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1. Imagine that a remote computer sends a 1 or a O by sending either p(z) or —p(1), respectively... where
the pulse p(?) is given by:

1, 0<t<T

p(®)=
0, otherwise

When the pulse is received it is corrupted by Gaussian noise that is added to it. Assume that this noise
has zero mean and has variance of 1. Suppose that you wish to measure a single value within a received
pulse and use that to determine if a 1 or a 0 was sent. Then the value that you measure would be a
Gaussian random variable Z modeled as follows:

Z=11+V

where V is a Gaussian random variable with zero mean and variance of 1. Say that you will decide that a
1 was sent if the measured Z is such that Z > 0 and otherwise will decide that a 0 was sent.

Consider the case where a 1 was sent (thus Z =+1+V ) and find the probability of making an error.

2. For the scenario in Problem #1, we now consider talking 10 samples (Z;, Z,, ... Z;o) within a single
pulse and computing the data average of the measured Z values:

1 10
M=—> Z.
1(); ‘

Now you would decide that a 1 was sent if M is such that M > 0 and otherwise will decide that a 0 was
sent. Consider the case where a 1 was sent (thus Z; =+1+V; and assume that the noise RVs V; are
uncorrelated) and find the probability of making an error.

3. The following is a contrived problem that is intended to show how probability theory is used in
engineering (Since it is contrived, I honestly don’t know if this model realistically describes the
manufacture of resistors — I’d think it isn’t!). Imagine that you are analyzing a machine that makes 1
kQ resistors and that a model for the resistance value of each resistor produced is given by

Racrual = 0T = Tyomina) +1000

where T is the actual temperature (in °C ) of the material used in making the resistors, Thominai is the

nominal expected temperature (in °C ) of the material (imagine that a control system is in place that

attempts to maintain the temperature at Tpominal), and o is a known parameter that characterizes the
sensitivity of the actual resistance value to changes in the temperature. Suppose we are told by the
temperature control system engineers that their analysis shows that a good model for the temperature T is
that it is a zero-mean Gaussian RV with some specific standard deviation 67. Suppose that the sensitivity
parameter is known to be o = 10 Q/°C. What specification should you give to the control system
engineers for the standard deviation o7 in order to ensure that 95% of the manufactured resistors are
within 1% of the nominal 1k resistance?
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1. This problem and the next one show the value of probability theory to the design of data
transferal systems — without probability theory an engineer can not properly make design
decisions for such problems.

In this problem you are to determine the probability of error that occurs when a 1 is sent. Thus,

you know that the measured RV Zis given by Z =+1+V where V is a zero-mean Gaussian RV
with variance of 1. If there were no noise in the system there would be no error because Z would
be 1; with noise in the system the value that Z takes on can (in theory) be any real number
(although some of those numbers are very unlikely). When the value of Z is below 0 we make
an error, which occurs when V < -1; so we need to determine the probability that V<-1. We
have a probability model for V that says V is Gaussian with zero-mean and variance of 1, so the
PDF of Vs given by

—v2/2

1
pv(v)zme

Now, to find the probability of an error we find probability that V< —1 as follows:

By definition of how
Pr(error) = Pr(V <-1) probability is computed
from a PDF
-1 . .
= |py(v)dv
_£ v Using specific form for
the PDF of V — This is
-1 the shaded area shown
_ L2 on the left side in the top
= | —¢ dv :
- /27[ part of Figure 1 B,
=1 ) This is the shaded area \
= j eV 2qy shown on the right side
; in the top part of Figure

1. The two shaded areas
in the top part of Figure
1 are equal due to the
symmetry of the PDF /

From the bottom part of \
the Figure 1 we see that

we can get what we want

(the right hand shaded

part) by subtracting the

left shaded part from 1 (the

total area = 1). /

where some of the manipulations are shown in Figure 1...
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Figure 1: Relationships between various areas under the PDF of V

The value of the integral in this last line is something that is given in a table in EVERY
introductory textbook on probability, one of which is shown in Figure 2. Looking at the line in
the table for 1.0 gives a value in the table of 0.8413, which after subtraction from 1 gives

Pr(error)=1-0.8413=0.1587

This says that if we use this simple method of deciding if a 1 or O was sent that we would expect
to make an error roughly on 16% of the bits that are sent... that is terrible performance. Without
this “predictive” analysis using probability theory how would you know that this scheme works
so poorly???!!!!



NORMAL DISTRIBUTION FUNCTION

1
1 z -7t
F(Z)=._-——’/ e dt
Vind —e

0.00

z 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 05398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 05793 0.5832 05871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 06179 06217 06255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
04 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324  0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611  0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 08159 08186 08212 08238 08264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 08413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 08643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 09049 0.9066 0.9082 0.9099 0.9115 09131 09147 09162 0.9177
14 09192 09207 09222 09236 09251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 09332 0.9345 09357 0.9370 09382 0.939% 0.9406 0.9418 0.9429 0.9441
1.6 09452 0.9463 09474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 09564 09573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 09641 09649 09656 0.9664 09671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 09713 09719 09726 09732 09738 09744 0.9750 0.9756 0.9761 0.9767
2.0 09772 09778 09783 0.9788 09793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 09821 09826 0.9830 09834 09838 0.9842 0.9846 0.9850 0.9854 0.9857
22 09861 09864 09868 09871 09875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 09893 09896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
24 0.9918 09920 09922 09925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 09953 0.9955 9.9956 09957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 09966 0.9967 09968 09969 09970 0.9971 09972 0.9973 0.9974
2.8 0.9974 09975 0.9976 09977 0.9977 0.9978 0.9979 0.9979 09980 0.9981
29 0.9981 09982 0.9982 09983 09984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 09987 09987 09987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 09991 0.9991 09991 09992 0.9992 09992 0.9992 0.9993 0.9993
3.2 0.9993 09993 0.999%4 09994 0.9994 0.9994 09994 0.9995 0.9995 0.9995
33 0.9995 0.9995 0.9995 09996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
34 0.9997 09997 0.9997 09997 0.9997 0.9997 0.9997 09997 0.9997 0.9998

Figure 2: Table giving values for area under Gaussian PDF




#2. The scheme to be analyzed here is the following. Instead of taking a single sample of the
signal-plus-noise you take 10 samples and do a “data average” to create the value M, which is
then used to decide: if M > 0 you decide that a 1 was sent. Once you have the PDF of M the
analysis of this problem is pretty much the same as for #4:

Pr(error) = Pr(M <0)

0
= [pa (mydm
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When a 1 has been sent, each sample is given by Z;= 1 + V; so we can write M in terms of the
random variables V; as follows:

Thus, we can analyze the problem exactly as before except now we need to ask what is the

probability that the RV V is less than —1. But what is the PDF of V ? From probability theory
we know that the sum of Gaussian RV’s is also a Gaussian RV. Because a Gaussian PDF is
completely defined by its mean and variance, we need to determine the mean and variance of v .

To find the mean we use properties of the expected value:
5 1 Lo 1 o

EW }= E{= 3 Vi =53 Elfi}=0
1035 1045

where the final zero comes from the fact that each noise RV V; is zero mean.

The variance can be found as follows:
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= EE VIVI + V2V2 + .- +V10V10 +V1V2 +V1V3 +.- 4+ V10V9
"auto—terms" "cross—terms"

1 2

= o5 BV )+ E(Vi}+-+ E(V3}+ E{V\Vy ) + E(V|V3) + -+ E{ViVo }
each is 1 by problem definition eachis zero by problT:m
statement that noise RVs are uncorrelated
i and zero mean i
1
10

Thus we see that the v RV is zero-mean Gaussian with variance of 1/10 (thus it varies less than
the V random variable).

