Classification of Random Processes

There are several different ways to Classify Random Processes:

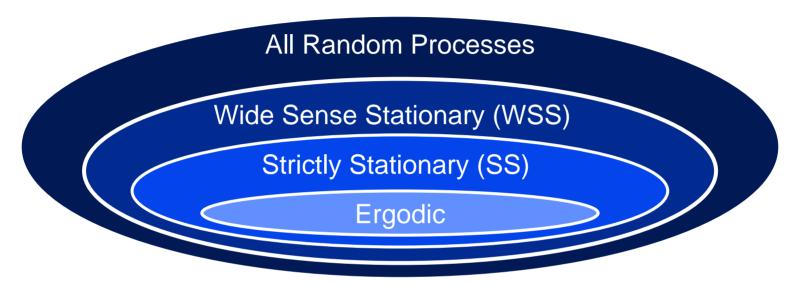
1) Type of Time Index

- * <u>Continuous–Time</u>: $x(t) t \in (-\infty,\infty)$
- * <u>Discrete-Time</u>: x[k] $k \in$ integers

2) Type of Values

- * <u>Continuous-Value</u>: x(t) takes values over an interval, possibly $(-\infty,\infty)$
- * <u>Discrete-Value</u>: x(t) takes values from a discrete set (e.g. the integers)

3) Type of Time Dependence of PDFs



$\text{Ergodic} \subset \text{SS} \subset \text{WSS} \subset \text{All RPs}$

"Nonstationary RP" = One that is <u>not</u> WSS

When discussing a RP's PDF above we have allowed for the most general time dependence. However, in practice many RP's have Restricted Time-Dependence (e.g., WSS).

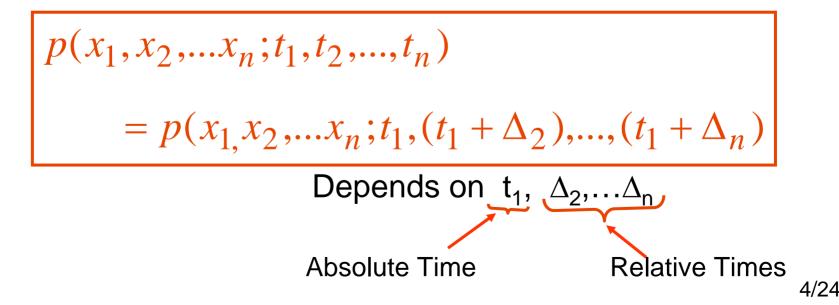
3/24

(Strictly) Stationary Processes

Rough Definition : A RP whose entire statistical characterization doesn't change with time

To Get A More Precise Definition....

First consider the *n*th order PDF and re-write it as :



(Strictly) Stationary Processes

Precise Definition:

A Process is (strictly) stationary if, for all orders of n,

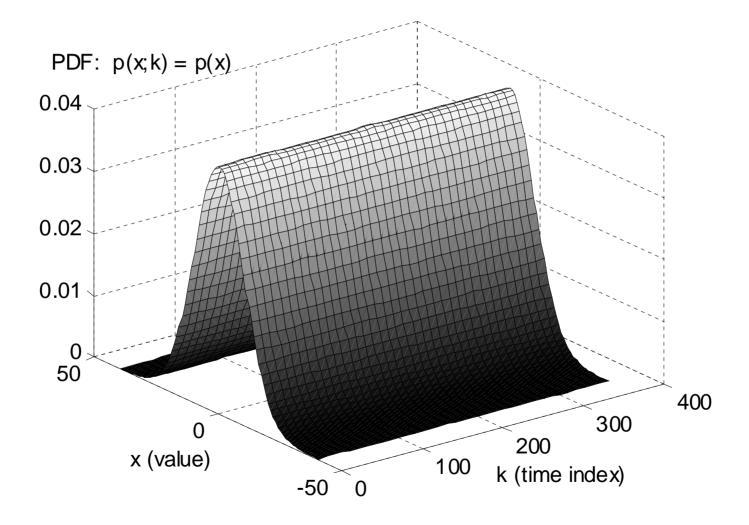
 $p(x_1, x_2, ..., x_n; t_1, t_1 + \Delta_2, ..., t_1 + \Delta_n)$

does not depend on t_1 but only on $\Delta_2,...\Delta_n$ i.e. it <u>depends *only* on relative time</u> between points

