11.10.1 Uniform DFT Filter Banks

Uniform DFT Filter Banks

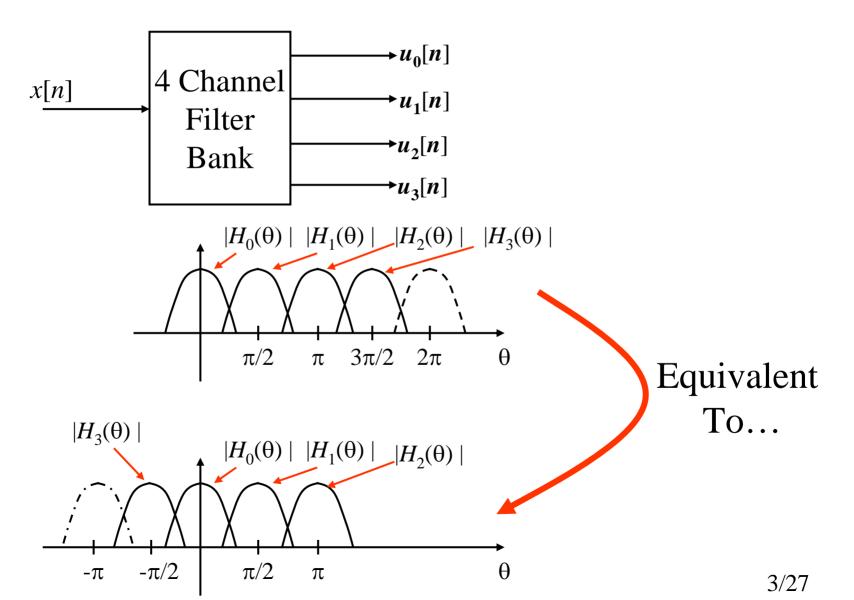
We'll look at 5 versions of DFT-based filter banks – all but the last two have serious limitations and aren't practical. But... they give a nice transition to the <u>last two</u> <u>versions</u> – which <u>ARE useful and practical methods</u>.

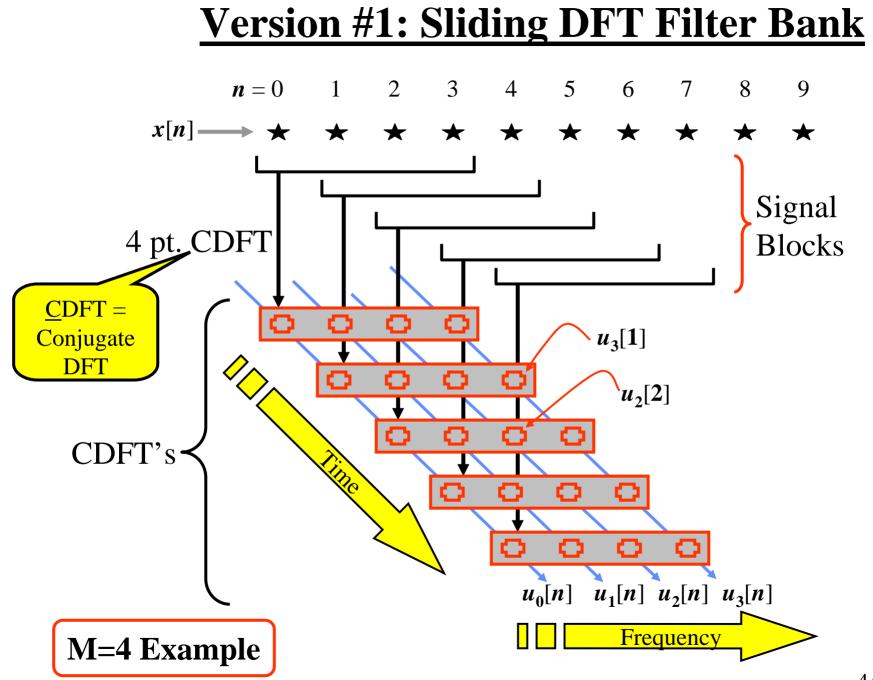
Version #2	<u>Un</u> decimated	Rect. Window	Sliding DFT
(Not in P&M)	(Filter Size = # Channels)	
Version #2	2 Decimated	Rect. Window	Sliding DFT
(Not in P&M)		(Filter Size = # Channels)	
Version #3	B Decimated	Non-Rect Window	Sliding DFT
(Not in P&M)		(Filter Size = # Channels)	
Version #4	Decimated	Arbitrary Window	Sliding DFT
(Not in P&M)	(Filter Size <u>Arbitrary</u>)	
Version #5	Decimated	Polyphase Filter	DFT
(11.10.1)		(Filter Size <u>Arbitrary</u>)	