So now we can find the desired probability:

5 By definition of how
= < -
Pr(error) = Pr(V < -1) probability is computed
1 from a PDF D
=1- j py (v)dv
oo Plug in the specific PDF

2
o~V 210 4

1
1
-1- J' -
N2 ﬁ Simplify using algebra
1

-(v/10)*/2
e (+10) dv Change variable in the \

integral: let y = sqrt(10)v
so that dv = dy/sqrt(10)
and the upper limit
changes to sqrt(10)

This is in the form that is
tabulated... so look up

for sart(10) = 3.16 /

The answer is:

Pr(error)=1-0.9992=8x107*



which is a much better performance... still not as good as what we would want, though. But,
this theory shows us the road to better performance: use a data average with more than 10 values.
As you increase the number of samples you average, the probability of error will decrease. So if
you have a desired probability of error that you want to achieve, you can use probability theory
to determine how many samples you should average together!!!! ... and that is engineering!!!!
In Figure 3 I show a plot that illustrates this (notice the logarithmic scale on the probability axis
— that is common in this application because the distinction between, say, 10~ and 10 is
important and just wouldn’t show up on a linear axis. Note that to get a prob. of error of 10 we
would need to average about 18 samples together.

Effect of Number of Samples Averaged on Prob of Error

Probability of Error

TTT

T T T IT 7T

Number of Samples Averaged

Figure 3: Effect of number of samples averaged on the probability of an error.

#3. The control system engineers have told you that they have modeled the temperature 7 as
Gaussian with mean Tyomina and some unspecified standard deviation Presumably they can

design their control system to achieve a range of standard deviations — the smaller the std. dev.,
the better their control system works because a small std. dev. indicates small fluctuations around
the temperature point they are trying to maintain. Our job (as the engineers in charge of making



the resistors) is to tell them how much (or how little) fluctuation we can stand and still
manufacture a resistor to within a 10% tolerance (defined here as “95% of manufactured resistors
have no worse than a 10% error).

For ease of analysis: define AT = T — Tyominal. Then, because T is a Gaussian RV and Tpominal 1S @
number, AT is a Gaussian RV with the following mean:

E{AT}= E{T — Tominal }: E{T}_ Thominal = Tnominal ~ Tnominal =0
where we have used properties of expected value and the fact that 7 has mean of Thominal.

Thus, we know that AT is a Gaussian RV with zero mean. What is its variance? That is found
using

Var{AT}= E{ATZ }= E{(T ~ T ominal )2}
=Var{T'} by definition

Thus, we see that AT has the same variance as T (a general result says that adding a number to an
RV changes its mean but not its variance).

Now, because AT is an RV, the resistance value Rycya (Which depends on AT ) is also an RV. A
general result says that if X is a Gaussian RV, then aX+b is also Gaussian. What is its mean and
variance? Find this as follows:

E{R, a1 }= E{0AT +1000}= e E{AT }+1000 = 1000
=0
and

Var{R, . }= E{(Ractual ~1000)? }= E{(aAT)2 }: o E{(AT)2 }

=Var(T)=0%

Thus, we know that the actual resistance value is a Gaussain RV with mean of 1000 ohms and a
standard deviation of o7 (yet-to-be-specified). Thus, we have a PDF model for the actual
resistance that looks like what is shown in Figure 4; note that if oris too big then the probability
of the resistance being inside the 1% tolerance is less than 0.95 (that is, less than 95% of the
resistors will be within spec).
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Figure 4: PDF of resistance for two cases of the temperature standard deviation

Now the question becomes, what value of oris needed to ensure that we meet the requirement
that 95% of the resistors are within the 1% tolerance? Let B be the area in each of the tails
shown in Figure 4; then we need that 1 — 2B = 0.95 or B = 0.025. So we need to find the value of
the or that causes P(Rycwa > 1010) = 0.025... But this is equivalent to first centering the PDF
around O rather than around 1000: then we need to find the value of the o7 that causes P(Ractual —

1000 > 10) = 0.025 or

10

1 5er
10/0,

=1- iﬁ

2 2
0.025=1- e~ 1207 gy

2
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or




From the table in Figure 2 we see that we need 10/c7 = 1.96 or 5.1°C.... which is probably not
too terribly difficult for a control system!!!