NOTE 1: Since the 1st Order PDF $p(x_1;t_1)$ does not depend on any relative time, <u>a SS process</u> <u>must have a time-independent 1st Order PDF</u>:

$$p(x_1;t_1) = p(x_1)$$

Time-Invariant 1st Order PDF



Stationary Processes

Thus a Stationary process must have:

 \sim

Constant Mean :

$$\int_{-\infty}^{\infty} x \cdot p(x;t) dx = m_x = \text{constant}$$

= $p(x)$ for stationary
process

Constant Variance :

$$\int_{-\infty}^{\infty} (x - m_x(t)) \cdot p(x;t) dx$$
$$= \int_{-\infty}^{\infty} (x - m_x) \cdot p(x) dx = \sigma_x^2 = \text{constant}$$

<<These are "necessary" but not "sufficient" conditions for SS>>

Stationary Process

<u>Note 2</u> : A Stationary process's 2^{nd} Order PDF depends only on the difference $t = t_2 - t_1$: P(x₁,x₂; τ)

<u>Thus a stationary process must have</u> : <u>Autocorrelation Function</u> that <u>depends only on</u> $\tau = t_2 - t_1$

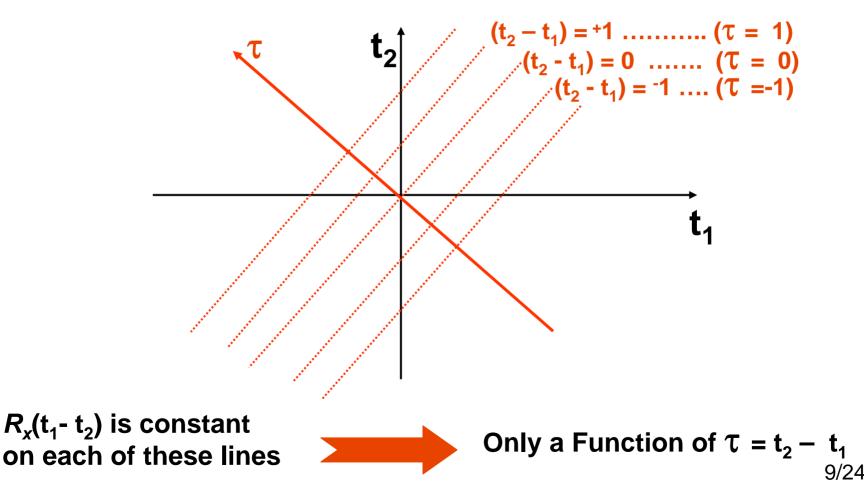
$$R_{x}(t_{1},t_{2}) = R_{x}(t_{1}, t_{1} + \tau)$$

$$= E\{x(t_{1}) x(t_{1} + \tau)\}$$
Does not depend on t_{1} if $x(t)$ is stationary
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2} \cdot x_{1} \cdot p_{x}(x_{1}, x_{2}; \tau) dx_{1} dx_{2}$$

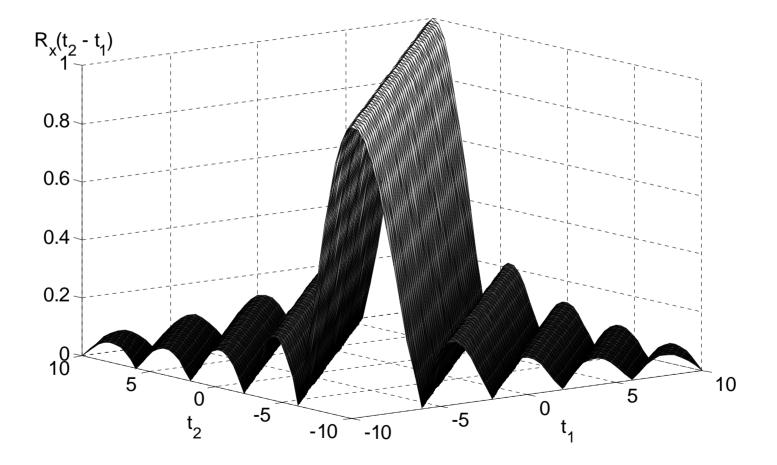
$$= R_{x}(\tau)$$

Stationary Process

<u>Note</u> : As a 2-D function, $R_x(t_1 - t_2)$ for a stationary process looks like this:



