Spectrum Estimation

Lim & Oppenheim: Ch. 2
Hayes: Ch. 8
Proakis & Manolakis Ch. 14
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Introduction & Issues
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Recall Definition of PSD L0O-2.1

Given a WSS random process X

-

Sx(@)= lim Eoyiy

L

k] the PSD is defined by:
.

M |
> x[nle™ 1| ¢ (%)
n=—M

J

<< Warning: Ch. 2 of L&O uses “w” for the DT frequency whereas Porat uses
“Q”. Also, Hayes expresses DTFTs (and therefore PSDs) in terms of el®; it

means the same thing — it is just a

matter of notation. Hayes’ notation is

more precise when you consider going from the ZT H(z) to the frequency

response H(el®) = H(2)|,zqjo >>

Recall the Wiener-Khinchine Theorem:

Sy (@)

ry[k]= E{x[n]x [n +k]}
\ ACF of RP x[n] / \

= F{r [K]}

= i Iy [k]e_ja)k
k:—oo)

(k%)
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Problem of PSD Estimation LO-2.2

1. Both (%) & (% %) involve ensemble averaging BUT in
practice we get only one realization from the ensemble
2. Both (%) & (% %) use a Fourier transform of infinite length
BUT in practice we get only a finite number of samples.
(Note: a finite # of samples allows only a finite # of ACF values)

(%) & (% *) motivate two approaches to PSD estimation:
1. Compute the DFT of the signal and then do some form of
averaging
2. Compute and estimate of the ACF using some form of
averaging and then compute the DFT

Both of these approaches are called “Classical” Nonparametric
Approaches — they strive to do the best with the available data
w/0 making any assumptions other than that the underlying
process Is WSS. 430



The “Modern” Parametric Approach  [Lo-22

There is a so-called “Modern” approach to PSD estimation that
tries to deal with the issue of having only a finite # of samples:

=>» Assume a recursive model for the ACF
=>» Allows recursive extension of ACF using the known
values
Example Model

r[k]=—-agry[k =1]—asr [k =2] —---—apr [k —p], k=p+1

We’ll see that for this approach all we’ll need to do is estimate the
model parameters {a;} and then use them to get an estimate of
the PSD .... Thus, this approach is called “Parametric”
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Review of Statistics L0-2.3

Before we can really address the issue of estimating a PSD we
need to review a few issues from statistics.

What are we doing in PSD Estimation?
Given: Finite # of samples from one realization
Get: Something that “resembles” the PSD of the process

X(t) S (@) 4 A
i A
t Estimation >0 -
ac
PSD Signal Realization
WSVM_ IIﬂ ,\/J“L\,\ , > gives a different
t Estimation ©

PSD Estimate

4 Realization
PSD

Estimation 0
t J

‘ Each PSD Estimate i1s a Realization of a Random Process 6120




Review of Statistics (Cont.)
Thus... must view PSD Estimate as a Random Process

Need to characterize its mean and variance:
e \Want Mean of PSD Estimate = true PSD
e Want Var of PSD Estimate= “small”

To make things easier to discuss, we use a slightly different
estimation problem to illustrate the ideas... Consider the process
X[n]= A+ w[n]
Constant \AWGN, Zero-mean, o2

Given a finite set of data samples x[0],... X[N-1].... estimate A.

Reasonable estimate is: . 1 N
A= N > x[n] “sample mean”
n=0

For each realization of x[n] you get a different value for the
estimate of A. 2130



Review of Statistics (Cont.)

We want two things for the estimate: —
1. We want our estimate to be “correct on average”: |E{A}= A

If this Is true, we say the estimate iIs unbiased.

(Ch. 2 of L&O shows that the sample mean is unbiased)
If it IS not true then we say the estimate Is biased.
If it IS not true, but lim E{A}z A

N —o0
we say that the estimate 1s asymptotically unbiased.

2. We want small fluctuations from estimate to estimate:
var{A} = small

Also, we’d like var{A}—>0 as N — o
(Ch. 2 of L&O shows that this is true for the sample mean)
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Review of Statistics (Cont.)

Can capture both mean and variance of an estimate by using
Mean-Square-Error (MSE):

MSE{A} = var{A}+ B{A}
where B{A}= A— E{A}

Usual goal of Estimation: Minimize MSE
 Minimize Bias
 Minimize Variance

For PSD Estimation want:;

E{Sy (0)} =S4 ()
var{§ « (@)} =small
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Non-Parametric Spectral Estimation

H-8

2,L0-2.4

 Periodogram

* Windowed
» Averaged

Periodogram
Periodogram

» \Windoweo

& Averaged Periodogram

e Blackman-Tukey Method
 Minimum Variance Method
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Family of Non-Parametric Methods

“Classical” Methods
(FT-Based Methods)

O

Periodogram-Based ACF-Est.-Based

* Periodogram  Blackman-Tukey
* Modified

* Bartlett

* Welch
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Family of “Classical”” Methods

M G o0 |
Sx(@) de{ﬁﬂ Zl:djl([n]e_lan } SX (0)) _ Z r, [k]e— Jak
"~ k=—o0

Periodogram

N

Modified Bartlett’s Method
Periodogram (Average
(Use Window) Periodograms)

~._

Welch’s Method
(Average
Windowed Periodograms)
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The Periodogram
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Periodogram - Definition

Based on:

In practice we have one set of finite-duration data.

