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Non-Classical 
Non-Parametric Methods

• Minimum Variance Method (MVSE)
LO-2.4.3, H-8.3
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Recall: Family of Non-Parametric Methods

“Classical” Methods
(FT-Based Methods)

“Non-Classical” Methods
(Non-FT-Based Methods)

Periodogram-Based
• Periodogram
• Modified
• Bartlett
• Welch

ACF-Est.-Based
• Blackman-Tukey

Filter Bank View
• Minimum Variance



3/17

Minimum Variance Method
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Minimum Variance Method – Terminology
The Minimum Variance Spectral Estimation (MVSE) method has 
two other names:

• Maximum Likelihood Method (MLM)
• Capon’s Method

Note: The names MVSE and MLM are actually misnomers – this 
method: 

• does NOT minimize the variance of the estimate
• does NOT maximize the “likelihood function”
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Recall: Filter Bank View of Periodogram
See Fig. 8.4 & 8.3 of Hayes
The problem is leakage from nearby frequencies:

Filter Sidelobes Leak
“Out-of-Band” Power

into Estimate at ωi

True PSD Sx(ω)

|Hi(ω)|2

ω
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Goal for MVSE Method
Figure out a way to design each filter bank channel response to 

minimize the leakage – this is thus a data-dependent design.
Collect Data “Design” Filters for Filter Bank

Want to “design” filters to minimize the sidelobes while keeping 
the mainlobe height at 1:

“Design” Goals: 
1. Want Hi(ωi) = 1  …to let through the desired Sx(ωi)
2. Minimize total output power in the filter:
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This is equivalent to minimizing the sidelobe contribution 
even though the integral includes the desired ωi
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Get Useable Form for ρ
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ii enhH ωωThe frequency response of filter hi[n] is:

Using this in the expression for ρ gives:

Now… Recognize as 
vector-matrix-vector 

multiplication

Rx = Autocorrelation Matrix

“H” superscript   = Hermitian Transpose
= Transpose & Conjugate

p = Filter Length
p < N

LO-2.4.3
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Autocorrelation Matrix

The AC matrix is the p×p matrix whose i,j element is rx[j – i].
Example for p = 4:
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Now Minimize the Matrix Form:
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For each i, minimize this:

Most common way to do constrained optimization is using the 
Lagrange Multiplier method:
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Lagrange says: Choose hi and λ to minimize J

Not in Book
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Lagrange Minimization:
To find the hi and λ that minimizes J, in general set:
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But often an easier way is to do these two steps: 

1. Do the partial w.r.t. hi and solve for hi
2. Then choose λ to ensure solution meets the constraint

So… we need:

What is a partial derivative 
w.r.t. a vector???!!! 

It is called the Gradient.
(Comes from Multi-D Calculus)
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Aside: Gradient
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If g(x) is a scalar-valued function of a real-valued vector x,  
Then the gradient of g(x) is defined as:

Gradient here is nothing more than: the vector whose elements 
are the partials w.r.t. each element of x.

(Note: There are similar definitions when g(x) is vector-valued.)

[ ]
T

N

N

Nn

N

i
ii

T

ccc
x

g
x

g
x

gg

xcxcxcxcg

c

xxx
x
x

xcx

=

=

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=
∂

∂

+++=== ∑
=

21

21

2211
1

)()()()(

)(“Example”



12/17

Lagrange Minimization (cont.):
Step #1: For our scalar-valued function J we get:

using standard results for gradients of common functions of vectors

Now solve this for hi,o:
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MVSE – Filter Solution
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This gives the optimal filter for estimating the power at the 
frequency ωi

In principle – we need to solve this for each frequency ωi at 
which we wish to get a PSD estimate.

Then we would compute the output power at each filter and 
that would be our PSD estimate.

BUT…. we have an equation for the output power: ρi

LO-2.4.3
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The estimate of the power at ωi is nothing more than the 
minimized value of ρi:

MVSE – Power Estimate in Each Channel
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Thus, the estimated power at frequency ωi is: 
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To get the power spectral density we need to divide by the 
filter’s bandwidth – for a filter of length p the BW is 
approximately 1/p so our MVSE PSD estimate is:

MVSE – PSD Estimate in Each Channel
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But… this estimate requires the ACF in matrix form, which 
if we had it we’d probably know what the PSD is, too!!!

So… we need an estimate of the ACF in matrix form….
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MVSE – Estimating The AC Matrix
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Note: The p× p 
AC Matrix 

MUST
be Estimated

Choose p < N so that high-order ACF lag 
estimates are reasonably accurate.

Note: There are other ways to estimate the AC Matrix!!!
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MVSE – Comments
Implementation of MVSE: 

Generally done directly on the data matrix X for efficiency 
(see more advanced books)

Even with that, it is more complex than classical methods

Performance of MVSE:
Provides better resolution than classical methods
Mostly used when spiky spectra are expected 
(Although, the AR methods are usually better in that case)

If needed resolution can be met with classical – use them.
If not – consider either MVSE or Parametric Methods.
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