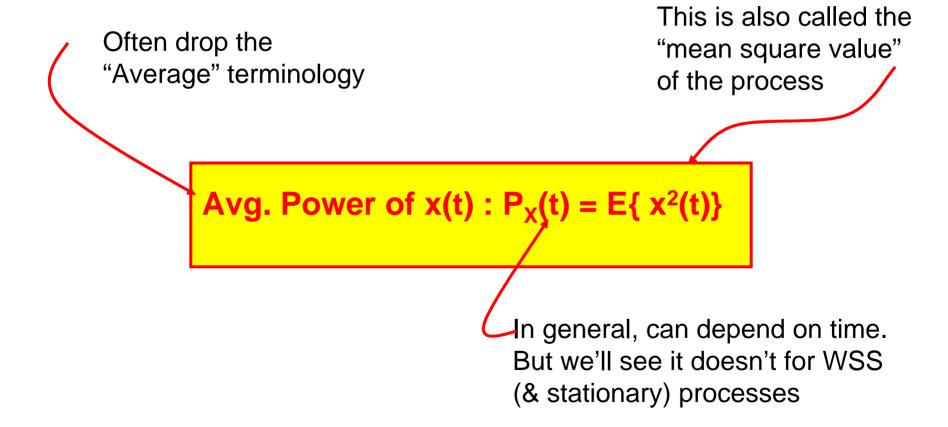
Power of Random Processes

Power of a Random Process

Recall : For <u>deterministic</u> signals... instantaneous power is x²(t)

For a <u>random</u> signal, $x^2(t)$ is a random variable for each time t. Thus there is no single # to associate with "instantaneous power". To get the <u>Expected</u> <u>Instantaneous Power</u> (i.e., on average) we compute the <u>statistical (ensemble) average of $x^2(t)$ </u>:

Power of a Random Process

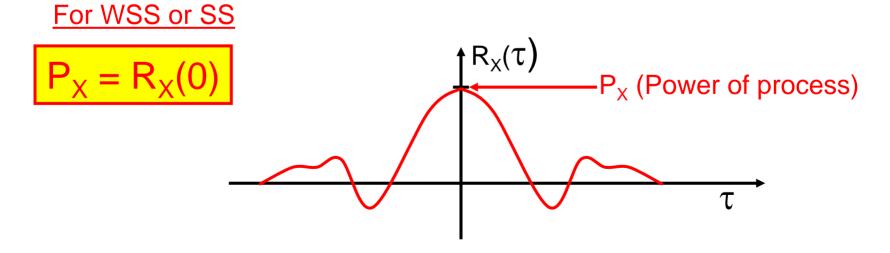


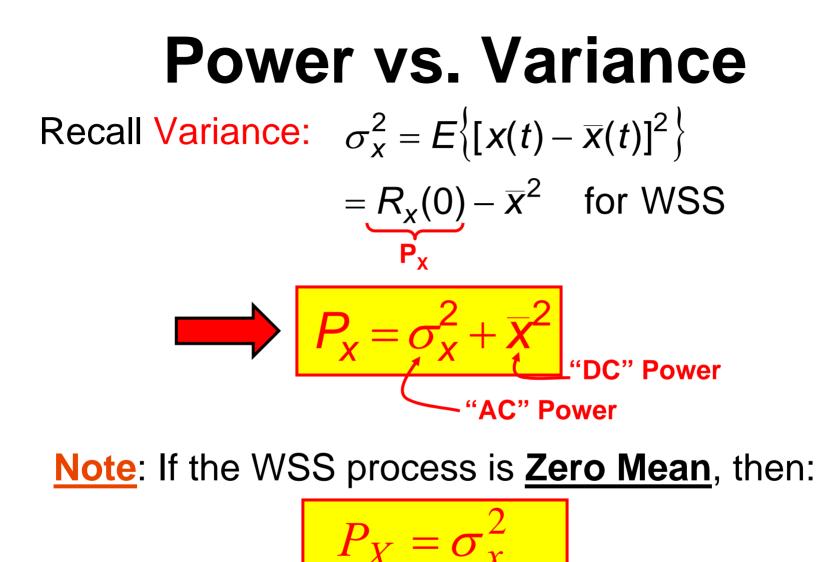
Relationship of Power to ACF

Recall: $R_X(t, t+\tau) = E \{ x(t) x(t+\tau) \}$

Clearly, setting $\tau = 0$ makes this equal to $P_X(t)$ $\Rightarrow P_X(t) = R_X(t, t)$

