Random

 Processes
Random Process

Other Names : Random Signal Stochastic Process

A Random Process is an extension of the concept of a Random variable (RV)

Simplest View : A Random Process is a RV that is a Function of time

Could be Discrete-time or Continuous-time

Examples of Discrete-Time Random Processes

1. $x[k]=$ value on the $k^{\text {th }}$ roll of two dice
2. $x[k]=$ lottery payout on day k
3. $x[k]=$ temperature at noon on day k
4. $x[k]=$ sequence of 1's and 0's in a binary file (also a coin flip)

Examples of Continuous-Time Random Processes

1. $X(t)=$ temperature at time t
2. $X(t)=$ speed of an Aircraft at time t
3. $X(t)=$ thermal noise voltage on resistor at time t

Two Views of a Random Process

1) Viewing RP as a sequence of RV's

At each instant of time view $x(t)$ as a $R V$:
DT Example \#1: at each k you roll 2 dice
and get a random value
CT Example \#3: at each time t you measure the thermal noise voltage to get a value

Two Views of a Random Process

2) Alternate view: $R P$ is a collection of functions of Time...the one you get is determined by some single "Probabilistic Event"

Ex: Random Bits - Here are just 2 possible functions for this process:

Two Views of a Random Process

Each of the possible waveforms is called a "Realization" or "Sample Function" of the RP.

The collection of all possible realizations of a RP is called the "Ensemble" of the process

Random Processes

How do we probabilistically characterize a RP? View \#1 provides one clue!
At each time t_{i} we have a RV and it can be described by a PDF: $P\left(x ; t_{i}\right)$. It is possible that the PDF changes with time.

DT Example \#3 - temp @ noon on day k.

Random Processes

So to describe a RP, we need $P(x ; t)$ for all t ! Is that enough? NO!

RECALL: To describe two RV's you need a PDF for each and need to know how they are related \Rightarrow how they are Correlated \Rightarrow need their joint PDF!

But we have more than 2 RV's in our RP!
\Rightarrow To completely describe a RP we need all possible joint PDF's over the Time Points:

Random Processes

To Completely Describe a RP...

Need $P\left(x_{1}, x_{2}, \ldots, x_{n} ; t_{1}, t_{2}, \ldots t_{n}\right)$
For every choice of t_{1}, \ldots, t_{n}
For all n (up to ∞ !)

Realization \#1

Realization \#2

Realization \#3

Random Process

This complete description of RP is virtually impossible to use for practical applications! Usually make do with $1^{\text {st }}$ and $2^{\text {nd }}$ order PDF's:

$$
P(x ; t) \quad \& \quad P(x 1, x 2 ; t 1, t 2)
$$

Q: What do the $1^{\text {st }}$ and $2^{\text {nd }}$ order PDF's tell us ?
Ans \#1 $1^{\text {st }}$ order $\mathrm{P}(\mathrm{x} ; \mathrm{t})$ tells, as a function of time, what values are likely and unlikely to occur
$\mathrm{P}(\mathrm{x} ; \mathrm{t})$ can be characterized (but not necessarily completely) by two parameters: Mean \& Variance

Random Process

1) Mean or Average or "Expected Value" of $x(t)$

$$
E\{x(t)\}=\int_{-\infty}^{\infty} x P(x ; t) d x
$$

Other Notations:

$$
\begin{gathered}
x(t)=E\{x(t)\} \\
m_{x}(t)=E\{x(t)\}
\end{gathered}
$$

Shows "center of concentration" of possible values of $x(t)$ as a Function of time in general.

Random Process

2) Variance of $X(t)$

$$
\begin{aligned}
\sigma_{x(t)}^{2} & =E\{\underbrace{[x(t)-\bar{x}(t)]^{2}}\} \int \text { Deviation from mean } \\
& =\int_{-\infty}^{\infty}[x-x(t)]^{2} P(x ; t) d x
\end{aligned}
$$

Shows a measure of expected range of variation around the mean, as a function of time in general

Random Process

Example: let $x[k]$ be temperature at noon on $\mathrm{k}^{\text {th }}$ day (at a particular fixed location).

At each day k we view the ensemble of temperature realizations $x[k]$ as occurring over a collection of "parallel universes" and the values occur with probability according to the PDF $\mathrm{P}(\mathrm{x} ; \mathrm{k})$

Random Processes

This ensemble view is theoretical and is used to model reality - don't confuse these theoretical ensemble averages with the empirical averages used in data analysis.

$$
\text { Test Average }=\frac{1}{N} \sum_{i=1}^{N} \text { score }(i)
$$

Time-Varying PDF of RP

Sample Functions of This TV RP

Different Example Time-Varying PDF of RP

Sample Functions of this TV RP

Random Processes

Q: What do the $1^{\text {st }}$ and $2^{\text {nd }}$ order PDF's tell us ?
Recall: $1^{\text {st }}$ order PDF of RP tells the likelihood of values occurring at each given time

$2^{\text {nd }}$ Order PDF Characterizes "Probabilistic Coupling" between RP values at each pair of times t_{1} and t_{2}

Example : What is the probability $x\left(t_{1}\right)$ and $x\left(t_{2}\right)$ are \ldots
.... both Positive?
.... both Negative?
.... of Opposite Signs?

Random Processes

As with mean and variance for the $1^{\text {st }}$ order PDF, we want something that captures most of the essence of the $2^{\text {nd }}$ order PDF

Auto correlation function (ACF) of a RP

$$
\begin{gathered}
R_{\chi}\left(t_{1}, t_{2}\right)=\underbrace{E\left\{x\left(t_{1}\right) x\left(t_{2}\right)\right\}}_{\substack{\text { Correlates process at pairs } \\
\text { of times } \mathbf{t}_{1}, \mathbf{t}_{2}}} \\
R_{\chi}\left(t_{1}, t_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} P\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1}, d x_{2}
\end{gathered}
$$

Auto Correlation Function

Comparing ACF's of 2 RP's

Note : Both $x(\mathrm{t}) \& y(\mathrm{t})$ have the same $1^{\text {st }}$ Order PDF,
....yet they appear to be very different!

Four Realizations of $x(t)$

Four Realizations of $y(t)$

Four Realizations of $x(t)$

Four Realizations of $y(t)$

For $t_{2}=t_{1}+\tau, \quad R_{x}\left(t_{1}, t_{2}\right)=R_{x}\left(t_{1}, t_{1}+\tau\right)$

