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Practical Spectral Analysis

(Porat Chapter 6)



2/22

Goal of Practical Spectral Analysis
Goal: Given a discrete-time signal x[n], use DFT (via FFT) 

to analyze its spectral content – in particular, to detect 
the presence of sinusoids and estimate their frequency.

Challenges: 
1. Available signal may be short (e.g., a radar signal 

may only be “on” for a very short time).
2. If the signal is long, then the spectral content may 

change with time (e.g., music spectrum changes with 
time) – so spectrum may be considered to be 
constant only a block-by-block basis where the 
blocks are short.

Both of these drive the need to apply the DFT to a short 
signal record Challenge = Resolution & Accuracy
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Example Application (Electronic Warfare) 
Intercept T seconds of a Radar Pulse Train p(t), Compute DFT, detect & 

estimate peaks to identify type of radar. 

“Underlying” Pulse Train is Periodic Fourier Series
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Since DFT shows samples of the 
DTFT of the finite duration signal 
we can study what the DFT gives us 
by looking at what the DTFT of a 
finite-duration signal looks like!! 
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Effect of Windowing

Porat Sections 6.1 and 6.2
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Basic Viewpoint of Signal Data  
We are given a finite # of signal samples, and want to use them 
to see the spectrum of the infinite-duration signal….
How well can we do that?

Math Model for having a finite # of samples:
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Implication of Window-Based Model 
Since the available data x[n] is related to the unavailable signal 
y[n] through multiplication we can use the Multiplication 
Theorem for DTFT (Eq. (2.103) in Porat) to find out what we get!
Thus, the DTFT of the signal data is related to the DTFT of the 
infinite-duration signal by: { }
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where the DTFT of the rect. window is:
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The “Dirichlet Kernel” D(θ,N)
• Looks like “sinc”, except periodic
• Mainlobe Gets Narrower as N↑
• Sidelobes “Get Lower” as N↑
• Height of Mainlobe = N

Looks more like delta as N↑
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Impact of Window
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Impact of Window (pt. 2)

Recall: F(θ)*δ(θ – α) = F(θ – α) so…. { }
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Consider a signal consisting of two complex sinusoids:
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Impact of Window (pt. 3)
Consider a signal consisting of two complex sinusoids 
closely spaced in frequency and similar in amplitude:
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Common Windows

Porat Section 6.3
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Desirable Window Properties
We’ve seen that to minimize the impact of a window we need the 
DTFT of the window Wf(θ) to have:

• Narrow Mainlobe
– Mainlobe Width usually measured “zero-to-zero”

•Small Sidelobe Levels
– Measured in dB relative to mainlobe peak
– Care about “Highest Sidelobe” & “Drop-off Rate”

We’ll see that there is an inherent trade-off between these two 
desires:

Lowering the Sidelobes Causes a Widening of the Mainlobe
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“Kernel” Wf(θ) for Rectangular Window
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Rectangular Window
This is what you get if you don’t explicitly apply some other type 
of window – it is due to the fact that you have only N signal 
samples available.

• Mainlobe Width = 4π/N Good!!!

Bad!!!
Need to get these lower!!!

But HOW????
•Sidelobe Levels

– Largest Sidelobe = –13 dB
– Sidelobe Drop-off Rate = –6 dB/octave  (except near ± π)
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Bartlett Window
Inspiration: Square the (non-dB) rect. kernel
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Bartlett Window (pt. 2) 

• Mainlobe Width = 8π/(N+1) ≈ 2 ×Wider Than Rect

Better than Rect
-27 dB vs. –13 dB

-12 dB/oct vs. -6 dB/oct
•Sidelobe Levels

– Largest Sidelobe = –27 dB
– Sidelobe Drop-off Rate = –12 dB/octave  (except near ± π)
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Hann Window (also called Hanning)
Inspiration: “Add” three shifted (non-dB) rect. kernels together to 
try to cancel sidelobes:

Hann Kernel
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Hann Window (pt. 2) 

• Mainlobe Width = 8π/(N) 2 ×Wider Than Rect

“Kernel” Wf(θ) for Hann Window
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Even Better than Bartlett
-32 dB vs. –27 dB

-18 dB/oct vs. -12 dB/oct
•Sidelobe Levels

– Largest Sidelobe = –32 dB
– Sidelobe Drop-off Rate = –18 dB/octave  (except near ± π)
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Hamming Window
Inspiration: Tweak Hann coefficients to get lower “highest SL”
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Hamming Window (pt. 2)

• Mainlobe Width = 8π/(N)
2 ×Wider Than Rect 
(same as Hanning)

Note: Both Rect & Hamming have –6 dB/oct drop-off
Note also: Both are discontinuous at window edge in time-domain

Even Better than Hanning
–43 dB vs. –32 dB

As Bad as Rect!!
–6 dB vs. –6 dB

• Sidelobe Levels
– Largest Sidelobe = –43 dB
– Sidelobe Drop-off Rate = –6 dB/octave  (except near ± π)



20/22

Drop-Off Rate & Discontinuity Order
Definition: If the window’s time-domain function is such that 
up to its (p-1)th derivative (but no higher) is continuous, then 
we say that the signal has p-order continuity.

Ex. Rectangular Window has 0-order continuity 
Triangular Window has 1-order continuity
Hamming Window has 0-order continuity

Result: A window that has continuity of order p will 
(generally) have a kernel that has a sidelobe drop-off rate 
of –(p+1)6 dB/oct

Rectangular Window has 0-order continuity:  - 6dB/oct   
Hamming Window has 0-order continuity: - 6dB/oct
Triangular Window has 1-order continuity: - 12dB/oct 
Hann Window         has 2-order continuity: - 18dB/oct
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Other Windows & Their Rationale
Lots of effort has been focused on designing good windows.  
Here are a few, with their design rationale and their “specs”

Blackman: “More Tweaking of Hann Coefficients”
ML Width = 12π/N SL Level = -57 dB Drop-Off = -18 dB/oct

Kaiser: “Minimize width for SL energy not exceeding  spec’d  % of total”
ML Width = variable SL Level = variable Drop-Off = -6 dB/oct

Dolph: “Minimize width for SL level not exceeding spec’d level”
ML Width = variable SL Level = variable Drop-Off = 0 dB/oct
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Comparison of Windows
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Data taken from table in F. J. Harris, “On the use of windows for harmonic analysis 
with the discrete Fourier transform,” Proc. IEEE, vol. 66, pp. 51 – 83, January 1978. 
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