Frequency Measurement in Noise

Porat Section 6.5

Frequency Meas. in Noise Problem

Want to now look at the effect of noise on using the DFT to measure the frequency of a sinusoid.

Assume Complex W

Consider <u>single</u> complex sinusoid case:

Assume Complex White Noise Gaussian, Zero-Mean Variance: $\sigma_{\nu}^{2} = \gamma_{\nu}$

$$y[n] = Ae^{j\theta_0 n} + v[n], \quad 0 \le n \le N - 1$$

Define: Input Signal-to-Noise Ratio (SNR):

$$SNR_i = \frac{\text{signal power}}{\text{noise power}} = \frac{A^2}{\sigma_v^2}$$
 In dB: $10\log_{10}\left(\frac{A^2}{\sigma_v^2}\right)$

Model for Windowed DTFT of Received Signal:

$$Y_w^{f}(\theta) = AW^{f}(\theta - \theta_0) + V_w^{f}(\theta)$$

Impact of Noise

- 1. Makes it difficult to "see" the signal peak
 - Need <u>signal peak</u> well above the <u>noise floor</u>
 - If not.... Might not <u>detect</u> presence of signal
- 2. Noise perturbs the peak location
 - Degrades accuracy of the frequency estimate

So Processing Needs To....

- First, <u>Detect</u> the Signal
 - Look for peaks in the DFT
- Then, Estimate the Frequency (and amplitude/phase)
 - Same as before

Need to do analysis to determine the performance of these two[†] processing tasks. → (Use DTFT in analysis rather than DFT)

[†] We'll only consider Detection Performance (see Porat's Book or EE522 for Estimation).

Signal Detection Analysis

Goal: Analyze relationships between peak level in DTFT due to signal and the noise floor height to answer:

Q: What parameters determine how high the signal's peak is above the noise floor?

DTFT of Windowed Noisy Signal:

$$Y_{w}^{f}(\theta) = DTFT \left\{ w[n] \left(Ae^{j\theta_{0}n} + v[n] \right) \right\}$$

$$= A \sum_{n=0}^{N-1} w[n] e^{j(\theta_{0} - \theta)n} + \sum_{n=0}^{N-1} w[n] v[n] e^{-j\theta n}$$
Signal Part
Noise Part

Signal Detection Analysis (pt. 2)

Signal part peaks at $\theta = \theta_0$, so look there:

$$Y_{w}^{f}(\theta_{0}) = A \sum_{n=0}^{N-1} w[n] + \sum_{n=0}^{N-1} w[n]v[n]e^{-j\theta_{0}n}$$
Peak Height = A "Boosted" by $\Sigma w[n]$

For Rect. Window this "Boost" is: $\sum_{n=0}^{N-1} w_R[n] = N$

Q: What is the boost for other windows?

Compare $\Sigma w[n]$ for other windows to that for the Rect window:

$$CG = \frac{\sum_{n=0}^{N-1} w[n]}{\sum_{n=0}^{N-1} w_R[n]} = \frac{\sum_{n=0}^{N-1} w[n]}{N}$$

Define Coherent Gain of Window

"Boost Lost" due to using a Non-Rect Window

- Note: $CG \le 1$ ("=" for Rect. Window)
- CG nearly independent of N

Signal Detection Analysis (pt. 3)

Re-write DTFT Peak Using CG:

 \rightarrow Output Peak = (Input Amplitude)×(N•CG)

However, the noise floor also increases.... So we need a way to measure "Improvement".... "Output SNR"

Signal Detection Analysis (pt. 4)

Output SNR =
$$SNR_o = \frac{\text{Power of DTFT's Signal Peak}}{\text{DTFT Noise Power at Peak}}$$

Signal Detection Analysis (pt. 5)

Now... need to look at the <u>average</u> output power:

Expected Value of 1st noise term is zero because $E\{v[n]\}=0$

$$E\left\{\left|Y_{w}^{f}(\theta_{0})\right|^{2}\right\} = \left(NA \times CG\right)^{2} + \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} w[n]w[m]E\left\{v[n]\overline{v}[m]\right\}e^{-j\theta_{0}(n-m)}$$
Use Sifting Prop.
$$\sigma_{v}^{2} \sum_{n=0}^{N-1} w^{2}[n]$$