If the Process is WSS (or SS) $R_X(t,t) = R_X(0)$





Power & Variance are Equal for Zero mean Process

Power Spectral Density of a Random Process

Recall: PSD for <u>Deterministic Signal</u> x(t) :

$$S_x(\omega) = \lim_{T \to \infty} \frac{\left| X_T(\omega) \right|^2}{T}$$

where
$$X_T(\omega) = \int_{-T/2}^{T/2} x(t) e^{-j\omega t} dt$$

Power Spectral Density of a Random Process

For a random Process: each realization (sample function) of process x(t) has different FT and therefore a different PSD.

We again rely on averaging to give the "Expected" PSD or "Average" PSD... But... Usually just call it "PSD".

Define PSD for WSS RP

We define PSD of WSS process x(t) to be :

$$S_x(\omega) = \lim_{T \to \infty} E\left\{ \frac{|X_T(\omega)|^2}{T} \right\} \quad \bigstar$$

This definition isn't very useful for analysis so we seek an alternative form

The <u>Wiener-Khinchine Theorem</u> provides this alternative!!!

Weiner- Khinchine Theorem

Let x(t) be a WSS process w/ ACF $R_X(\tau)$ and w/ PSD $S_X(\omega)$ as defined in (\bigstar)... Then $R_X(\tau)$ and $S_X(\omega)$ form a FT pair :

$$\mathsf{S}_{\mathsf{X}}(\omega) = \mathscr{F}\{\mathsf{R}_{\mathsf{X}}(\tau)\}\$$

or Equivalently

Proof of WK theorem

By definition : $X_T(\omega) = \int_{-\infty}^{\infty} x_T(t) e^{-j\omega t} dt$

For Real x(t):

$$\begin{aligned} \left| X_T(\omega) \right|^2 &= X_T(-\omega) X_T(\omega) \\ &= \int_{-T/2}^{T/2} x(t_1) e^{j\omega t_1} dt_1 \cdot \int_{-T/2}^{T/2} x(t_2) e^{-j\omega t_2} dt_2 \\ &= \int_{-T/2}^{T/2} \int_{-T/2}^{T/2} x(t_1) x(t_2) e^{-j\omega (t_2 - t_1)} dt_1 dt_2 \end{aligned}$$

Thus:

$$S_{x}(\omega) = \lim_{T \to \infty} E \left\{ \frac{1}{T} \int_{-T/2}^{T/2} \int_{-T/2}^{T/2} x(t_{1}) x(t_{2}) e^{-j\omega(t_{2}-t_{1})} dt_{1} dt_{2} \right\}$$

Move E {.} inside integrals :

$$S_{x}(\omega) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \int_{-T/2}^{T/2} R_{x}(t_{2} - t_{1}) e^{-j\omega(t_{2} - t_{1})} dt_{1} dt_{2}$$

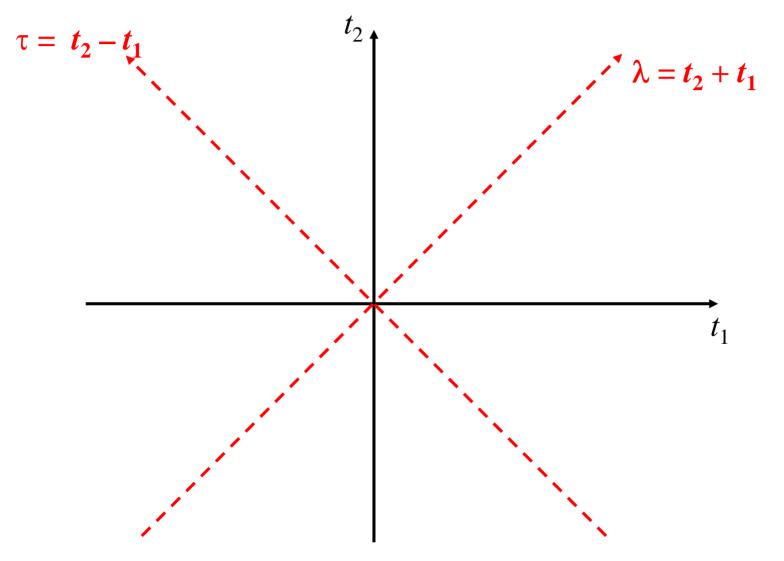
We were almost there... **BUT** we have one-too-many integrals.

For convenience define: $\phi(t_2 - t_1) = R_x(t_2 - t_1) e^{-j\omega(t_2 - t_1)}$

$$\bigstar S_x(\omega) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \int_{-T/2}^{T/2} \phi(t_2 - t_1) dt_1 dt_2$$

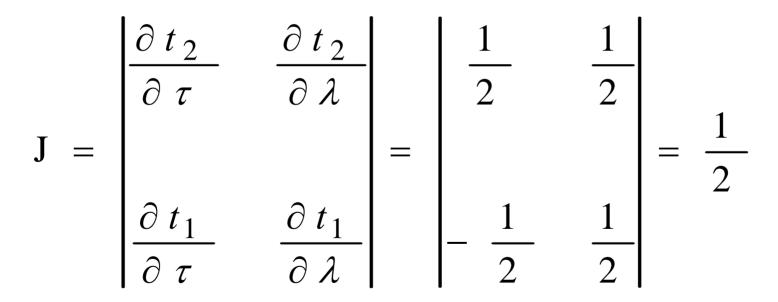
Change of Variables = Change of Axes

Instead of integrating "Row-by-Row" as in 🛧 🛧 we integrate "Diagonal-by-Diagonal".



From Calculus III

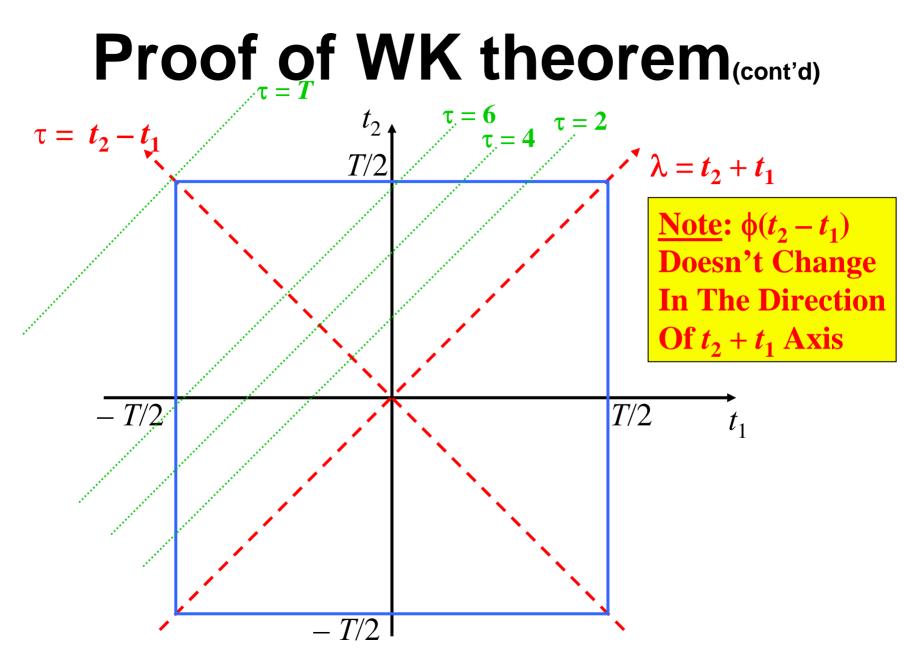
Use Jacobian result for 2-D change of variables

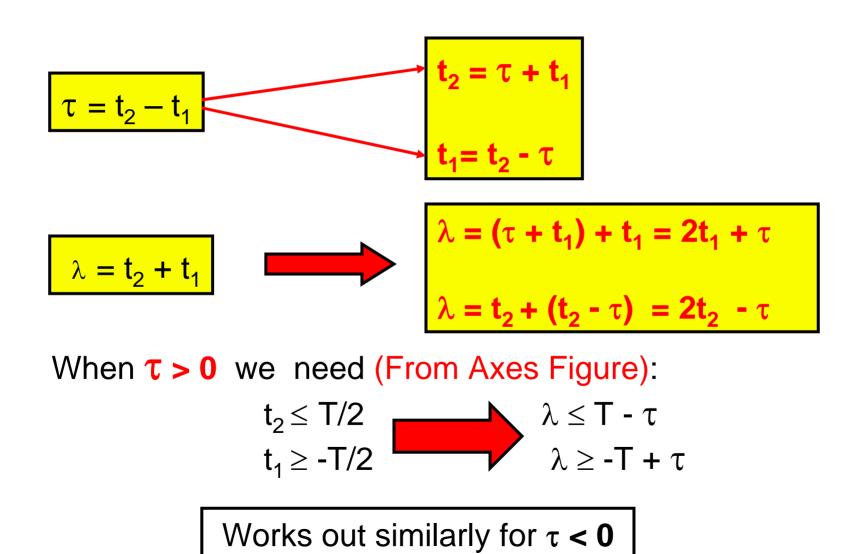


$$S_{x}(\omega) = \lim_{T \to \infty} \frac{1}{T} \int_{2}^{?} \int_{2}^{?} \phi(\tau) \frac{1}{2} d\tau d\lambda$$

Solve As τ ranges over $-T \le \tau \le T$
how does λ range?

A: For each τ , λ must be restricted to stay inside original square – **see Figure on next Chart**





Proof of WK theorem_(cont'd)
So...
$$S_x(\omega) = \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \phi(\tau) \begin{bmatrix} T - \tau \\ \int_{-T + \tau} d\lambda \end{bmatrix} \frac{1}{2} d\tau$$

$$= \lim_{T \to \infty} \int_{-T}^{T} \phi(\tau) \left(1 - \frac{\tau}{T}\right) d\tau$$

$$= \int_{-\infty}^{\infty} \phi(\tau) d\tau$$

$$= \mathfrak{F}\left\{R_{x}(\tau)\right\}$$

Some Properties of PSD & ACF

- (1) The PSD is an <u>even function</u> of ω for a <u>real</u> process x(t)
 - **proof** : since each sample function is real valued then we know that $|x(\omega)|$ is even.
- \Rightarrow |x(ω)|² is even: (even x even = even)
- \Rightarrow So is S_X(w) (this is clear from \bigstar)

Some Prop. of PSD & ACF

(2) $S_X(\omega)$ is real-valued and ≥ 0 . proof : again from (\bigstar) – since $|x(w)|^2$ is real-valued & ≥ 0 , so is $S_X(w)$

(3) $R_X(\tau)$ is an even function of τ $R_x(-\tau) = E \{ x(t) x(t - \tau) \}$ $= E \{ x(\sigma) x(\sigma + \tau) \}$ $= R_x(\tau)$

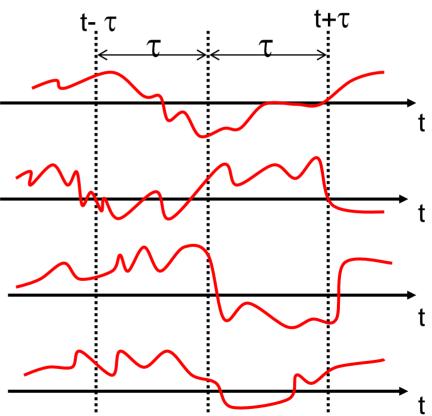
Also follows from IFT{ Real & Even } = Real & Even

Property of the FT>

Graphical View of Prop #3

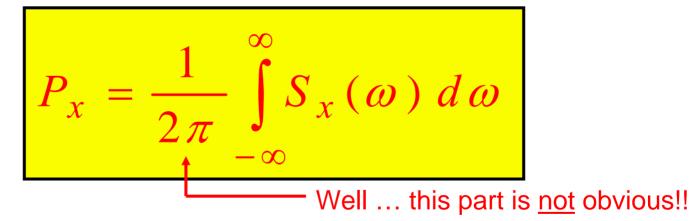
For WSS, ACF does not depend on absolute time only relative time

