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Multistage Rate Change
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Motivation for Multi-Stage Schemes
Consider Decimation:

When M is large (typically > 10 or so) it is usually 
inefficient to implement decimation in a single step (i.e., in a
single stage).

The Culprit: Large M requires the LPF to have a stopband 
edge of θs = π/M, which is small for large M

Need a LPF with a very narrow passband
Requires a long FIR filter
Inefficient since long filters require a large # of multiplies

Solution: If M can be factored into a product of integers 
(M = M1 M2 M3… Mp).  Then decimation by M can be done by:

H1(z) ↓M1

x[n]
H2(z) ↓M2 Hp(z) ↓Mp

y[n]…

1st Stage 2nd Stage pth Stage
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Trick to Get Efficiency from Multi-Stage
The design of H1(z) (& other “front-end” stages) can be 
relaxed from what you would use for a single-stage design.
Certainly, you need H1(z) to have θs = π/M1 > π/M  so no 
aliasing occurs after ↓M1….

But… it is even better than that.
Can let θs > π/M1 … which lets some aliasing occur

But… only so much aliasing – such that the aliasing that 
occurs gets suppressed by the next filter, H2(z)

Higher Stopband Edge Shorter Filter More Efficient
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Let’s See Why for a 2-Stage Case

H(z) ↓M
x[n] y[n]

Then we need

π θ
θp π/M

H(z)
Sharp Transition Long Filter

Say that the signal x[n] has “spectral content of worth” only up to 
frequency θ = θp < π/M… with  M = M1M2. 

Single-Stage Method
Suppose we decimate using a single-stage scheme:
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Let’s See Why for a 2-Stage Case (cont.)

After H1(z) but before ↓M1 we need:

θp

Slow Transition Short Filter

2-Stage Method
H1(z) ↓M1

x[n]
H2(z) ↓M2

y[n]u[n]

Same Passband as Single-Stage

π θ

H1(z)

M
M
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Let’s See Why for a 2-Stage Case (cont.)
Let’s see the impact of this slower transition on aliasing:
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Design Requirements
So… say you want to design a 2-stage multirate scheme instead 
of a 1-stage multirate scheme:

If single stage, say the specs need to be:
• Passband Cutoff = θp Passband Ripple = δp
• Stopband Cutoff = θs Stopband Level  = δs

For a 2-stage scheme, our above results say we need:
• 1st Stage

• θp,1 = θp δp,1 = δp/2
• θs,1 = (2M2-1)π/M > θs δs,1 = δs

• 2nd Stage
• θp,2 = M1θp δp,2 = δp/2
• θs,2 = π/M2 δs,2 = δs

Passband Ripple is 
split between 2 filters
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Goal: Decimation by M = 12
Filter Requirements

δp = 0.01 ← to give some desired fidelity (application specific)
δs = 0.001 ← to limit aliasing to desired level (application specific)

θp =  π/16 ← to pass desired band (application specific)
θs = π/12 = π/M ← to prevent aliasing for desired decimation rate

Example: How 2-Stage Reduces Computation

Single-Stage Method
Length of filter determines the # of computations

Use (10.2.94) in P&M to estimate filter order needed:
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Example: Single-Stage Method (cont.)
Using this order estimate for the given filter requirements gives:

N = 244   Length: L = N+1 = 245
Note: #’s given below differ slightly from book because it (wrongly) uses 
N instead of L in its computation estimates

Our chosen complexity measure: # Multiplies/Input Sample

Each output sample (after decimation): L Multiplies/Output Sample
There are M Input Samples/Output Sample (due to decimation)

(# Multiplies)/(Input Sample) 4.20
12
245

utinput/outp 
tmult/outpu 

≈===
M
L

M
L

Single-Stage Complexity = 20.4 multiplies/input
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Ex. Cont.: Double-Stage Method (M = M1M2: 12 = 3×4)

1st Stage
• θp,1 = θp = π/16 δp,1 = δp/2 = 0.005
• θs,1 = (2M2-1)π/M = 7π/12 δs,1 =  δs    = 0.001

Estimated filter order gives: N1 = 11 L1 = 12
So… Mult/Input = L1/M1 = 12/3 = 4

2nd Stage
• θp,2 = M1θp = 3π/16 δp,2 = δp/2 = 0.005
• θs,2 = π/M2 = π/4 δs,2 =  δs    = 0.001

Estimated filter order gives: N2 = 88 L2 = 89
So… Mult/Input = L2/(M1 M2) = 89/12 = 7.4

referenced back to input of whole system

Double-Stage Complexity = 4 + 7.4 = 11.4 multiplies/input
2-Stage has ≈ ½ Complexity of 1-Stage
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Comments on Multistage Method

Q: What happens in this example when order of stages is switched?
i.e., M1 = 4  and M2 = 3 (Left as Exercise!!!)

Similar ideas can be used for multistage interpolation

These 2-Stage design ideas can be extended to p-stage designs:
M = M1 M2 M3… Mp

The order of these multiple stages matters 
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Application: Multistage Rate Change
Convert Digital Audio Tape (DAT) format to Compact Disk (CD)

DAT uses  Fs = 48 kHz
CD    uses  Fs = 44.1 kHz 160

147
1603
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480
441

1048
101.44
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3
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×

160
147 RatioChange Rate ==

M
L

Single-Stage Approach:
↑147 H(z) ↓160

Fs = 48 kHz Fs = 7.056 MHz!!!!

Multiple-Stage Approach: L = 147 =   7×7×3
M = 160 =  5×8×4

↑7 H1(z) ↓5 ↑7 H2(z) ↓8 ↑3 H3(z) ↓4
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