals:

1. Want Hi(w;) =1 ...to let through the desired S,(w;)
2. Minimize total output power in the filter:

1 T
P =Z_[T|Hi<w)|zsx(w)dw

This Is equivalent to minimizing the sidelobe contribution
even though the integral includes the desired w;
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LO-2.4.3

Get Useable Form for p o
The frequency response of filter hi[n] Is: H; (o) = Zh [n]e~ 1"

n=0
Using this in the expression for p gives:
~ o _ p = Filter Length
p-1 . p-1 . p<N

pi = > hi[11e) |s, (w)dew

S
—
=
r—
—
| N
CDl
S
S

k=0 1L 1=0 |
p—1p-1 . 4 .
- hi [k]h: [|]2i j S, (w)el?(Kdgy
k=01=0 d Now... Recognize as
—r [1-k] vector-matrix-vector
0-1p-1 multiplication
= hi [KIhy [ [1 = K]
k=01=0 /RX = Autocorrelation Matrix:|
=hR,h,

o

“H” superscript = Hermitian Transpose
= Transpose & Conjugate 7117




Autocorrelation Matrix

The AC matrix is the pxp matrix whose 1,j element is r, [} — iJ.
Example for p = 4:

o

o

- Ix [—Z]FX [_1]‘
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Not in Book

Now Minimize the Matrix Form:
N y
For each I, minimize this: o =h"R,h;

Under this constraint;
Hi(a)i)zl — hiHei=1

where e =[1 el“ el2@ ... ej(p_l)w‘]T

Most common way to do constrained optimization is using the
Lagrange Multiplier method:

J=h"R,h, —/1(hiHei —1)

Lagrange says: Choose h; and A to minimize J
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Lagrange Minimization:
To find the h; and A that minimizes J, in general set:

0J 0J
—~ =0" & —==0
oh, oA
But often an easier way is to do these two steps:
1. Do the partial w.r.t. h; and solve for h;

2. Then choose A to ensure solution meets the constraint

So... we need: OJ OT

oh.

[ —

What Is a partial derivative
w.r.t. a vector???!111
It is called the Gradient.
(Comes from Multi-D Calculus) ),




Aside: Gradient

If g(x) Is a scalar-valued function of a real-valued vector X,
Then the gradient of g(x) is defined as:

og(x) _|ag(x) ag(x)  09(x)
OX 8X1 8X2 8XN

Gradient here is nothing more than: the vector whose elements
are the partials w.r.t. each element of x.

Vy(9) =

(Note: There are similar definitions when g(x) is vector-valued.)

N
“Example” g(x)=c'x= D CiXj =CyXg +CoXg + -+ CpXy
i=1

ag(x) _[dg(x) ag(x)  ag(x)
OX i 8X1 §X2 GXN
T
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Lagrange Minimization (cont.):

Step #1: For our scalar-valued function J we get:

set

_ OT/ “Optimal” — the h
needed to get OT P

ﬂ: hiHoRx _/?“eil_I
oh, "%

Subscript “0”
indicates

o

using standard results for gradients of common functions of vectors

Now solve this for h; hil_,lo =

hitei=1 = (zeiHR;l)eizl = A=

/lve,l?x/[ But...Depends on A!! ]

Step #2: Choose A to make this solution satisfy constraint:

.... Now use this A in optimal h;

hip =

el Ry

el Ry e

)

1

el R e

h.

1,0

R, e

- _Hp-1
ei Rx ei 12/17




MVSE — Filter Solution

el Ry

hip =

el Ry e

where e; =[1 el®
This gives the optimal filter for estimating the power at the

frequency o

)

LO-2.4.3

h.

1,0

R, e

el Ry e

ejza)l

ei(p-Do

In principle — we need to solve this for each frequency w; at

which we wish to get a PSD estimate.

Then we would compute the output power at each filter and
that would be our PSD estimate.

BUT.... we have an equation for the output power: p;
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MVSE — Power Estimate in Each Channel

The estimate of the power at ; Is nothing more than the
minimized value of p;:

H
Pio = hi,oRxhi,o
H o1 Ho-1 1" H o1 ]
_| & Ry |5 | &Ry _| &R |5 | _RxE
el R e; ' el R e; el' R e ' el R e;
el Ry R,R'ei el Ry e

ElRIeNEMRIe)  (€'RYe) (e Ryle))

Thus, the estimated power at frequency ; Is:

~ 1
oy (w;) =
T el'Re
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MVSE — PSD Estimate in Each Channel

To get the power spectral density we need to divide by the
filter’s bandwidth — for a filter of length p the BW is
approximately 1/p so our MVSE PSD estimate Is:

But... this estimate requires the ACF in matrix form, which
If we had it we’d probably know what the PSD is, too!!!

So... we need an estimate of the ACF in matrix form....
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MVSE — Estimating The AC Matrix

0] K] i [p—1]'
f:x [_1] i:x [O]
' r[1]
i r[-p+1] n[-1 r[0] |
3 P
Smv (@) = —=

N—{k|-1
fIkl=3 > x[n+kIx [m]
n=0

N

/

N

Note: The px p
AC Matrix
MUST
be Estimated

Choose p < N so that high-order ACF lag
estimates are reasonably accurate.

Note: There are other ways to estimate the AC Matrix!!!
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MVSE — Comments

Implementation of MV SE:

Generally done directly on the data matrix X for efficiency
(see more advanced books)

Even with that, 1t 1Is more complex than classical methods

Performance of MVSE:
Provides better resolution than classical methods
Mostly used when spiky spectra are expected
(Although, the AR methods are usually better in that case)

If needed resolution can be met with classical — use them.
If not — consider either MV SE or Parametric Methods.
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