Only Versions 4 & 5 are Practical Methods

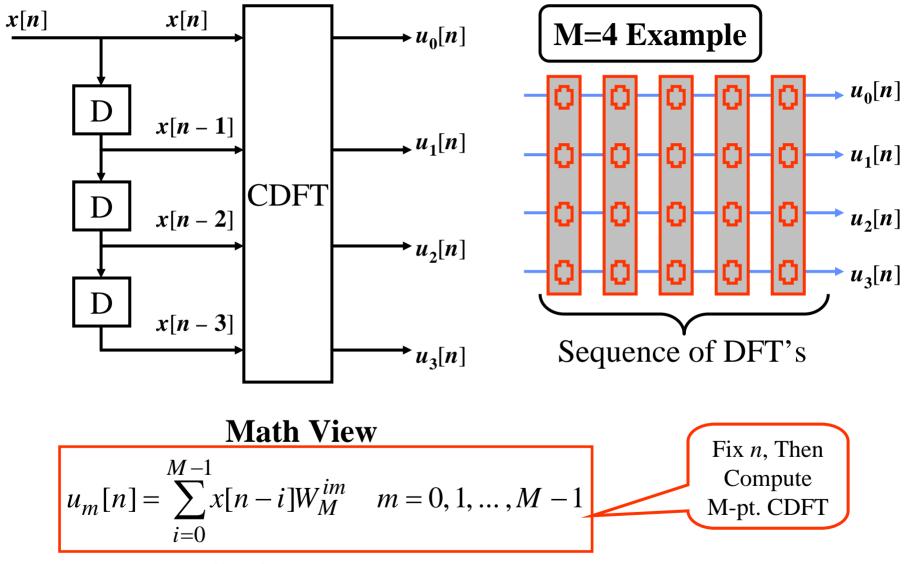
Setting for Versions 1, 2, & 3

We will illustrate with a four channel case:





Different View of Version #1



Note: Conjugate DFT Form

Math Shows this DOES give Filter Bank

Output of this structure is:

$$u_{m}[n] = \sum_{i=0}^{M-1} x[n-i] W_{M}^{im}$$

= {x * g_m}[n] where g_m[n] = W_{M}^{nm} 0 \le n \le M-1

Thus, the m^{th} output signal is the linear convolution of the input signal with the impulse response $g_m[n]$.

Q: What is the *m*th filter's <u>Transfer Function</u>?

$$G_{m}^{z}(z) = \sum_{n=0}^{M-1} W_{M}^{nm} z^{-n}$$

= $\frac{1 - (zW_{M}^{-m})^{-M}}{1 - (zW_{M}^{-m})^{-1}}$ \checkmark $\underbrace{\frac{\text{Use Geom. Sum Result}}{\sum_{n=N_{1}}^{N_{2}-1} a^{n} = \frac{a^{N_{1}} - a^{N_{2}}}{1 - a}}$

Math Shows ... (con.t)

Q: What is the *mth* filter's <u>Frequency Response</u>?

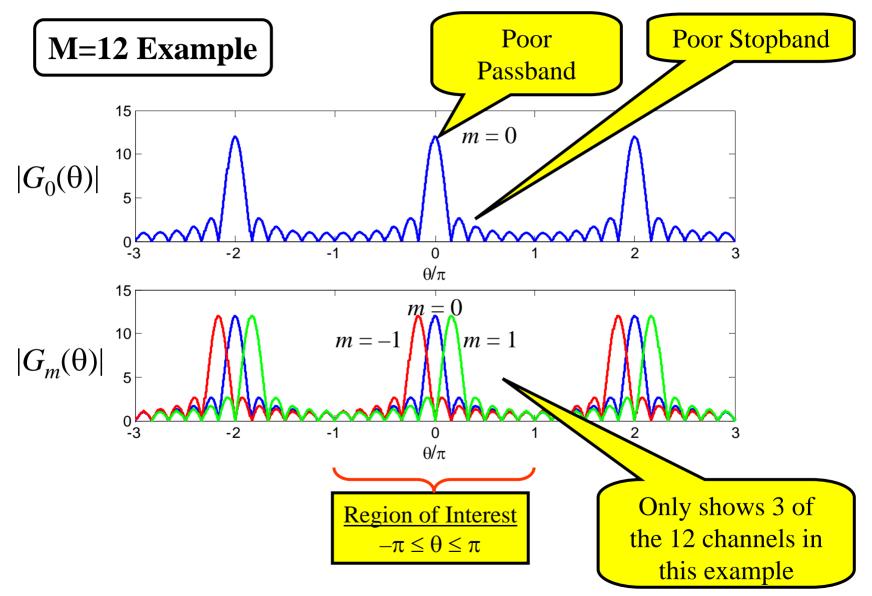
$$G_{m}^{f}(\theta) = G_{m}^{z}(z)\Big|_{z=e^{j\theta}}$$

$$= \frac{1 - e^{-jM(\theta - 2\pi m/M)}}{1 - e^{-j(\theta - 2\pi m/M)}}$$

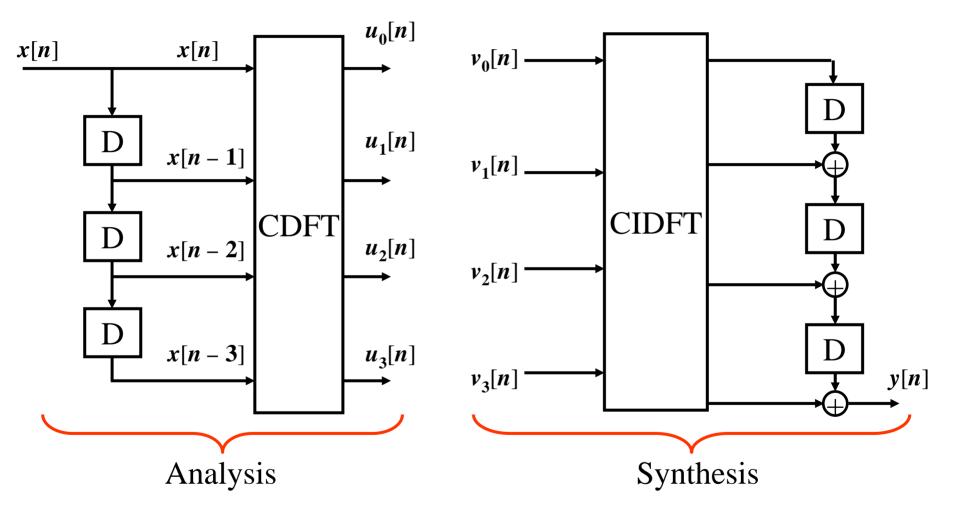
$$= \frac{\sin[0.5M(\theta - 2\pi m/M)]}{\sin[0.5(\theta - 2\pi m/M)]}e^{-j0.5(\theta - 2\pi m/M)(M-1)}$$
• Looks sort of like sinc function: Dirichlet Kernel
• Centered at $\theta = 2\pi m/M$ rad/sample

<u>Note</u>: The window determines the shape of the frequency response. The rectangular window used here makes a poor filter!!!

Frequency Response of Version #1 Filterbank

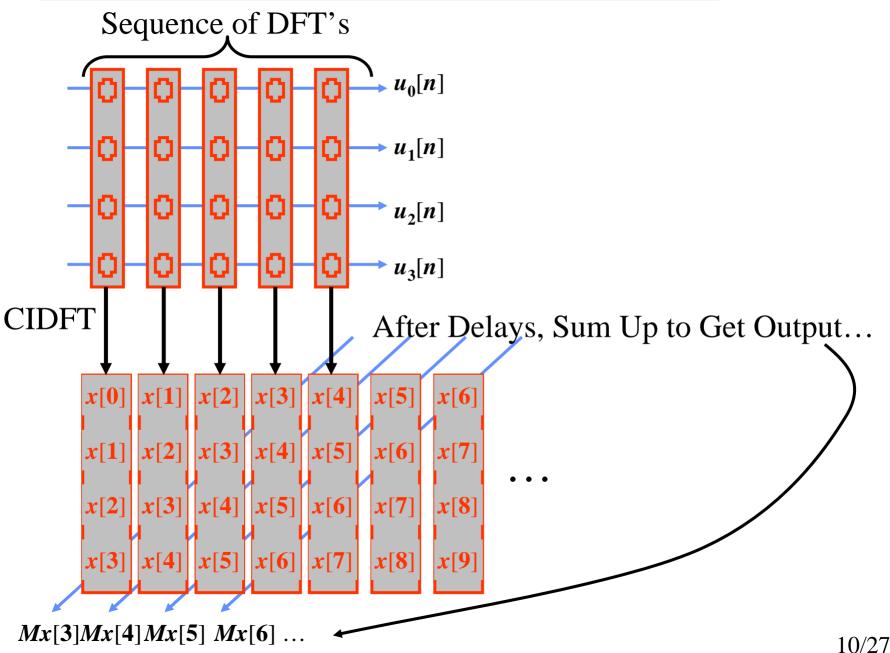


Synthesis Bank for Version #1 Filterbank



CIDFT: Includes 1/M term (not in book!)

Synthesis Bank for Version #1 (cont.)

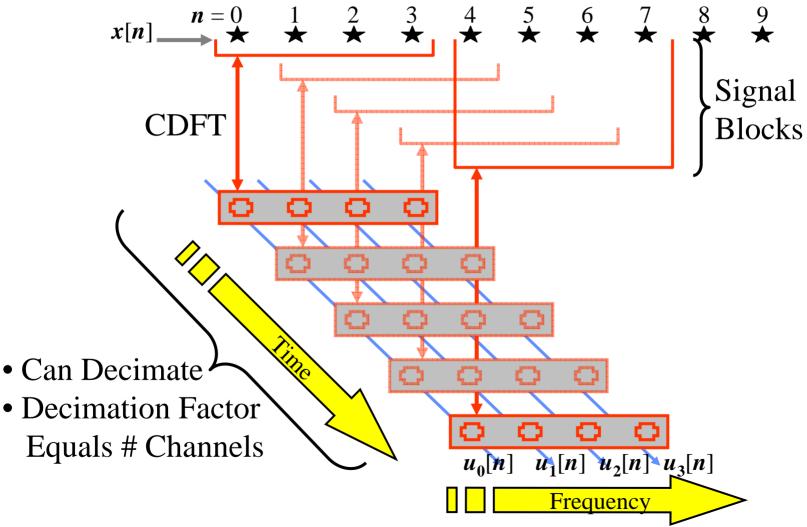


- Total sample rate out of analysis bank is M times input
 - This is redundant and is detrimental in applications like data compression
 - Fixed by decimating (Version #2 #5)
- Frequency Response is Very Poor
 - DTFT of Rectangular Window
 - Thus, stopband attenuation is very bad and passband falls off
 - Fixed by using non-rectangular window (Versions #3 #5)
- Filters MUST have same length as number of channels
 - Fixed in Versions #4 & #5
 - Use DSP trick in Version #4
 - Use Polyphase Structure in Version #5

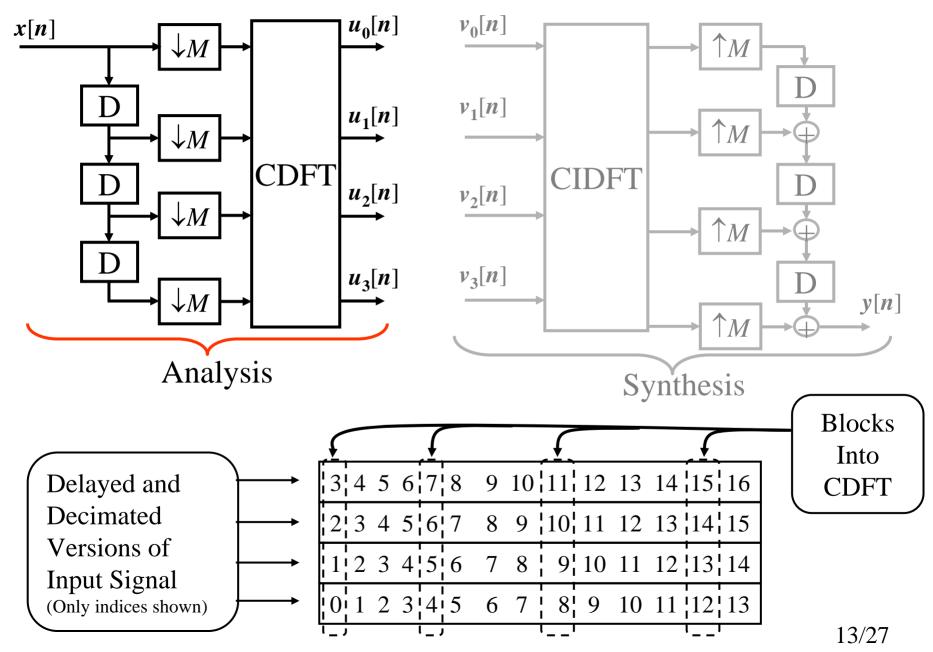
Version #2: Decimate Output

Q: Can we decimate each channel's output and still be able to get back the original signal after synthesis?

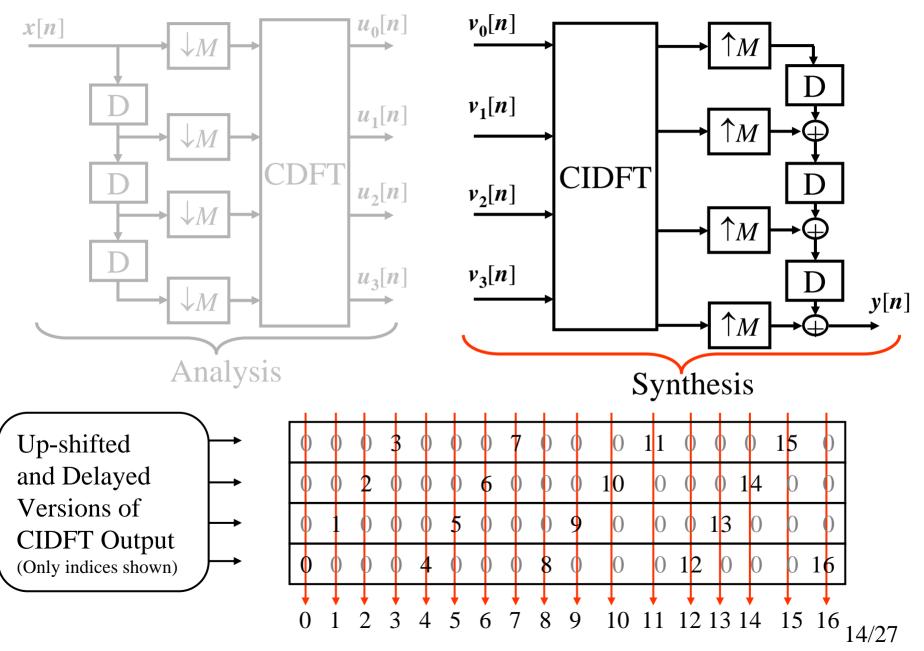
<u>A</u>: Yes... overlapping of the DFT windows is excessive!!!

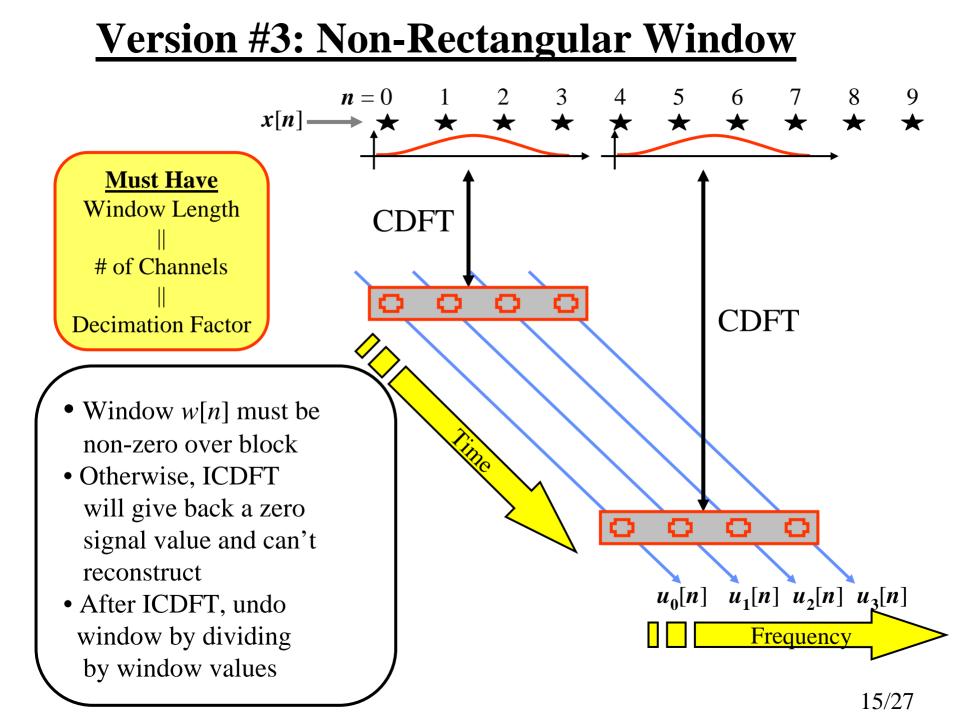


Different View of Version #2

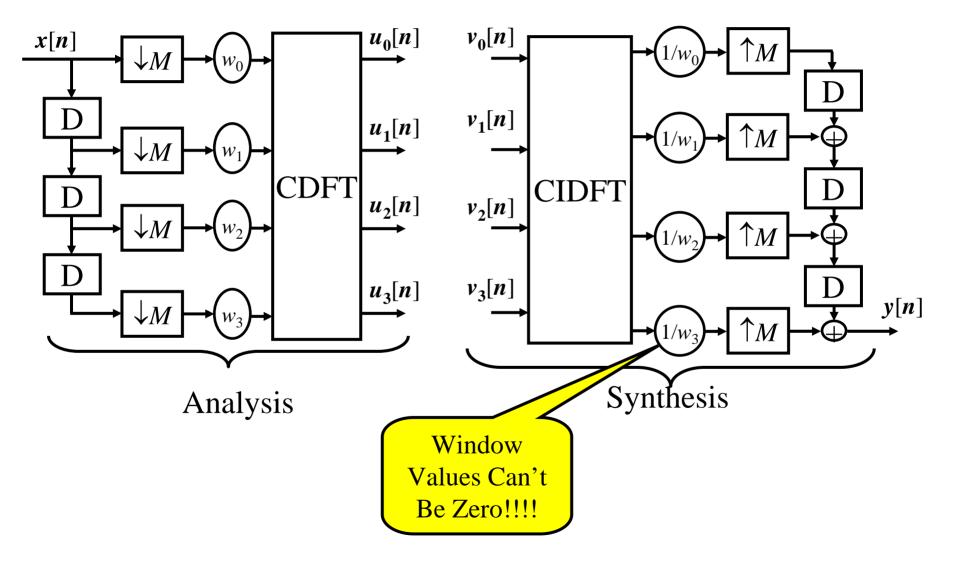


Different View of Version #2 (cont.)



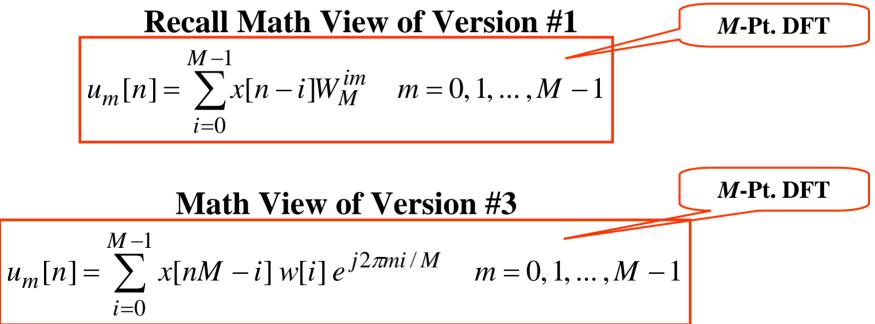


Different View of Version #3



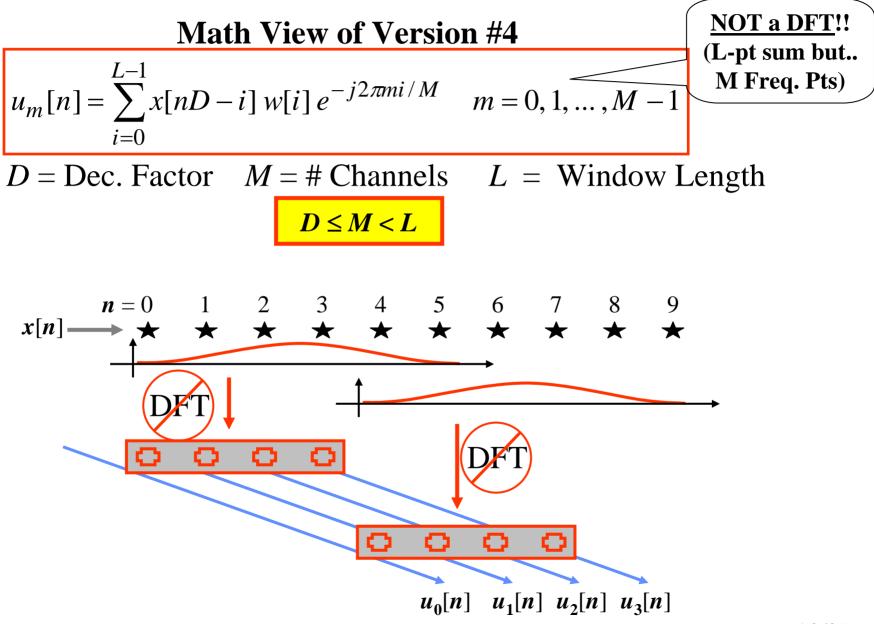
Ver. #4: Arbitrary Size Wind., Sliding DFT

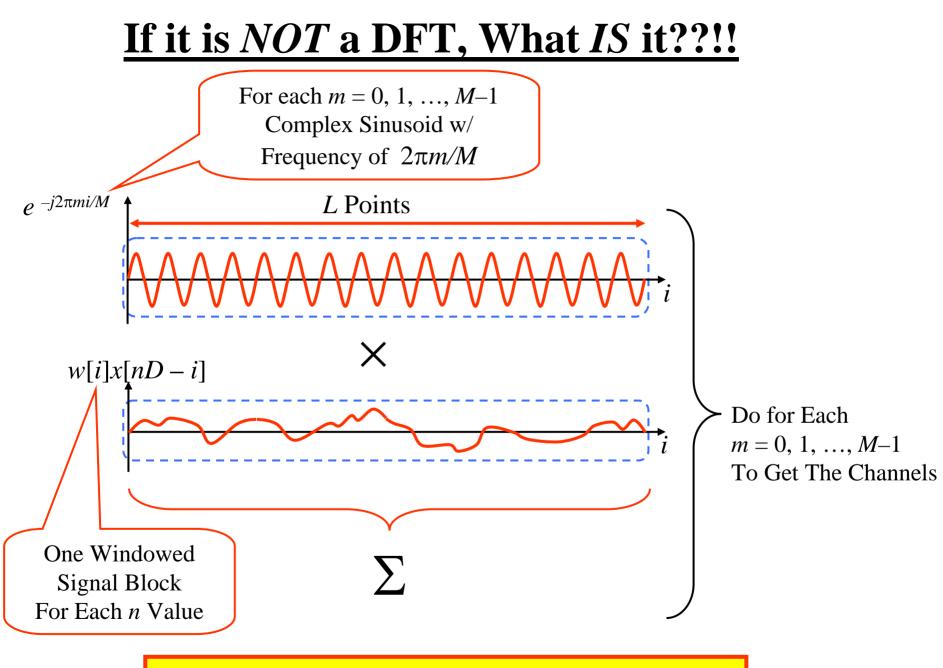
- Version #3 Has Severe Limitation:
 - Window size is set by number of channels desired
 - May force a short window (filter) size
 - But... long filters are often needed to get desired frequency response
- To see how to remove this limitation, back to the Math View:



Window Length = M (# Channels) Dec. Factor = M (Non-Overlapped Blocks)

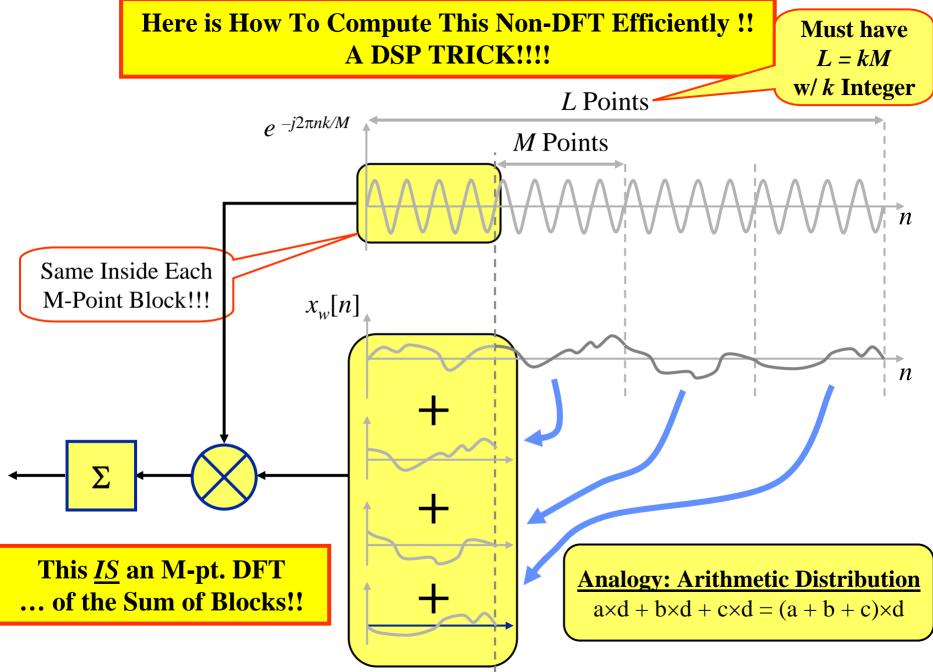
Version #4 (cont.)





OK, ... But How To Compute This Efficiently ??!!

19/27



Version #4: Summary

• Design of Filter Bank

Called "Overlap & Add DFT-Based Filter Bank"

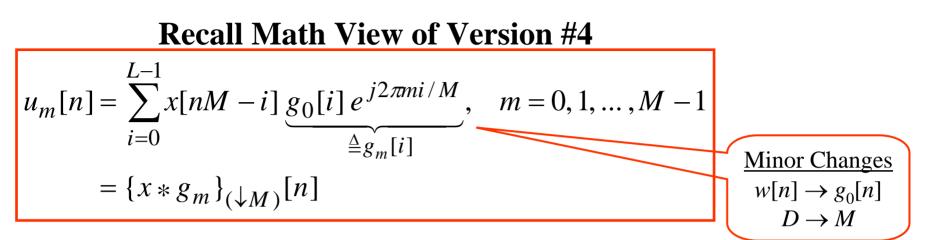
See copied pages posted on Blackboard

21/27

- Assume that $\underline{\# \text{ of Channels, } M}$, has been specified
 - ► Usually <u>pick *M* as power of two</u> to allow use of FFT
- Choose <u>Window Shape</u> and <u>Window Length</u>, *L*, to give desired passband and stopband characteristics
 - ► To enable good filter, <u>pick L > M</u>; also <u>pick L as (integer)×M</u>
- Choose <u>Decimation Factor</u>, *D*, as large as possible ($D \le M$) without generating excessive inter-band aliasing
- Algorithm Implementation
 - Apply *L*-pt window to current signal block
 - Break windowed *L*-pt block into *M*-pt sub-blocks
 - Add all the *M*-pt sub-blocks together to get a single *M*-pt block
 - Compute the *M*-pt DFT (using FFT algorithm)
 - ► Each DFT coefficient is the current output of a channel
 - Move the *L*-pt window ahead *D* points

For Synthesis: Crochiere & Rabiner, *Multirate Digital Signal Processing*, Prentice Hall, 1983.

Ver. #5: Arb. Size Wind., Polyphase, DFT



<u>View</u>: Each channel of FB consists of filter $g_m[n]$ that is a frequency-shifted version of a prototype lowpass filter $g_0[n]$. (All the uniform FBs we've looked at can be viewed this way.)

In the Frequency & Z Domains this is:

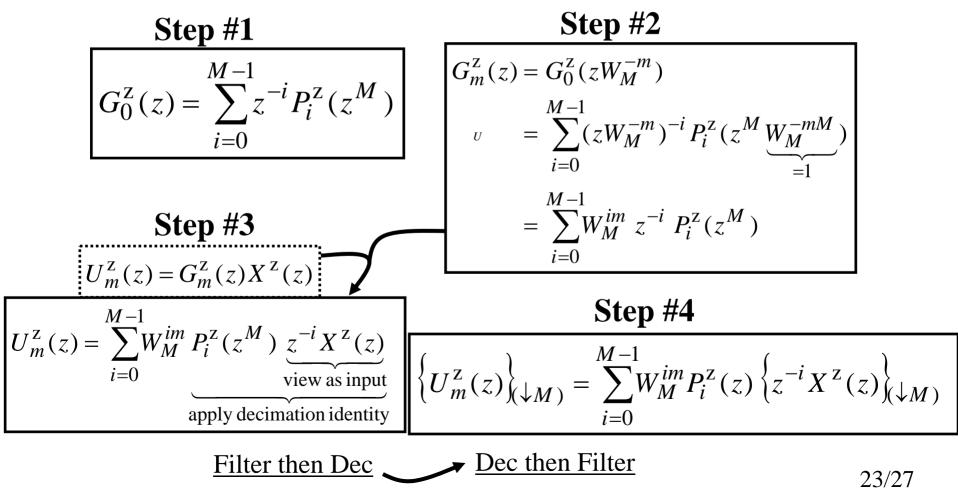
$$g_m[n] = g_0[n] \underbrace{e^{j2\pi mn/M}}_{W_M^{mn}} \iff G_m^f(\theta) = G_0^f(\theta - 2\pi m/M)$$

