Frequency Measurement

Porat Section 6.4

Frequency Measurement Problem

In many applications it is necessary to estimate the frequencies of narrow spikes in the DTFT of a signal. Often these spikes are due to sinusoids in the underlying infiniteduration signal.

Examples:

- 1. Carrier Frequency of LPE Signal for Radio/Radar
- 2. Radar Pulse Train (Recall Electronic Warfare Example)

Frequency Measurement Processing

- 1. Collect *N* Samples of the Signal y[n] for $0 \le n \le N 1$
- 2. Apply Window: $y_w[n] = y[n]w[n]$ for $0 \le n \le N-1$
 - a. Usually use Non-Rectangular Window
- 3. Zero-Pad to M > N
 - a. Done to get Needed Frequency Bin Spacing
 - b. Also to get Power-of-Two to Enable FFT Use
 - c. Rule of Thumb: $M = 2^p \approx 4N$ (to get enough pts on a peak)
- 4. Compute *M*-pt. DFT using the FFT Algorithm
- 5. Find Peaks and Measure Frequency Location
 - a. Optional (but a good idea): Quadratic Fit & Interpolate

LS Gives Fit Coefficients: $a_0, a_1, a_2 \rightarrow \theta_{est} = -a_1/2a_2$

 $\frac{\text{Least-Squares Fit}}{\hat{X}^{\text{f}}(\theta) = a_2 \theta^2 + a_1 \theta + a_0}$ To Find the Peak, Set: $\frac{d}{d\theta} \hat{X}^{\text{f}}(\theta) = 0 \implies a_2 \theta + a_1 = 0$ $\implies \theta_{est} = \frac{-a_1}{2a_2}$

Note: Window First, Then Zero-Pad

Frequency Measurement Analysis

Use DTFT for analysis purposes

Consider the Two Complex Sinusoid Problem (Gives General Case Insight) $y[n] = A_1 e^{j(\theta_1 n + \phi_1)} + A_2 e^{j(\theta_2 n + \phi_2)}, \text{ for } n \in \mathbb{Z}$

DTFT of the infinite duration signal is:

$$Y^{f}(\theta) = 2\pi A_{1}\delta(\theta - \theta_{1})e^{j\phi_{1}} + 2\pi A_{2}\delta(\theta - \theta_{2})e^{j\phi_{2}}, \quad \theta \in [-\pi, \pi] \text{ Repeats Elsewhere}$$

But... what the finite-duration data will show is only the DTFT of the windowed signal $y_w[n]$:

$$\begin{split} Y_{w}^{\mathrm{f}}(\theta) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} Y^{\mathrm{f}}(\xi) W^{\mathrm{f}}(\theta - \xi) d\xi \\ &= \int_{-\pi}^{\pi} \left[A_{1} \delta(\theta - \theta_{1}) e^{j\phi_{1}} + A_{2} \delta(\theta - \theta_{2}) e^{j\phi_{2}} \right] W^{\mathrm{f}}(\theta - \xi) d\xi \\ &= A_{1} e^{j\phi_{1}} W^{\mathrm{f}}(\theta - \theta_{1}) + A_{2} e^{j\phi_{2}} W^{\mathrm{f}}(\theta - \theta_{2}) \end{split}$$

Frequency Measurement Analysis (pt. 2)

Frequency Measurement Analysis (pt. 3)

Plotting Comments

Usually Plot the Spectra in dB & Sometimes Normalized to 0 dB Max

$$20\log_{10}\left[\frac{\left|Y_{w}^{f}(\theta)\right|}{P_{y}}\right]$$
, where $P_{y} = \max\left\{Y_{w}^{f}(\theta)\right\}$

Ignoring ML/SL Interference for Now

- 1. $|Y_w(\theta)|$ has Peak Values of A_1P_w & A_2P_w
- 2. Ratio of peaks is A_1/A_2 , which in dB is

 $20\log_{10}[A_1 / A_2] = 10\log_{10}[A_1^2 / A_2^2]$ (Recall: Power of $Ae^{j\theta n}$ is A^2)

→ Peak Ratio in dB = Power Ratio in dB

- 3. Location of Peaks are at $\theta = \theta_1 \& \theta = \theta_2$
- 4. Sinusoid Phases are computed as $\phi_1 = \angle Y_w(\theta_1)$ & $\phi_2 = \angle Y_w(\theta_2)$

Computed Spectrum Provides Simple Way to Measure:

- Signal Powers and Power Ratios
- Signal Frequencies
- Signal Phases

<u>IF</u> ... ML/SL Interference can be made negligible

Frequency Measurement Analysis (pt. 4)

Making ML/SL Interference Negligible

- You can't always do this!!!
- Choose a Window with:
 - ML Width Narrower than expected $|\theta_2 \theta_1|$
 - SL level in dB relative to ML level exceeds maximum expected power separation of sinusoids

Impact of Non-Negligible ML/SL Interference

- <u>Severe Case</u>: Can't see Weak Signal's Peak
- <u>Moderate Case</u>: Perturbs Peak Location, Height, Phase Causes Inaccurate Measurements!!!