An ACF That Depends Only On $t_2 - t_1$



Stationary Process

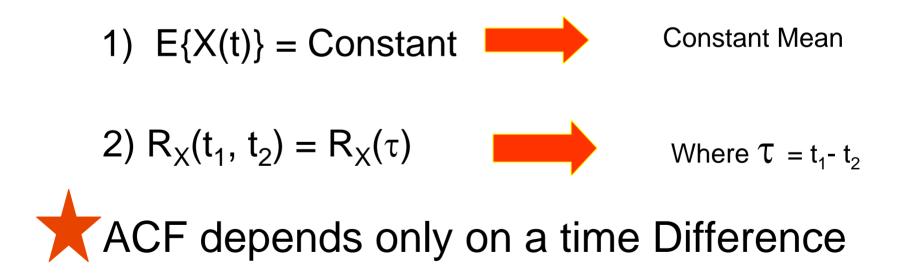
Now, A <u>stationary</u> process <u>must have these 3</u> properties BUT ... <u>must also have</u> the similar properties for all the <u>higher Order PDF's!</u>

That's a lot to ask of a process in practice!

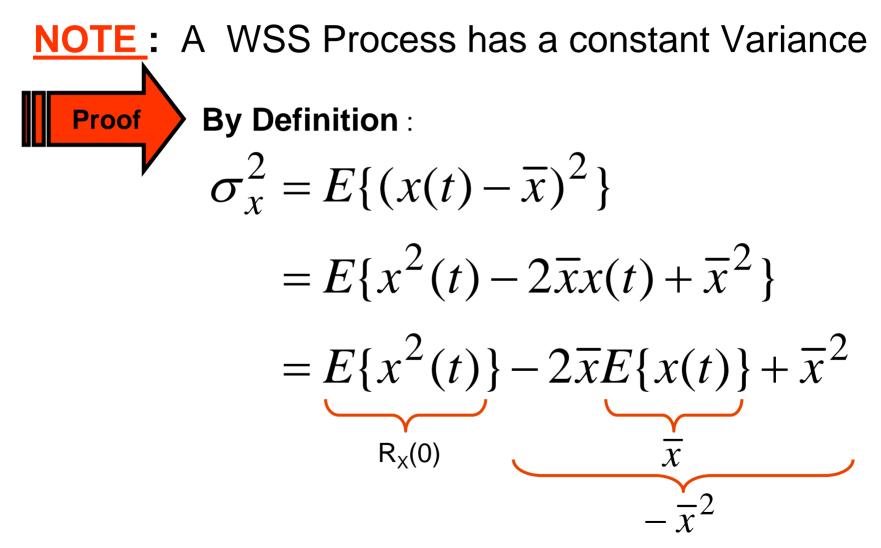
In Practice we "lower our standards" and we are mostly interested in so-called "wide-sense stationary" (WSS) processes.

Wide-Sense Stationary

A Process X(t) is said to be **wide-sense stationary** (WSS) if both of the following conditions are satisfied:



Wide-Sense Stationary



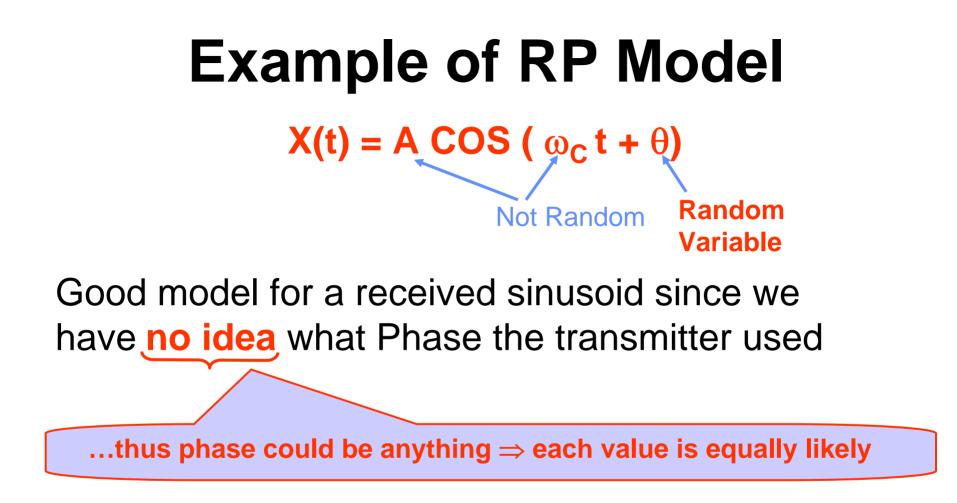
Wide-sense Stationary Thus we have proved:

$$\sigma_x^2 = R_x(0) - \overline{x}^2$$

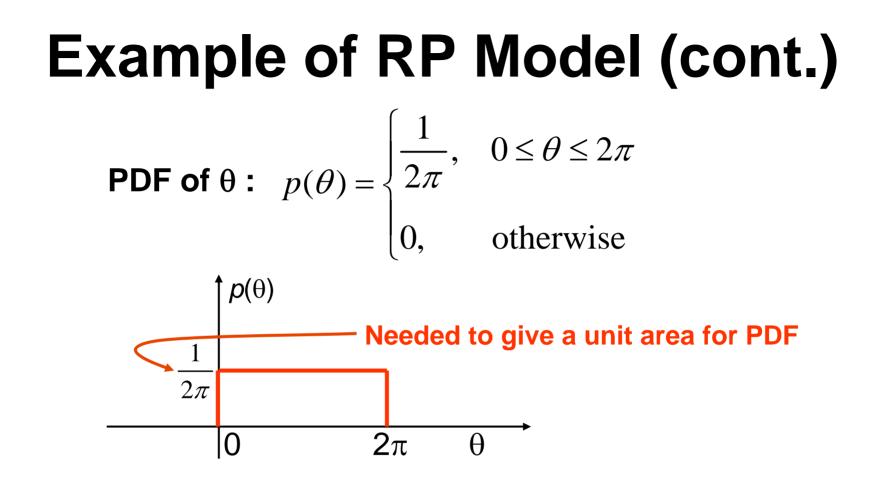
True for Stationary or WSS process

Passing Comment:

Alot of the analysis DSP engineers do centers around <u>Specifying an Appropriate Model</u> for a random signal expected to be encountered and <u>Determining if the Model is WSS</u>.



So... Model θ as a RV uniformly distributed between 0 & 2π



Q : What does this Model Say ?

A : Transmitter (Tx) randomly "picks" a single phase value from 0 to 2π and generates a realization

A COS ($\omega_{c}t + \theta$)

Each time the Tx is turned on we <u>randomly</u> get a new phase

Note : Once picked, θ doesn't change with time

Q: Which of our two "view points" is easier to <u>think</u> of for this example?

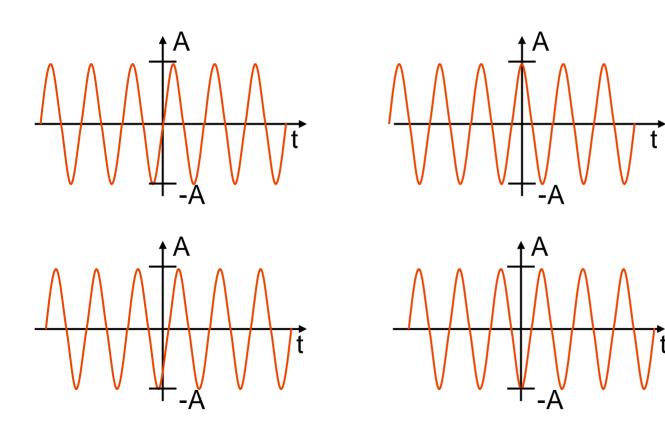
1. Sequence of RVs???

2. Collection of Waveforms & Pick One???

A : Clearly it is easier to view <u>this</u> random process as a collection of waveforms from which you randomly pick one

Remember!!! – Both Views are Still Correct

Here are **4 realizations (sample functions)** of the ensemble of this process



Each one has a different Phase

Which signal you get is randomly chosen according to the PDF of Phase

Looking at any <u>one</u> sample function doesn't give the appearance of being a random process !