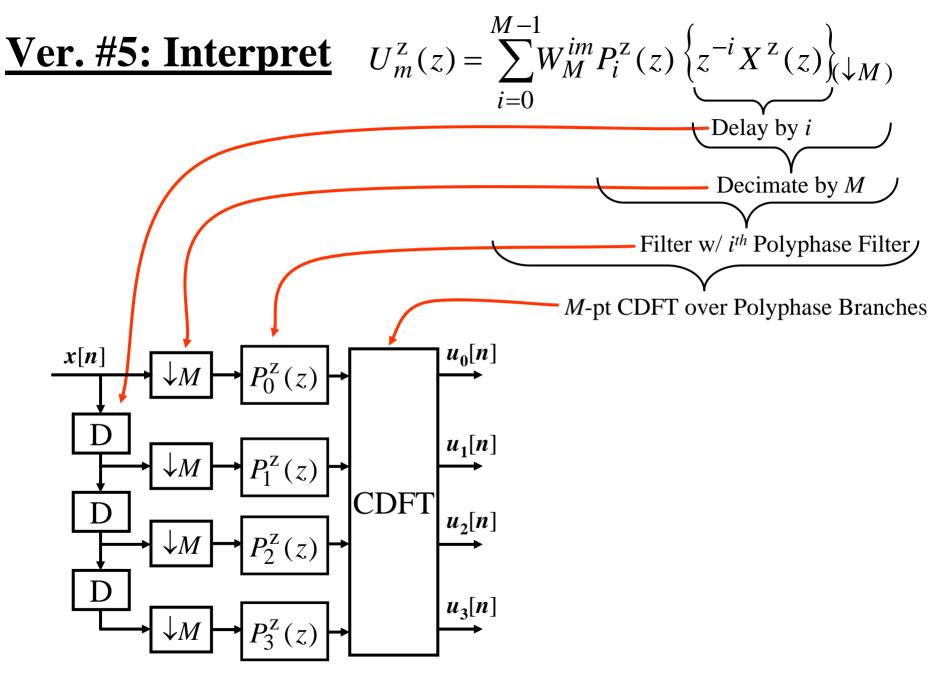
$$\iff G_m^z(z) = G_0^z(zW_M^{-m})$$

Ver. #5: Development

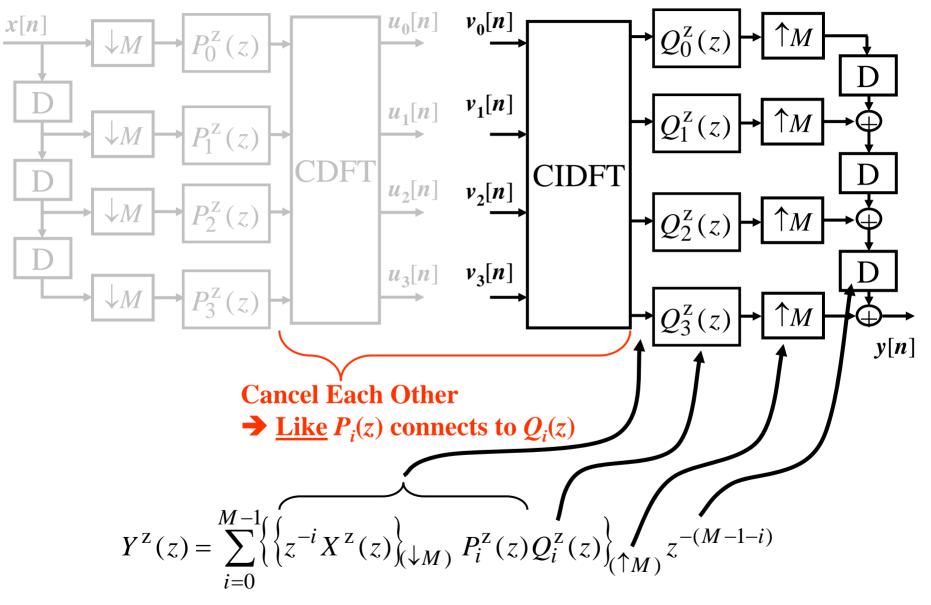
<u>Approach</u>: 1. Write the prototype LPF in its polyphase terms

- 2. Modulate result to get the channel filters
- 3. Use result to write pre-decimation channel output
- 4. Write post-decimation channel output





Ver. #5: Synthesis



Ver. #5: Synthesis – Does it Work?

Here's where we were on the last slide:

$$Y^{Z}(z) = \sum_{i=0}^{M-1} \left\{ \left\{ z^{-i} X^{Z}(z) \right\}_{(\downarrow M)} P_{i}^{Z}(z) Q_{i}^{Z}(z) \right\}_{(\uparrow M)} z^{-(M-1-i)}$$

Use Z-Domain result for $\downarrow M$ operation:

$$Y^{z}(z) = \sum_{i=0}^{M-1} \left\{ \left[\frac{1}{M} \sum_{m=0}^{M-1} (z^{1/M} W_{M}^{-m})^{-i} X^{z} (z^{1/M} W_{M}^{-m}) \right] P_{i}^{z}(z) Q_{i}^{z}(z) \right\}_{(\uparrow M)} z^{-(M-1-i)}$$

Use Z-Domain result for
$$\uparrow M$$
 operation:

$$Y^{z}(z) = \sum_{i=0}^{M-1} \left[\frac{1}{M} \sum_{m=0}^{M-1} (zW_{M}^{-m})^{-i} X^{z} (zW_{M}^{-m}) \right] P_{i}^{z}(z^{M}) Q_{i}^{z}(z^{M}) z^{-(M-1-i)}$$
Requirement
for Perfect
Reconstruction
$$= z^{-(M-1)} \sum_{m=0}^{M-1} X^{z} (zW_{M}^{-m}) \left[\frac{1}{M} \sum_{i=0}^{M-1} W_{M}^{im} P_{i}^{z}(z^{M}) Q_{i}^{z}(z^{M}) \right]$$
Want = $cz^{-i} \delta[m]$
... to get this = $cz^{-i} X^{z}(z)$
This gives "Perfect Reconstruction" 26/27

Ver. #5: Perfect Recon Criteria

Look at what we saw on the last slide:

$$\frac{1}{M} \underbrace{\sum_{i=0}^{M-1} W_M^{im} P_i^z(z^M) Q_i^z(z^M)}_{\text{IDFT of } P_i^z(z^M) Q_i^z(z^M)} = cz^{-l} \delta[m]$$

Taking DFT of each side gives an Equivalent PR Criteria:

$$P_i^z(z^M)Q_i^z(z^M) = cz^{-l}, \quad 0 \le i \le M-1$$

- General Filter Designs to Meet This are HARD!!! (We Won't Cover It)
 - <u>Special Cases</u>:
 - ► <u>Version #2</u> is.... $P_i(z) = Q_i(z) = 1, \quad 0 \le i \le M-1$
 - ► <u>Version #3</u> is.... $P_i(z) = w[i]$ & $Q_i(z) = 1/w[i]$, $0 \le i \le M-1$