
1/18

DFT-Based FIR Filtering

See Proakis & Manolakis 7.3

2/18

Motivation: DTFT View of Filtering
There are two views of filtering:

* Time Domain
* Frequency Domain)(

][
f θH

nh

)(

][
f θX

nx

)()()(

][*][][
fff θθθ XHY

nxnhny

=

=

The FD viewpoint is indispensable for analysis and design
of filters:

* Passband, Stopband, etc. of |Hf(θ)|
* Linearity of Phase ∠Hf(θ), etc.

Q: What about using DTFT for implementation?
* Compute DTFT of input signal and filter
* Multiply the two and take inverse DTFT

A: NO!!! Can’t compute DTFT – must compute at infinite
many frequency values

3/18

Desired Intention: But Does It Work?
But wait….
• If input signal is finite length, the DFT computes

“samples of the DTFT”
• Likewise, if filter impulse response is finite length

Q: So… can we use this?

N-pt
DFT

N-pt
DFT

N-pt
IDFT

x(0)
x(1)

:
x(N-1)

h(0) h(1) … h(N-1)

Do we get….
y(n) = h[n]*x[n]??

Hf[k]Xf[k]Xf[k]

4/18

DFT Theory and Cyclic Convolution
A: Not Necessarily!!!!

DFT Theory (Sect. 7.2.2 in Proakis & Manolakis) tells us:

Circular (Cyclic) Convolution

][*][]}[][{ ff nxnhkXkH ⊕=IDFT

Thus… this block diagram gives something called cyclic
convolution, not the “ordinary” convolution we want!!!

Q: When does it work???
A: Only when we “trick” the DFT Theory into making
circular = linear convolution!!!!!!

Q: So… when does Cyclic = Linear Convolution???

Easiest to see from an example!!!!!

5/18

Linear Convolution for the Example
What does linear convolution give for 2 finite duration signals:

Length N1 = 9

Length N2 = 5

x[n]

h[n]

Original Signals:

n

n

(flip, no shift – since n=0, multiply and add up)

First Non-Zero Output is at n=0:

n

n

x[n]

h[-n]

6/18

Linear Convolution for the Example (cont.)

Last Non-Zero Output is at n = N1 + N2 – 2 = 12:

(flip, shift by N1 + N2 – 2 = 12, multiply and add up)

The non-zero outputs are for n = 0, 1, … , 12 13 of them

In General: Length of Output of Linear Convolution = N1 + N2 – 1

n

n

x[n]

h[12 - n]

7/18

Now… What does cyclic convolution give for these 2 signals:

“Original” Signals: 1. Zero-Pad Shorter Signal to Length of Longer One
2. Then Periodize Each

Cyclic Convolution for the Example

“First” Output Sample: 1. