Random Process Examples

Ex. \#1: D-T White Noise

Let $x[k]$ be a sequence of RV's where... each $R V x[k]$ in the sequence is uncorrelated with all the others:

```
E{x[k]x[m]}=0 for k\not=m
```


This DEFINES a DT White Noise Also called "Uncorrelated Process"

Physically, uncorrelated means that knowing $x[k]$ provides no insight into what value $\mathrm{x}[\mathrm{m}]$ (for $\mathrm{m} \neq \mathrm{k}$) will be likely to take (roll a die; the value you get provides no insight into what you expect to get on any future roll)

Ex. \#1: D-T White Noise

Recall: Gaussian process are very common, so...
Also, let $x[k]$ be Gaussian with Zero mean and Variance σ^{2}

Define RP's PDF; also called "Normal"

Ex. \#1: D-T White Noise

TASK: We have a model.... Find the mean, ACF, and check if WSS (also find variance of process)

MEAN of Process : $E\{x[k]\}=0 \quad$ CONSTANT

ACF:

$$
R_{x}\left(k_{1}, k_{2}\right)=E\left\{x\left[k_{1}\right] \cdot x\left[k_{2}\right]\right\}
$$

By our definition of white noise,this is 0 if $k_{1} \neq k_{2}$

Ex. \#1: D-T White Noise

Now for $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}$:

$$
\left.R_{x}\left(k_{1}, k_{2}\right)\right|_{k=k_{1}=k_{2}}=E\left\{x^{2}[k]\right\}=\sigma^{2}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& R_{x}\left(k_{1}, k_{2}\right)= \begin{cases}\sigma^{2}, & k_{1}=k_{2} \\
0, & k_{1} \neq k_{2}\end{cases}
\end{aligned}
$$

By definition of variance for zero-mean case

$$
=\sigma^{2} \delta \underbrace{k_{1}-k_{2}}] \quad \begin{gathered}
=m \\
\text { (like } \tau \text { for cont-time ACF) }
\end{gathered}
$$

ACF for DT White RP

Ex. \#1: D-T White Noise

ACF displays lack of correlation between any pair of any time instants:

Now since we have constant mean and ACF depends only on $m=k_{2}-k_{1} \Rightarrow$ WSS

Ex. \#1: D-T White Noise

$$
\text { Variance } \quad \begin{aligned}
\sigma_{x}^{2} & =R_{x}[0]-\bar{x}_{L}^{2} \\
& =R_{x}[0] \\
& =\sigma^{2}
\end{aligned}
$$

For this case:
Variance of the Process = Variance of the $\underline{\text { RV }}$

Ex. \#2: Filtered D-T RP

Start with White RP x[k] in previous example

Recall: Zero Mean Process $\mathrm{R}_{\mathrm{X}}[\mathrm{m}]=\sigma^{2} \delta[\mathrm{~m}]$
 \Rightarrow WSS

Ex. \#2: Filtered D-T RP

TASK: Is y[k] WSS?
\Rightarrow need to find mean \& ACF

MEAN: Using filter output expressions gives

$$
\begin{aligned}
E\{y[k]\} & =E\{x[k]+x[k-1]\} \\
& =E\{x[k]\}+E\{x[k-1]\} \\
& \Rightarrow E\{y[k]\}=0
\end{aligned}
$$

Ex. \#2: Filtered D-T RP

ACF:

Plug in Eq.

$$
\begin{aligned}
R_{y}\left(k_{1}, k_{2}\right)= & E\left\{y\left[k_{1}\right] y\left[k_{2}\right]\right\} \\
= & E\left\{\left(x\left[k_{1}\right]+x\left[k_{1}-1\right]\right)\left(x\left[k_{2}\right]+x\left[k_{2}-1\right]\right)\right\} \\
= & \underbrace{E\left\{x\left[k_{1}\right] x\left[k_{2}\right]\right\}}_{R_{x}\left(k_{2}-k_{1}\right)}+\underbrace{E\left\{x\left[k_{1}\right] x\left[k_{2}-1\right]\right\}}_{R_{x}\left(k_{2}-k_{1}-1\right)} \\
& +\underbrace{E\left\{x\left[k_{1}-1\right] x\left[k_{2}\right]\right\}}_{R_{x}\left(k_{2}-k_{1}+1\right)}+\underbrace{E\left\{x\left[k_{1}-1\right] x\left[k_{2}-1\right]\right\}}_{R_{x}\left(\left(k_{2}-1\right)-\left(k_{1}-1\right)\right)}
\end{aligned}
$$

Ex. \#2: Filtered D-T RP

$$
\begin{aligned}
R_{y}\left(k_{1}, k_{2}\right)= & \underbrace{R_{x}\left(k_{2}-k_{1}\right)}_{\sigma^{2} \delta[m]}+\underbrace{R_{x}\left(k_{2}-k_{1}-1\right)}_{\sigma^{2} \delta[m-1]} \\
& +\underbrace{R_{x}\left(k_{2}-k_{1}+1\right)}_{\sigma^{2} \delta[m+1]}+\underbrace{R_{x}\left(\left(k_{2}-1\right)-\left(k_{1}-1\right)\right)}_{\sigma^{2} \delta[m]}
\end{aligned}
$$

$$
\text { where } m=k_{2}-k_{1}
$$

$\mathrm{y}[\mathrm{k}]$ is WSS

ACF for 2-Tap Filtered White RP

解 $\Rightarrow R_{Y}(m)=\sigma^{2}[2 \delta[m]+\delta[m-1]+\delta[m+1]$

Ex. \#2: Filtered D-T RP

Note: Filter introduces correlation between adjacent samples - but still no correlation for samples 2 or more samples apart (for this filter)