Doesn't matter if you look forward by τ or look backward by τ



Computing Power from PSD

From it's name – <u>Power</u> Spectral <u>Density</u> – we know what to expect :



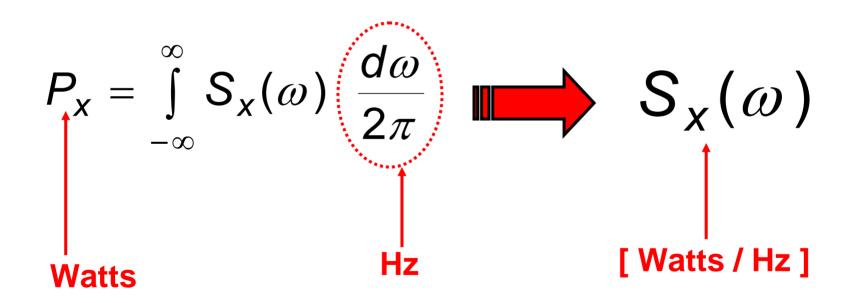
So let's Prove this !!!!

Computing Power from PSD

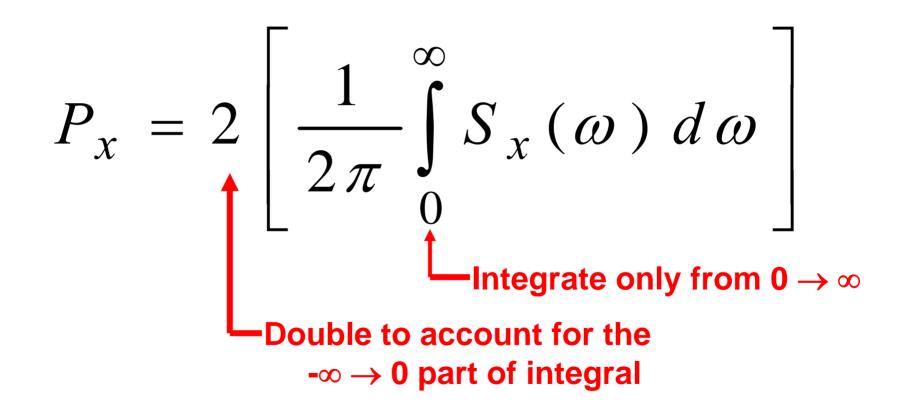
We Know:
$$\square R_{x}(\tau) = \mathfrak{S}^{-1} \{S_{x}(\omega)\}$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{x}(\omega) e^{j\omega\tau} d\omega$$

$$P_{X} = R_{X}(0) \square P_{X} = \left[\frac{1}{2\pi}\int_{-\infty}^{\infty} S_{x}(\omega) \underbrace{e^{j\omega 0}}_{=1} d\omega\right]$$
$$= \frac{1}{2\pi}\int_{-\infty}^{\infty} S_{x}(\omega) d\omega \quad \text{Q.E.D.!}$$

Units of PSD Function



Using Symmetry of S_x(w)

