11.10.1 Uniform DFT Filter Banks

Uniform DFT Filter Banks

We'll look at 5 versions of DFT-based filter banks - all but the last two have serious limitations and aren't practical. But... they give a nice transition to the last two versions - which ARE useful and practical methods.

$\frac{\text { Version \#1 }}{(\text { Not in P\&M) }}$	Undecimated	Rect. Window (Filter Size = \# Channels)	Sliding DFT
$\frac{\text { Version \#2 }}{\text { (Not in P\&M) }}$	Decimated	Rect. Window (Filter Size = \# Channels)	Sliding DFT
$\frac{\text { Version \#3 }}{(\text { Not in P\&M) }}$	Decimated	Non-Rect Window (Filter Size = \# Channels)	Sliding DFT
Version \#4 (Not in P\&M)	Decimated	Arbitrary Window (Filter Size Arbitrary)	Sliding DFT
$\frac{\text { Version \#5 }}{\text { (11.10.1) }}$	Decimated	Polyphase Filter (Filter Size Arbitrary)	DFT

Setting for Versions 1, 2, \& 3

We will illustrate with a four channel case:

Equivalent To...

Version \#1: Sliding DFT Filter Bank

Different View of Version \#1

Math View

$$
u_{m}[n]=\sum_{i=0}^{M-1} x[n-i] W_{M}^{i m} \quad m=0,1, \ldots, M-1
$$

Fix n, Then
Compute
M-pt. CDFT
Note: Conjugate DFT Form

Math Shows this DOES give Filter Bank

Output of this structure is:

$$
\begin{aligned}
u_{m}[n] & =\sum_{i=0}^{M-1} x[n-i] W_{M}^{i m} \\
& =\left\{x * g_{m}\right\}[n] \quad \text { where } g_{m}[n]=W_{M}^{n m} \quad 0 \leq n \leq M-1
\end{aligned}
$$

Thus, the $m^{\text {th }}$ output signal is the linear convolution of the input signal with the impulse response $g_{m}[n]$.

Q: What is the $m^{\text {th }}$ filter's Transfer Function?

$$
\begin{aligned}
G_{m}^{z}(z) & =\sum_{n=0}^{M-1} W_{M}^{n m} z^{-n} \\
& =\frac{1-\left(z W_{M}^{-m}\right)^{-M}}{1-\left(z W_{M}^{-m}\right)^{-1}}
\end{aligned}
$$

Use Geom. Sum Result

$$
\sum_{n=N_{1}}^{N_{2}-1} a^{n}=\frac{a^{N_{1}}-a^{N_{2}}}{1-a}
$$

Math Shows ... (con.t)

Q: What is the $m^{\text {th }}$ filter's Frequency Response?

$$
\begin{aligned}
G_{m}^{\mathrm{f}}(\theta) & =\left.G_{m}^{z}(\mathrm{z})\right|_{z=e^{j \theta}} \\
& =\frac{1-e^{-j M(\theta-2 \pi m / M)}}{1-e^{-j(\theta-2 \pi m / M)}} \\
& =\frac{\underbrace{\frac{\sin [0.5 M(\theta-2 \pi m / M)]}{\sin [0.5(\theta-2 \pi m / M)]}} e^{-j 0.5(\theta-2 \pi m / M)(M-1)}}{}
\end{aligned}
$$

- Looks sort of like sinc function: Dirichlet Kernel
- Centered at $\theta=2 \pi m / M \mathrm{rad} / \mathrm{sample}$

Note: The window determines the shape of the frequency response. The rectangular window used here makes a poor filter!!!

Frequency Response of Version \#1 Filterbank

Synthesis Bank for Version \#1 Filterbank

CIDFT: Includes 1/M term (not in book!)

Synthesis Bank for Version \#1 (cont.)

Sequence of DFT's

- Total sample rate out of analysis bank is M times input
- This is redundant and is detrimental in applications like data compression
- Fixed by decimating (Version \#2 - \#5)
- Frequency Response is Very Poor
- DTFT of Rectangular Window
- Thus, stopband attenuation is very bad and passband falls off
- Fixed by using non-rectangular window (Versions \#3 \#5)
- Filters MUST have same length as number of channels
- Fixed in Versions \#4 \& \#5
- Use DSP trick in Version \#4
- Use Polyphase Structure in Version \#5

Version \#2: Decimate Output

Q: Can we decimate each channel's output and still be able to get back the original signal after synthesis?
A: Yes... overlapping of the DFT windows is excessive!!!

Different View of Version \#2

Synthesis
Blocks Into CDFT

Different View of Version \#2 (cont.)

Version \#3: Non-Rectangular Window

Different View of Version \#3

Ver. \#4: Arbitrary Size Wind., Sliding DFT

- Version \#3 Has Severe Limitation:
- Window size is set by number of channels desired
- May force a short window (filter) size
- But... long filters are often needed to get desired frequency response
- To see how to remove this limitation, back to the Math View:

Recall Math View of Version \#1 M-Pt. DFT

$$
u_{m}[n]=\sum_{i=0}^{M-1} x[n-i] W_{M}^{i m} \quad m=0,1, \ldots, M-1
$$

Math View of Version \#3

$$
u_{m}[n]=\sum_{i=0}^{M-1} x[n M-i] w[i] e^{j 2 \pi m i / M} \quad m=0,1, \ldots, M-1
$$

Window Length $=M$ (\# Channels)
Dec. Factor $=M$ (Non-Overlapped Blocks)

Version \#4 (cont.)

Math View of Version \#4

$$
u_{m}[n]=\sum_{i=0}^{L-1} x[n D-i] w[i] e^{-j 2 \pi m i / M} \quad m=0,1, \ldots, M-1
$$

(L-pt sum but.. M Freq. Pts)
$D=$ Dec. Factor $\quad M=$ \# Channels $\quad L=$ Window Length

$$
D \leq M<L
$$

If it is NOT a DFT, What IS it??!!

Do for Each
$m=0,1, \ldots, M-1$
To Get The Channels

Version \#4: Summary

- Design of Filter Bank
- Assume that \# of Channels, M, has been specified
- Usually pick M as power of two to allow use of FFT
- Choose Window Shape and Window Length, L, to give desired passband and stopband characteristics
- To enable good filter, pick $L>M$; also pick L as (integer) $\times \mathrm{M}$
- Choose Decimation Factor, D, as large as possible ($D \leq M$) without generating excessive inter-band aliasing
- Algorithm Implementation
- Apply L-pt window to current signal block
- Break windowed L-pt block into M-pt sub-blocks
- Add all the M-pt sub-blocks together to get a single M-pt block
- Compute the M-pt DFT (using FFT algorithm)
- Each DFT coefficient is the current output of a channel
- Move the L-pt window ahead D points

For Synthesis: Crochiere \& Rabiner, Multirate Digital Signal Processing, Prentice Hall, 1983.

Ver. \#5: Arb. Size Wind., Polyphase, DFT

Recall Math View of Version \#4

$$
\begin{aligned}
u_{m}[n] & =\sum_{i=0}^{L-1} x[n M-i] \underbrace{g_{0}[i] e^{j 2 \pi m i / M}}_{\Delta g_{m}[i]}, \quad m=0,1, \ldots, M-1 \\
& =\left\{x * g_{m}\right\}_{(\downarrow M)}[n]
\end{aligned}
$$

$$
\begin{gathered}
\text { Minor Changes } \\
\hline w[n] \rightarrow g_{0}[n] \\
D \rightarrow M
\end{gathered}
$$

View: Each channel of FB consists of filter $g_{m}[n]$ that is a frequency-shifted version of a prototype lowpass filter $g_{0}[n]$. (All the uniform FBs we've looked at can be viewed this way.)

In the Frequency \& Z Domains this is:
Frequency Shift

$$
\begin{aligned}
g_{m}[n]=g_{0}[n] \underbrace{e^{j 2 \pi m n / M}}_{W_{M}^{m n}} & \leftrightarrow \quad G_{m}^{\mathrm{f}}(\theta)=G_{0}^{\mathrm{f}}(\theta-2 \pi m / M) \\
& \leftrightarrow \quad G_{m}^{\mathrm{z}}(\mathrm{z})=G_{0}^{\mathrm{z}}\left(\mathrm{z} W_{M}^{-m}\right)
\end{aligned}
$$

Ver. \#5: Development

Approach: 1. Write the prototype LPF in its polyphase terms
2. Modulate result to get the channel filters
3. Use result to write pre-decimation channel output
4. Write post-decimation channel output

Step \#1

$$
G_{0}^{Z}(z)=\sum_{i=0}^{M-1} z^{-i} P_{i}^{Z}\left(z^{M}\right)
$$

Step \#3
$U_{m}^{z}(z)=G_{m}^{z}(z) X^{z}(z)>$

$$
U_{m}^{\mathrm{Z}}(\mathrm{z})=\sum_{i=0}^{M-1} W_{M}^{i m} \underbrace{P_{i}^{\mathrm{z}}\left(\mathrm{z}^{M}\right) \underbrace{\mathrm{z}^{-i} X^{\mathrm{Z}}(\mathrm{z})}_{\text {view as input }}}_{\text {apply decimation identity }}
$$

Step \#2

$$
\begin{aligned}
G_{m}^{\mathrm{z}}(\mathrm{z}) & =G_{0}^{\mathrm{z}}\left(z W_{M}^{-m}\right) \\
U_{U} & =\sum_{i=0}^{M-1}\left(z W_{M}^{-m}\right)^{-i} P_{i}^{\mathrm{z}}(z^{M} \underbrace{W_{M}^{-m M}}_{=1}) \\
& =\sum_{i=0}^{M-1} W_{M}^{i m} z^{-i} P_{i}^{\mathrm{Z}}\left(z^{M}\right)
\end{aligned}
$$

Step \#4

Ver.\#5: Interpret $U_{m}^{z}(z)=\sum_{i=0}^{M-1} W_{M}^{i m} P_{i}^{z}(z)\{\underbrace{\left\{z^{-i} X^{z}(z)\right.}\}\left(\iota_{M}\right)$

Ver. \#5: Synthesis

Ver. \#5: Synthesis - Does it Work?

Here's where we were on the last slide:

$$
Y^{\mathrm{z}}(\mathrm{z})=\sum_{i=0}^{M-1}\left\{\left\{z^{-i} X^{\mathrm{z}}(\mathrm{z})\right\}_{(\downarrow M)} P_{i}^{\mathrm{z}}(\mathrm{z}) Q_{i}^{\mathrm{z}}(\mathrm{z})\right\}_{(\uparrow M)} z^{-(M-1-i)}
$$

Use Z-Domain result for $\downarrow M$ operation:

$$
Y^{\mathrm{z}}(\mathrm{z})=\sum_{i=0}^{M-1}\left\{\left[\frac{1}{M} \sum_{m=0}^{M-1}\left(z^{1 / M} W_{M}^{-m}\right)^{-i} X^{\mathrm{z}}\left(z^{1 / M} W_{M}^{-m}\right)\right] P_{i}^{\mathrm{z}}(z) Q_{i}^{\mathrm{z}}(\mathrm{z})\right\}_{(\uparrow M)} z^{-(M-1-i)}
$$

Use Z-Domain result for $\uparrow M$ operation:

$$
\begin{aligned}
& Y^{\mathrm{z}}(\mathrm{z})=\sum_{i=0}^{M-1}\left[\frac{1}{M} \sum_{m=0}^{M-1}\left(z W_{M}^{-m}\right)^{-i} X^{\mathrm{z}}\left(\mathrm{z} W_{M}^{-m}\right)\right] P_{i}^{\mathrm{z}}\left(\mathrm{z}^{M}\right) Q_{i}^{\mathrm{Z}}\left(\mathrm{z}^{M}\right) \mathrm{z}^{-(M-1-i)} \\
& =z^{-(M-1)} \sum^{M-1} X^{\mathrm{Z}}\left(z W_{M}^{-m}\right)\left[\frac{1}{M} \sum^{M-1} W_{M}^{i m} P_{i}^{\mathrm{z}}\left(z^{M}\right) Q_{i}^{\mathrm{z}}\left(\mathrm{z}^{M}\right)\right] \quad \text { Reconstruction } \\
& \text { Want }=c Z^{-l} \delta[\mathrm{~m}] \\
& \text {... to get this }=c z^{-l} X^{\mathrm{z}}(z)
\end{aligned}
$$

Ver. \#5: Perfect Recon Criteria

Look at what we saw on the last slide:

$$
\underbrace{\frac{1}{M} \sum_{i=0}^{M-1} W_{M}^{i m} P_{i}^{\mathrm{Z}}\left(z^{M}\right) Q_{i}^{\mathrm{z}}\left(z^{M}\right)}_{\text {IDFT of } P_{i}^{\mathrm{Z}}\left(z^{M}\right) Q_{i}^{\mathrm{Z}}\left(z^{M}\right)}=c z^{-l} \delta[m]
$$

Taking DFT of each side gives an Equivalent PR Criteria:

$$
P_{i}^{\mathrm{z}}\left(\mathrm{z}^{M}\right) Q_{i}^{\mathrm{z}}\left(\mathrm{z}^{M}\right)=c z^{-l}, \quad 0 \leq i \leq M-1
$$

- General Filter Designs to Meet This are HARD!!! (We Won’t Cover It)
- Special Cases:
- Version \#2 is.... $\quad P_{i}(z)=Q_{i}(z)=1, \quad 0 \leq i \leq M-1$
- Version \#3 is.... $P_{i}(z)=w[i] \& Q_{i}(z)=1 / w[i], \quad 0 \leq i \leq M-1$