S, (@)= lim E{-2

Moso | ZML

Two Practical Problems:
1. Can’t do the expected value
2. Can’t do the limit

The periodogram is a method that ignores them both!!!

M .
D X[nle
n=—M

>

H-8.2.1

Sper(®) =

N-1 _
D x[nle "
n=0

2

In practice we compute this using the DFT (possibly using zero-

padding) — which computes the DTFT at discrete frequency points

(“DFT Bins”)

14/30



Periodogram - Computation

In practice we compute this using the DFT(FFT) (usually using
zero-padding) — which computes the DTFT at discrete frequency

points (“DFT Bins”):

N-1 |
Sperlk] =] > xfn]e 2™/ o =27KIN,
n=0

N = number of signal samples
N, = DFT size — after zero-padding

Signal Samples
l

X[0]
Zero-Pad DFT A
) : "l N, FFT) [ L perlK]

1/N
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Periodogram — Viewed as Filter Bank

Although we ALWAY'S implement the periodogram using the
DFT, it is helpful to interpret it as a filter bank.
Define the impulse response of an FIR filter as:

-

iej'"“)‘, 0<n<N
hi[n]=4 N

|0,  otherwise

Frequency Response of this filter is:

N -1 _
H(w)= > hj[n]le™!"®
n=0

— e_jn(a)—a)i)(N—l)/Z Sin[N (C() — C()I)/Z]
N sin[(w — w;) /2]

<< See Figure 8.3 in Hayes>>
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Periodogram — Viewed as

Filter Bank (cont.)

Now the output of the it filter is:

yilnl= x[n]*hi[n]= > x[kIhi[n k]

k=n—N+1

1 < -
_* Z x[k]e j(n-k) o,

k=n—N+1

Now one estimate of the power at the output of this filter is: | y;[n]|°
for any value of n. Choosing n = N-1 gives the periodogram:

2

1 N -1 ]
N k=0

lvi[N —1]|2 =

2

1 N-1 _
=3 x[kJe
N k=0

<< See Figure 8.4

2

iN-Day [2| L 5y 1 koo
e = 3 x[K]e
» IN o

-1

= NSpgr (@)

In Hayes>> 730



Periodogram — Performance H-8.2.2
For a good PSD estimate we’d like to have (at the very least):

Jim E{S, (®)}=S,(w)  “Asymp. UnBiased”
—>00
lim var{S, (w)}=0

N —o0
Actually, we would
prefer it to be unbiased

even for finite N

Does the Periodogram have these characteristics????

Let’s Find Out!!!
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Periodogram — Performance: Bias

Property #1: The Periodogram Is Biased.
Property #2: But... The Periodogram is Asymptotically Unbiased.
Proof: Taking the EV of the periodogram gives

2}
[N-1 N
=L1E, Zx[n]e"‘“Zl{ D x [m]e”“m}

N-IN-1

_ 1 ZOZOr - [n—m]e~ (- > “Sum On Diagonals”
n=Um= -

N_1 K . r,[n-m] is (_:onstant on
= 2 |1 ke each diagonal

k=—(N-1)

- N-1 .
E{SPER(C())}Z ﬁE< ZX[n]e_J(m
n=0

k
, Welkl TT—===——_ Rartlett (Triangle) Window

circ
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Periodogram — Performance: Bias (cont.)

Proof (cont.): This shows that the Periodogram is Biased.
The bias comes from the smoothing effect of Bartlett window.
(Smoothing also reduces the resolution of sharp spectral features).

Erer(@)]-2=5:(0) * Wg(o)

Circ

But... as N—oo the Bartlett Kernel tends to a delta function in
the frequency domain, or — equivalently — in the TD the
Bartlett window tends 1:

T N K ~jak
lim E{SPER(a))}z lim > [1- Iy [ke™

N —c0 N_)OOk:—(N—l) N
—1
= Y rlkle 1™ =S, (o)

k=—o0

Thus, the Periodogram is Asymptotically Unbiased. 20/30



Periodogram — Performance: VVariance

Property #3: The variance of the Periodogram does NOT (in
general) tend to zero as N—oo.

Proof: Difficult to prove for general case... so this is
proved under the assumption: complex-valued white Gaussian
process w/ zero mean and variance 2.

Under this assumption, the true PSD and ACF are:

S(w)=c°, Vo & r[k]=0c%5[K]

The variance of the periodogram is what we want to analyze
and Is given by:

Var{§PER (w)}Z E {§I:2>ER (@) }_ [E {§PER (“’)}]2

|:Look at this term first; “Bias Term”
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Periodogram — Performance: Variance (cont.)

Proof (cont.): So from our previous analysis of bias (and our
assumptions on the process) we know that the second term is:

H [ H} - “‘*]2

| k=—(N-1)

2

], %D[ K J[ 203 ’“*] “74{(1‘%6]%10

(Aside: under our assumptions the periodogram is unbiased!)