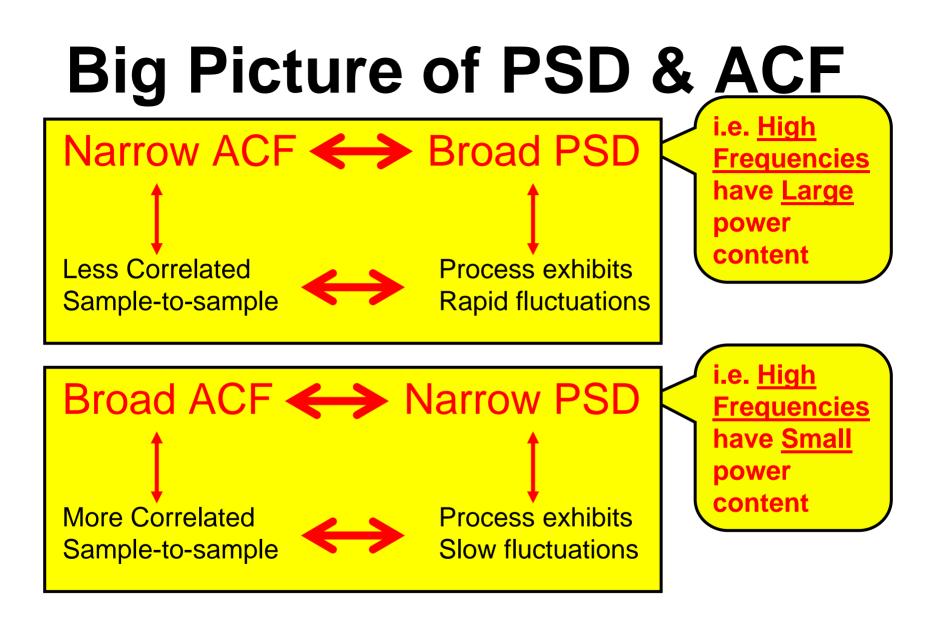


PSD for DT Processes

Not much changes – mostly, just use DTFT instead of CTFT!!

$$S_{X}(\Omega) = DTFT \{ R_{X}[m] \}$$
Periodic in Ω with period 2π

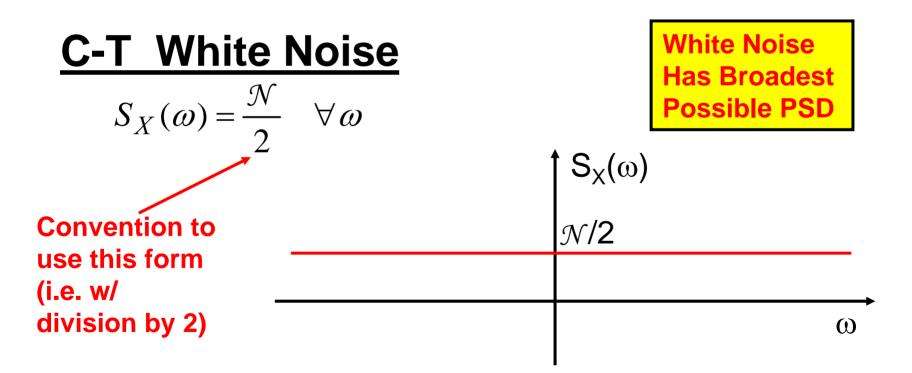
$$P_{X} = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{X}(\Omega) d\Omega$$
Need only look at $-\pi \leq \Omega < \pi$



<<See "Big Picture: Filtered RP" Charts in "V-3 RP Examples" >>

White Noise

The term "White Noise" refers to a WSS process whose PSD is flat over all frequencies



C-T White Noise

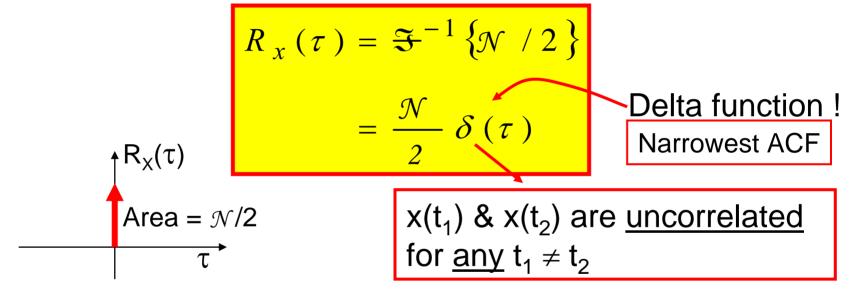
NOTE : C-T white noise has **infinite Power** :