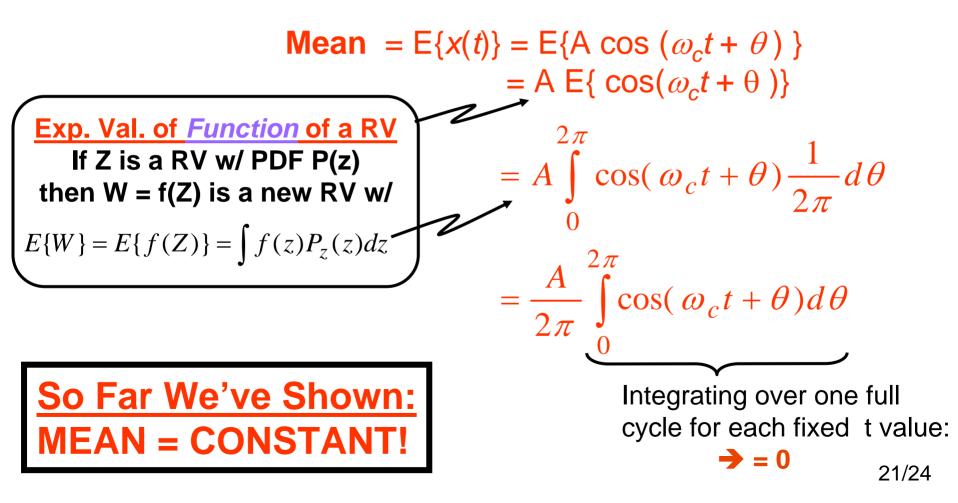
BUT IT /S RANDOM! You don't know ahead of time which you were going to get.

In <u>this case</u>, randomness is best viewed as "not knowing which of the infinite possible sample functions you will get"

So... now we have a model for a practical signal scenario. Now What???

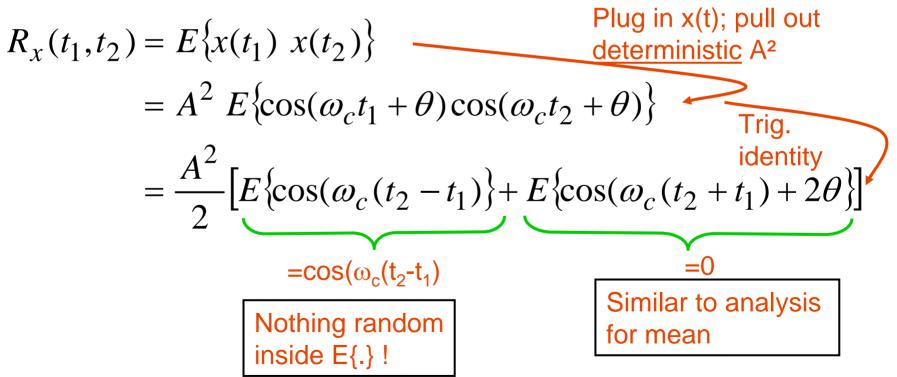
Do analysis to characterize the model !!!!

Task : Find the mean and the ACF of this process & Ask: Is It WSS?



Auto-Correlation Function (ACF)

Until you know that the process is at least WSS you must start with the general form of $R_X(t_1,t_2)$. Then work to see if you <u>can</u> reduce it to $R_X(\tau)$ Form



$$R_{x}(t_{1},t_{2}) = \frac{A^{2}}{2} \cos \left[\omega_{c}(t_{2} - t_{1})\right]$$

Depends only on $\tau = t_2 - t_1$

$$R_x(\tau) = \frac{A^2}{2} \cos\left[\omega_c \tau\right]$$

Have shown that this process is WSS, i.e. Mean = constant

ACF = function of τ only

Now... What is variance for this example?

Variance of Sinusoid w/ Random Phase is:

$$\sigma_x^2 = R_x(0) - \bar{x}^2 = \frac{A^2}{2} - 0$$

 $= \frac{A^2}{2}$ Classic Result
Worth Remembering!!!