Other Names : Random Signal Stochastic Process

A Random Process is an extension of the concept of a Random variable (RV)

Simplest View : A Random Process is a RV that is a Function of time

Could be **Discrete-time** or **Continuous-time**

Examples of Discrete-Time Random Processes

- 1. $x[k] = value on the k^{th} roll of two dice$
- 2. x[k] = lottery payout on day k
- 3. x[k] = temperature at noon on day k
- 4. x[k] = sequence of 1's and 0's in a binary file (also a coin flip)

Examples of Continuous-Time Random Processes

- 1. X(t) = temperature at time t
- 2. X(t) = speed of an Aircraft at time t
- 3. X(t) = thermal noise voltage on resistor at time t

Two Views of a Random Process

1) <u>Viewing RP as a sequence of RV's</u>

At each instant of time view x(t) as a RV:

DT Example #1: at each k you roll 2 dice and get a random value

<u>CT Example #3</u>: at each time t you measure the thermal noise voltage to get a value

Two Views of a Random Process

2) <u>Alternate view</u>: RP is a collection of functions of Time...the one you get is determined by some single "Probabilistic Event"

Ex: Random Bits – Here are just 2 possible functions for this process:

Two Views of a Random Process

Each of the possible waveforms is called a "Realization" or "Sample Function" of the RP.

The collection of all possible realizations of a RP is called the "Ensemble" of the process

Of the two views, <u>#1 is the most useful</u> i.e. a sequence of RV's

How do we probabilistically characterize a RP? **View #1 provides one clue!** At each time t_i we have a RV and it can be described by a PDF: P(x;t_i). It is possible that the PDF changes with time.

DT Example #3 – temp @ noon on day k.

So to describe a RP, we need P(x;t) for all t! Is that enough? NO!

<u>RECALL</u>: To describe two RV's you need a PDF for each and need to know how they are related \Rightarrow how they are Correlated \Rightarrow need their joint PDF!

But we have more than 2 RV's in our RP!

 \Rightarrow To completely describe a RP we need <u>all possible</u> joint PDF's over the Time Points:

To **Completely** Describe a RP...

Need P($x_1, x_2, ..., x_n; t_1, t_2, ..., t_n$) For <u>every</u> choice of $t_1, ..., t_n$ For <u>all</u> n (up to ∞ !)

This complete description of RP is virtually impossible to use for practical applications! Usually make do with 1st and 2nd order PDF's:

P(x;t) & P(x1,x2; t1,t2)

Q: What do the 1st and 2nd order PDF's tell us ?

Ans #1 1st order P(x;t) tells, as a function of time, what values are likely and unlikely to occur

P(x;t) can be characterized (but not necessarily completely) by two parameters: Mean & Variance

1) Mean or Average or "Expected Value" of x(t)

$$E\{x(t)\} = \int_{-\infty}^{\infty} x P(x;t) dx$$

Other Notations:

 $x(t) = E\{x(t)\}$ $m_x(t) = E\{x(t)\}$

Shows "center of concentration" of possible values of x(t) as a Function of time in general.

Shows a measure of expected range of variation around the mean, as <u>a function of time</u> in general

Example: let x[k] be temperature at noon on kth day (at a particular fixed location).

At each day k we view the ensemble of temperature realizations x[k] as occurring over a collection of <u>"parallel universes"</u> and the values occur with probability according to the PDF P(x;k)

This ensemble view is theoretical and is used to model reality – don't confuse these theoretical ensemble averages with the empirical averages used in data analysis. **Test Average =** $\frac{1}{N} \sum_{i=1}^{N} score(i)$

Time-Varying PDF of RP

Sample Functions of <u>This</u> TV RP

Different Example Time-Varying PDF of RP

Sample Functions of <u>this</u> TV RP

Q: What do the 1st and 2nd order PDF's tell us ?

<u>**Recall</u>**: 1st order PDF of RP tells the likelihood of values occurring at each given time</u>

 2^{nd} Order PDF Characterizes "Probabilistic Coupling" between RP values at each pair of times t_1 and t_2

Example: What is the probability $x(t_1)$ and $x(t_2)$ are...

.... both Positive?

- both Negative?
- of Opposite Signs?

As with mean and variance for the 1st order PDF, we want something that captures most of the essence of the 2nd order PDF

Auto correlation function (ACF) of a RP

$$R_{x}(t_{1},t_{2}) = \underbrace{E\{x(t_{1}) | x(t_{2})\}}_{x(t_{1})}$$

Correlates process at pairs of times t_1 , t_2

$$R_x(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P(x_1, x_2; t_1, t_2) dx_1, dx_2$$

Auto Correlation Function

$$R_{x}(t_{1}, t_{2}) = \begin{cases} Positive value if \\ Negative value if \\ Near Zero if \end{cases} \begin{array}{l} x(t_{1})\& x(t_{2}) \ are \ highly \ likely \ to \ have \ opposite \ signs \end{cases}$$

Comparing ACF's of 2 RP's

Note : Both x(t) & y(t) have the same 1st Order PDF,yet they appear to be very different!

Four Realizations of x(t)

Four Realizations of y(t)