Big Picture: Filtered RP

Filters can be used to change the correlation structure of a
RP: ACF $R_{x}[m]$ of Input
Input RP (One Sample Function)

$\xrightarrow{\mathrm{x}[k]}$| $\mathrm{D}-\mathrm{T}$ Filter |
| :---: |
| $\mathrm{h}[\mathrm{n}]=\left[\begin{array}{ll}1 & 1\end{array}\right]$ |
| |
| $\mathrm{y}[k]=\mathrm{x}[k]+\mathrm{x}[k-1]$ |

ACF $R_{y}[m]$ of Output
Output RP (One Sample Function)

Big Picture: Filtered RP (cont)

ACF $\mathrm{R}_{\mathrm{y}}[m]$ of Output
Output RP (One Sample Function)

Output RP (One Sample Function)

(100

ACF $R_{y}[m]$ of Output
Output RP (One Sample Function)

Filtered RPs: Insight

Our study of the ACFs of filtered random processes and the degree of "smoothness" of the sample functions shows the following general result:

Narrow ACF \leftrightarrow Rapid Fluctuations Broad ACF \leftrightarrow Slow Fluctuations

Ex. \#3: Exp. Sig. + White Noise

Define a RP as:

Ex. \#3: Exp. Sig. + WN

Further Definition of this RP:

- $w[k]$ is white noise
- Each $w[k]$ is a Gaussian RV with $w[k] \sim N\left(0, \sigma_{w}^{2}\right)$
- X is a Gaussian RV with $X \sim N\left(0, \sigma_{X}^{2}\right)$
- RV X is independent of each $\mathrm{RV} w[k]$

$$
\Rightarrow \mathrm{E}\{\mathrm{xw}[\mathrm{k}]\}=\mathrm{E}\{\mathrm{x}\} \mathrm{E}\{\mathrm{w}[\mathrm{k}]\}=0
$$

- The \# \mathbf{a} is a deterministic number

Ex. \#3: Exp. Sig. + WN

TASK: Is this WSS?

$$
=0
$$

MEAN: $E\{y[k]\}=a^{k} E\{X\}+E\{w[k]\}$

$$
=0 \quad \text { (Constant })
$$

ACE: $R_{y}(k, k+m)=E\{y[k] y[k+m]\}$

$$
=E\left\{\left(a^{k} X+w[k]\right)\left(a^{k+m} X+w[k+m]\right)\right\}
$$

$$
=a^{2 k+m} \underbrace{E\left\{X^{2}\right\}}_{\sigma_{X}^{2}+a^{k+m} E\{X w[k]\}}+a^{k} E\{X w[k+m]\}
$$

$$
+\underbrace{\mathrm{E}\{\mathrm{w}[\mathrm{k}] \mathrm{w}[\mathrm{k}+\mathrm{m}]\}}_{=\sigma_{w}^{2} \delta[\mathrm{~m}]}
$$

$=0$
Due to Indef.

Ex. \#3: Exp. Sig. + WN

$$
R_{y}(k, k+m)=\sigma_{x}^{2} a^{2 k+m}+\sigma_{w}^{2} \delta[m]
$$

In General: Depends on k not just m

Not WSS !!!

But... If $a= \pm 1$ then $a^{2 K+M}=a^{2 K} a^{M}=a^{M}$
Then it is WSS

Ex. \#3: Exp. Sig. + WN

Ex. \#4: Weird Func of WN

Let $\mathrm{z}[\mathrm{k}]$ be white noise with zero mean \& variance of

$$
\operatorname{int}\left(D_{3} D_{2} D_{1} \cdot d_{1} d_{2} d_{3} d_{4}\right)=D_{3} D_{2} D_{1}
$$

Define $x[n]=Z[\operatorname{int}(n / 2)]$
Then $x[0]=z[0]\}$ Always appear in pairs

$$
\left.\begin{array}{l}
x[1]=z[0] \\
x[2]=z[1] \\
x[3]=z[1]
\end{array}\right\}
$$

Ex. \#4: Weird Func of WN

TASK: Is this RP WSS ?
MEAN: $E\{x[n]\}=E\{z[k]\}=0$
$k=n / 2$ if n is even
$=(n-1) / 2$ if n is odd
$R_{x}(n, n+m)=E\{x[n] \times[n+m]\}$
If $|m| \geq 2$ then $x[n] \& x[n+m]$ are two different $\mathrm{z}[$.] values \Rightarrow uncorrelated
$\Rightarrow R_{x}(n, n+m)=0$ for $|m| \geq 2$

Ex. \#4: Weird Func of WN

If $m=0$ then $R_{x}(n, n)=E\left\{z^{2}[k]\right\}=\sigma_{z}^{2}$
If $\mathrm{m}=1$
\ldots and n is even: $R_{x}(n, n+1)=\sigma_{z}^{2}$
\ldots and n is odd: $R_{x}(n, n+1)=0$
n dependence causes it not to be WSS