Signal Peak's Power: $|(NA \times CG)^2|$

$$(NA \times CG)^2$$

Noise Power @ Peak: $\sigma_v^2 \sum_{n=0}^{N-1} w^2[n]$

$$\sigma_{v}^{2} \sum_{n=0}^{N-1} w^{2}[n]$$

Signal Detection Analysis (pt. 6)

Now... Can write expression for "Output" SNR:

$$SNR_{o} = \frac{(NA \times CG)^{2}}{\sigma_{v}^{2} \sum_{n=0}^{N-1} w^{2}[n]} = A^{2}(N \times CG)^{2} = N \times SNR_{i} \underbrace{\begin{bmatrix} N(CG)^{2} \\ N^{-1} \\ \sum_{n=0}^{N-1} w^{2}[n] \end{bmatrix}}_{SNR_{i}}$$

Now... To "simplify" define "Processing Gain" PG:

$$PG = \frac{N(CG)^{2}}{\sum_{n=0}^{N-1} w^{2}[n]} = \frac{N\left(\frac{1}{N}\sum_{n=0}^{N-1} w[n]\right)^{2}}{\sum_{n=0}^{N-1} w^{2}[n]} \longrightarrow PG = \frac{\left(\sum_{n=0}^{N-1} w[n]\right)^{2}}{\sum_{n=0}^{N-1} w^{2}[n]}$$

 $SNR_o = N \times PG \times SNR_i$

Measures Effect of Signal Environment

— Measures Effect of Window Type (i.e., Shape)

Measures Effect of Processing Length (Don't Count Zero-Pads!!!)

Signal Detection Analysis (pt. 7)

Comments

- Generally Need $SNR_o \ge 14$ dB to ensure reliable detection!
- $PG \le 1$ (with "=" for Rect Window)
- Coherent Gain (CG) vs. Processing Gain (PG)
 - CG relates Peak Level to Signal Amp: $Peak Level = N \times CG \times A$
 - PG relates Peak's SNR to Signal SNR: $SNR_o = N \times PG \times SNR_i$
- CG and PG are usually Specified in dB

 CG in dB: 10 log₁₀(CG)²

 PG in dB: 10 log₁₀PG

 Not Squared!

 Because PG is a Power Gain

Signal Detection Analysis (pt. 8)

Another View of Output SNR

Recall an earlier equation for output SNR:

$$SNR_o = \frac{(NA \times CG)^2}{\sigma_v^2 \sum_{n=0}^{N-1} w^2[n]}$$

Consider (for ease) the Rect Window (CG = 1 and $\Sigma w^2[n] = N$) so...

$$SNR_o = \frac{N^2 A^2}{N\sigma_v^2} = \frac{N^2 \times (\text{Input Signal Power})}{N \times (\text{Input Noise Power})}$$
 Signal Power Boosted by N^2
Noise Power Boosted only by N

Since the Signal is Boosted More Than the Noise, we get a Boost in SNR:

$$SNR_o = N \times SNR_i$$
 (recall : PG = 1 for Rect)

Signal Detection Analysis (pt. 9)

Yet Another View of Output SNR

Recall this form for the DTFT at the peak:

$$Y_{w}^{f}(\theta)\Big|_{\theta=\theta_{0}} = \left[A\sum_{n=0}^{N-1}w[n]e^{j(\theta_{0}-\theta)n}\right]_{\theta=\theta_{0}} + \left[\sum_{n=0}^{N-1}w[n]v[n]e^{-j\theta n}\right]_{\theta=\theta_{0}}$$

$$=A\sum_{n=0}^{N-1}w[n]e^{j(0)n} + \sum_{n=0}^{N-1}w[n]v[n]e^{-j\theta_{0}n}$$

$$Im$$

$$Re$$

Signal Terms Add "Coherently" ... Sum Grows Fast

Signal Terms Add "Incoherently"
... Sum Doesn't Grow As Fast

Signal Detection Analysis (pt. 9)

Impact of Actually Using DFT rather than DTFT

Although we did our analysis using the DTFT, the actual processing is done using the DFT.

Q: What Impact Does This Have?

Recall: DFT is DTFT computed on a grid

→ DTFT Peak May Not Fall On the Grid

Worst Case: Peak Halfway Between Grid Points

Signal Detection Analysis (pt. 10)

Impact of Actually Using DFT rather than DTFT (cont.)

Leads to Defining "Worst-Case" Gains:

<u>Use Worst-Case Gains</u>: when you need to be conservative in predicting detection performance!!