So the variance of periodogram is now...

var{é oER (w)}z E{é 2n (w)}— o (%)

I:Now.. Look at This Term
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Periodogram — Performance: Variance (cont.)

Proof (cont.): As a means of looking at this first term we
consider: T T 7

N1 - 2 2
D x[I]e™ 1
1=0

E{éPER(a)l)éPER (0)2)}: E{| &

N -1 ) N-1 ; -
{ > x[kJe 14K }{ > x[1]e™ ! }
k=0 =0

Using these “call-outs” and manipulating gives:

E{épER (wl)épER (602)} (*)
N —-IN-1IN -IN -1

LSS S S E KT 0] fexp{— (K — 1oy + (M —n)o, T}

2
N K=01=0m=0n=0

1
N

N -1 _
> x[nle™ )"
n=0
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Periodogram — Performance: Variance (cont.)

Proof (cont.): Now what is this Expected Value???? Well...
since we assumed the process is Gaussian we can use a
standard result for complex JOINTLY Gaussian RVs:

E{x[k]x*[l]x[m]x*[n]}z E{x[k]x*[l]}E{x[m]x*[n]}+ E{x[k]x*[n]}E{x[m]x*[l]}

Now... using this result together with the assumption of whiteness:

E IX[1x[KIx[n]x[m]}
= o*[5[k —116[m —n]+ [k —n]s[m—1]]

Now... using this result in (%) gives:
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Periodogram — Performance: Variance (cont.)

E {SPER (@1)Sper (502)}
4 {N —IN—IN-IN-1

33N Sk —116[m —nlexp{—j[wy (k —1) + @, (M —n)]}

|=0k=0n=0m=0
N-IN-IN-IN-1 }

O
_F

+ 33NN STk —nlo[m — 1] exp{- j[wy (k — 1) + @p (M —n)I}

|=0k=0n=0m=0

ST Y Y1 Y Y expt-jlan(k—1) - wp (k— )

4 [N-IN-1 N-IN-1 }
N*liZon=0 1=0k=0

4 [N-IN-1 N-IN-1

= 2 21+ D > exp{-jlley — o) (k- |)]}}

| 1=0n=0 I=0k=0

& mn Diagonals” Trick :l
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Periodogram — Performance: Variance (cont.)
Proof (cont.):

E {épER (a)l)éFjER (@, )}

04

=— N?+N Z { ||J3Xp{—1[(w1 w, K]}
N k=—(N-1) N

wg [k]

sin(Nco/Z)]z

Now the FT of the Bartlett window is: 5{w5[k]}=( Sin(@/2)

So using it in the above result gives:

sin[N(a)l—coz)IZ]jZ]

E{§PER (w1)§PER (a)Z)}: 04[1+( N sin[(ey — ;) /2]
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Periodogram — Performance: Variance (cont.)

Proof (cont.): To find the first term in the variance expression
of interest (%) we must set ® = ®,= o, In the above expression
to get:

E {§F2>ER (a))}= 20
Now using this in the expression for variance (3%) gives

var{§ PER (60)}= E {§ PER (0))}— o

= 204 —04

A

var{é bER (a))}: %

...which DOES NOT go to zero as N—w
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Periodogram — Performance: Covariance

Property #4: Increasing N leads to rapidly fluctuating
periodograms (even where the true PSD is smooth).

“Proof™: Use the previous results, the covariance of the
periodogram is given by

cov{éPER (@1)Sper (wz)}= E{§_pER (@1)Sper (wz)}— E{éPER (wl)}E{SAPER (C’JZ)}

_ ey [SnIN@ -0 12 )| 4
NSin[(C()l—a)z)IZ]

__af sinIN(@; ~ ) /2] ?

7 | Nsin[(o - ®,)12]

Covariance Is a measure of how correlated two RVs are. Thus,
cov(X,Y)=0 indicates that there is a high probability that X &
Y will be very unalike.

Now, the equation above indicates there are (w,,®,) pairs for
which the cov of the periodogram is zero.
=» Periodogram Fluctuates Rapidly from freq-to-freq 4,



Periodogram — Performance for Non-White RP

The above analysis was done for white noise. Hayes p. 407
gives an argument that shows similar results for the non-white
case:

Var{SA PER (60)}z Sy ()

2
5 : [N (@, — ;) /2
E{SPER (@1)Sper (C‘)Z)}z S (@1)Sy (@7) 1+(SI\IIns[in[§21 —Zi/zﬂ

Sin[N (e, —a)z)/Z]jZ

COV{éPER (@1)Sper (a’Z)}z Sx(@1)Sx (wz)( N sin[(@w) — @,)/2]
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Periodogram — Examples

1. Bias — Effect of Window
Periodogram of Sinusoid: See Hayes Fig. 8.5

2. Variance and Covariance
Periodogram of White Noise: See L&O Fig. 2.4

Periodogram of Sinusoid: See Hayes Fig. 8.6

3. Resolution — Effect of Window
Periodogram of 2 Sinusoids: See Hayes Fig. 8.8
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