$$\int_{-\infty}^{\infty} \mathcal{N} / 2 \, d\omega \to \infty$$

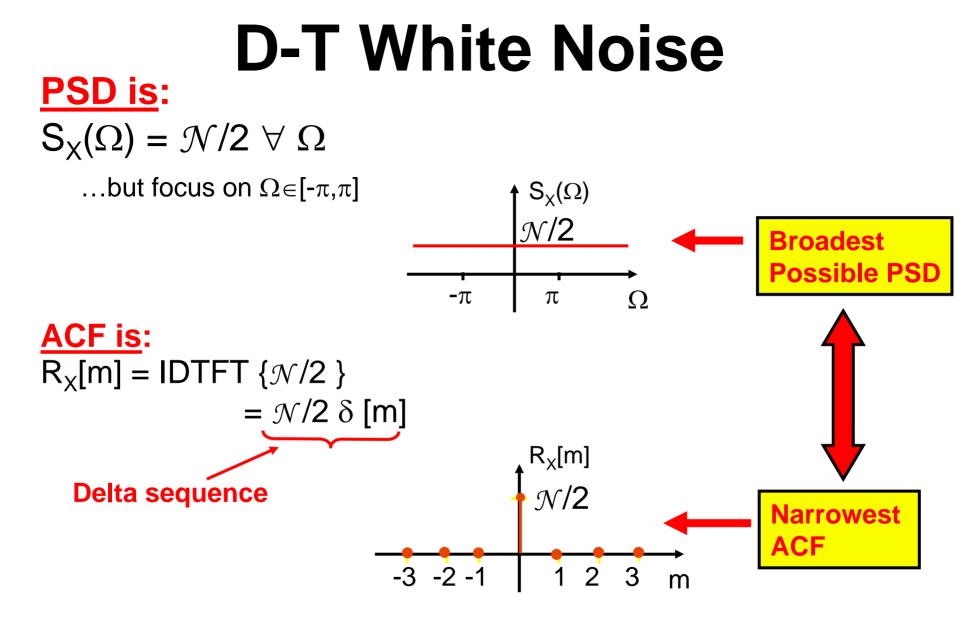
Can't **really** exist in practice but still a **very** useful Model for Analysis of Practical Scenarios

C-T White Noise

Q : what is the ACF of C-T white Noise ? A: Take the IFT of the flat PSD :

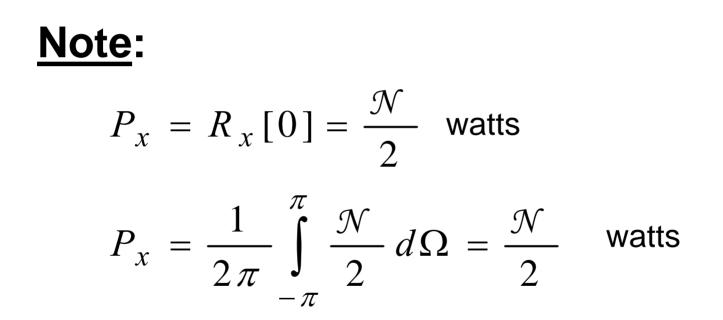


Also.... $P_X = R_X(0) = \mathcal{N}/2\delta(0) \rightarrow \infty$ Infinite Power.. It Checks!



 $x[k_1] \& x[k_2]$ are uncorrelated for any $k_1 \neq k_2$

D-T White Noise



D-T White Noise has Finite Power (unlike C-T White Noise)

Examples of PSD

Example 1: "BANDLIMITED WHITE NOISE" This looks like white noise within some bandwidth but its PSD is zero outside that bandwidth – hence the name.

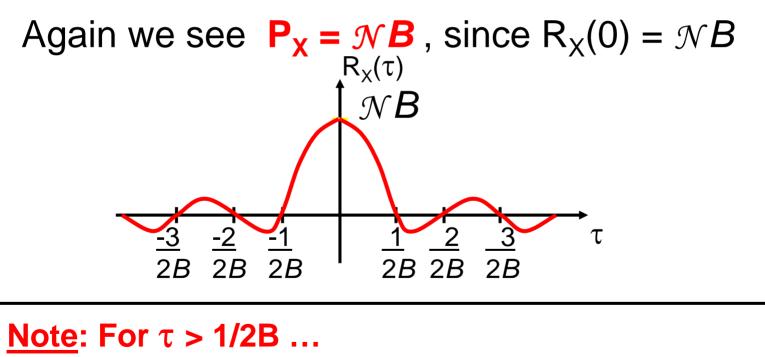
And...

$$P_x = \frac{1}{2\pi} \int_{-2\pi B}^{2\pi B} \frac{1}{2\pi} \cdot \frac{\mathcal{N}}{2\pi} \cdot \frac{1}{2\pi} \cdot \frac{1}{2$$

 $=\mathcal{N}B$

Example: BL White Noise The ACF (using FT pair for rect and sinc) is:

 $R_{X}(\tau) = \mathcal{N}B \operatorname{sinc} (2\pi B\tau)$



x(t) & x(t + τ) are Approximately Uncorrelated

Example #2 of PSD Example 2 : "SINUSOID WITH RANDOM PHASE" $x(t) = A \cos(\omega_C t + \theta)$

We examined this RP before:

$$\mathsf{R}_{\mathsf{X}}(\tau) = \frac{\mathsf{A}^2}{2} \cos(\omega_{\mathsf{C}} \tau)$$

So using FT Pair for a Cosine gives the PSD:

$$S_X(ω) = (πA^2)/2 [\delta (ω + ω_c) + \delta (ω - ω_c)]$$

Area =
$$(\pi A^2)/2$$

 $- \omega_c$
 $S_X(\omega)$
Area = $(\pi A^2)/2$
 ω_c

Example #2 of PSD

Note : Can get P_X in two ways:

1.
$$R_{X}(0) = \frac{A^{2}}{2}$$

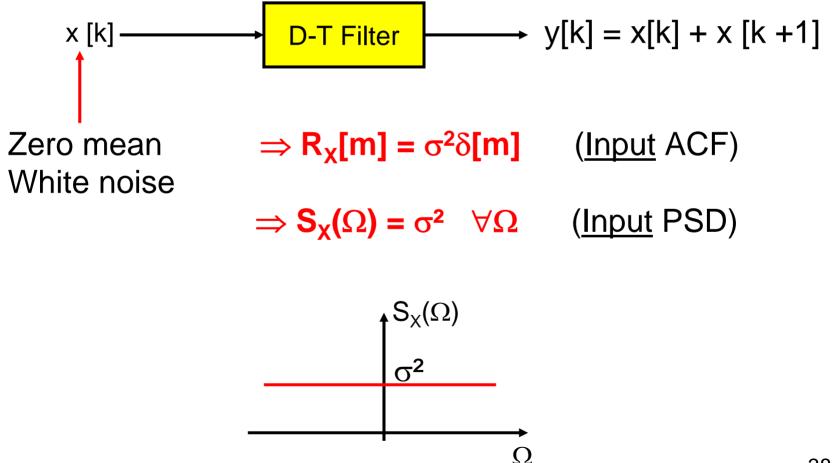
2. $\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{X}(\omega) d\omega = \frac{A^{2}}{2}$

$$\Rightarrow P_X = \frac{A^2}{2}$$

Example #3 of PSD

Example 3: "FILTERED D-T RANDOM PROCESS"

< See Also: Class Notes on "Filtered RPs" >



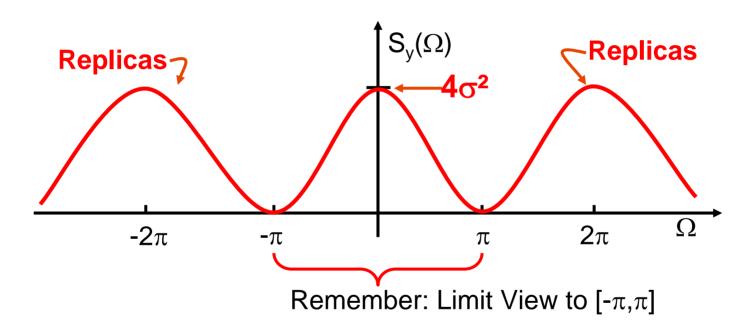
Example #3 of PSD

For this case we showed earlier that for <u>this</u> filter output the ACF is :

 $R_{\gamma}[m] = \sigma^2 \{ 2\delta[m] + \delta[m-1] + \delta[m+1] \}$ So the Output PSD is: Use the result for DTFT of δ [**m**] and also time-shift $S_{Y}(\Omega) = \sigma^{2} \left[2 + e^{-j\Omega} + e^{-j\Omega}\right]$ property $= 2\sigma^{2} [\cos (\Omega) + 1]$ = $2 \cos (\Omega)$ By Euler

Example #3 of PSD

 $S_{Y}(\Omega) = 2\sigma^{2} \left[\cos\left(\Omega\right) + 1\right]$



<u>General Idea...Filter Shapes Input PSD:</u> Here it suppresses High Frequency power