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Spectrum Estimation

Lim & Oppenheim: Ch. 2
Hayes: Ch. 8 

Proakis & Manolakis Ch. 14
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Introduction & Issues
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Recall Definition of PSD
Given a WSS random process x[k] the PSD is defined by:

<< Warning: Ch. 2 of L&O uses “ω” for the DT frequency whereas Porat uses 
“Ω”.  Also, Hayes expresses DTFTs (and therefore PSDs) in terms of ejω; it 
means the same thing – it is just a matter of notation.  Hayes’ notation is 
more precise when you consider going from the ZT H(z) to the frequency 
response H(ejω) = H(z)|z=ejω >>

Recall the Wiener-Khinchine Theorem:
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Problem of PSD Estimation
1. Both ( ) & ( ) involve ensemble averaging BUT in 

practice we get only one realization from the ensemble
2. Both ( ) & ( ) use a Fourier transform of infinite length

BUT in practice we get only a finite number of samples.
(Note: a finite # of samples allows only a finite # of ACF values)

( ) & ( ) motivate two approaches to PSD estimation:
1. Compute the DFT of the signal and then do some form of 

averaging
2. Compute and estimate of the ACF using some form of 

averaging and then compute the DFT

Both of these approaches are called “Classical” Nonparametric 
Approaches – they strive to do the best with the available data 
w/o making any assumptions other than that the underlying 
process is WSS.

LO-2.2
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The “Modern” Parametric Approach
There is a so-called “Modern” approach to PSD estimation that 

tries to deal with the issue of having only a finite # of samples:

Assume a recursive model for the ACF 
Allows recursive extension of ACF using the known 
values

Example Model

We’ll see that for this approach all we’ll need to do is estimate the 
model parameters {ai} and then use them to get an estimate of 
the PSD ….   Thus, this approach is called “Parametric”

1],[]2[]1[][ 21 +≥−−−−−−−= pkpkrakrakrakr xpxxx

LO-2.2
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Review of Statistics
Before we can really address the issue of estimating a PSD we 
need to review a few issues from statistics.

What are we doing in PSD Estimation?
Given: Finite # of samples from one realization
Get: Something that “resembles” the PSD of the process
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PSD 

Estimation

Each 
Signal Realization
gives a different
PSD Estimate 
Realization

Each PSD Estimate is a Realization of a Random Process

LO-2.3
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Review of Statistics (Cont.)
Thus… must view PSD Estimate as a Random Process

Need to characterize its mean and variance:
• Want Mean of PSD Estimate = true PSD
• Want Var of PSD Estimate= “small”

To make things easier to discuss, we use a slightly different 
estimation problem to illustrate the ideas… Consider the process

][][ nwAnx +=
Constant AWGN, zero-mean, σ2

Given a finite set of data samples x[0],… x[N-1]…. estimate A.
Reasonable estimate is:

For each realization of x[n] you get a different value for the 
estimate of A.
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Review of Statistics (Cont.)
We want two things for the estimate:
1. We want our estimate to be “correct on average”: AAE =}ˆ{

If this is true, we say the estimate is unbiased.  
(Ch. 2 of L&O shows that the sample mean is unbiased)

If it is not true then we say the estimate is biased.
If it is not true, but 

we say that the estimate is asymptotically unbiased.

2. We want small fluctuations from estimate to estimate:

AAE
N

=
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smallA =}ˆvar{

Also, we’d like
(Ch. 2 of L&O shows that this is true for the sample mean)

∞→→ NasA 0}ˆvar{
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Review of Statistics (Cont.)
Can capture both mean and variance of an estimate by using 
Mean-Square-Error (MSE):
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Usual goal of Estimation: Minimize MSE
• Minimize Bias
• Minimize Variance

For PSD Estimation want:
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Non-Parametric Spectral Estimation
H-8.2, LO-2.4

• Periodogram
• Windowed Periodogram
• Averaged Periodogram
• Windowed & Averaged Periodogram
• Blackman-Tukey Method
• Minimum Variance Method
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Family of Non-Parametric Methods

“Classical” Methods
(FT-Based Methods)

“Non-Classical” Methods
(Non-FT-Based Methods)

Periodogram-Based
• Periodogram
• Modified
• Bartlett
• Welch

ACF-Est.-Based
• Blackman-Tukey

Filter Bank View
• Minimum Variance
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Family of “Classical” Methods

Periodogram

Modified
Periodogram

(Use Window)

Bartlett’s Method
(Average

Periodograms)

Welch’s Method
(Average

Windowed Periodograms)

Blackman-Tukey
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The Periodogram
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Periodogram - Definition

In practice we have one set of finite-duration data.
Two Practical Problems:
1. Can’t do the expected value
2. Can’t do the limit

The periodogram is a method that ignores them both!!!
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In practice we compute this using the DFT (possibly using zero-
padding) – which computes the DTFT at discrete frequency points 
(“DFT Bins”)

H-8.2.1
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Periodogram - Computation
In practice we compute this using the DFT(FFT) (usually using 
zero-padding) – which computes the DTFT at discrete frequency 
points (“DFT Bins”):
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Periodogram – Viewed as Filter Bank
Although we ALWAYS implement the periodogram using the 
DFT, it is helpful to interpret it as a filter bank.

Define the impulse response of an FIR filter as:
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Periodogram – Viewed as Filter Bank (cont.)
Now the output of the ith filter is:
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Now one estimate of the power at the output of this filter is:
for any value of n.  Choosing n = N-1 gives the periodogram:
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Periodogram – Performance
For a good PSD estimate we’d like to have (at the very least):
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Does the Periodogram have these characteristics????

Let’s Find Out!!!

“Asymp. UnBiased”

Actually, we would 
prefer it to be unbiased 

even for finite N

H-8.2.2
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Periodogram – Performance: Bias
Property #1: The Periodogram is Biased.
Property #2: But… The Periodogram is Asymptotically Unbiased.

Proof: Taking the EV of the periodogram gives
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Periodogram – Performance: Bias (cont.)
Proof (cont.): This shows that the Periodogram is Biased.  
The bias comes from the smoothing effect of Bartlett window.
(Smoothing also reduces the resolution of sharp spectral features).
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Thus, the Periodogram is Asymptotically Unbiased.

But… as N→∞ the Bartlett Kernel tends to a delta function in 
the frequency domain, or – equivalently – in the TD the 
Bartlett window tends 1:
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Periodogram – Performance: Variance
Property #3: The variance of the Periodogram does NOT (in 
general) tend to zero as N→∞.

Proof: Difficult to prove for general case… so this is 
proved under the assumption: complex-valued white Gaussian 
process w/ zero mean and variance σ2.  
Under this assumption, the true PSD and ACF are:

][][&,)( 22 kkrS x δσωσω =∀=

The variance of the periodogram is what we want to analyze 
and is given by:
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Look at this term first: “Bias Term”
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Periodogram – Performance: Variance (cont.)
Proof (cont.): So from our previous analysis of bias (and our 
assumptions on the process) we know that the second term is:
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(Aside: under our assumptions the periodogram is unbiased!)
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So the variance of periodogram is now…

Now.. Look at This Term
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Periodogram – Performance: Variance (cont.)
Proof (cont.): As a means of looking at this first term we 
consider:
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Periodogram – Performance: Variance (cont.)
Proof (cont.): Now what is this Expected Value????  Well…
since we assumed the process is Gaussian we can use a 
standard result for complex JOINTLY Gaussian RVs:
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Now… using this result together with the assumption of whiteness:
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Now… using this result in ( ) gives:
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Periodogram – Performance: Variance (cont.)
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Periodogram – Performance: Variance (cont.)
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Proof (cont.):

Now the FT of the Bartlett window is:
So using it in the above result gives:
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Periodogram – Performance: Variance (cont.)
Proof (cont.): To find the first term in the variance expression 
of interest ( ) we must set ω = ω1= ω2 in the above expression
to get:
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…which DOES NOT go to zero as N→∞
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Periodogram – Performance: Covariance
Property #4: Increasing N leads to rapidly fluctuating 
periodograms (even where the true PSD is smooth).

“Proof”: Use the previous results, the covariance of the 
periodogram is given by
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Covariance is a measure of how correlated two RVs are.  Thus, 
cov(X,Y)=0 indicates that there is a high probability that X & 
Y will be very unalike.
Now, the equation above indicates there are (ω1,ω2) pairs for 
which the cov of the periodogram is zero.

Periodogram Fluctuates Rapidly from freq-to-freq



29/30

Periodogram – Performance for Non-White RP

{ } )()(ˆvar 2 ωω xPER SS ≈

The above analysis was done for white noise.  Hayes p. 407 
gives an argument that shows similar results for the non-white 
case:
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Periodogram – Examples

1. Bias – Effect of Window
Periodogram of Sinusoid: See Hayes Fig. 8.5

2. Variance and Covariance
Periodogram of White Noise: See L&O Fig. 2.4

Periodogram of Sinusoid: See Hayes Fig. 8.6

3. Resolution – Effect of Window
Periodogram of 2 Sinusoids: See Hayes Fig. 8.8
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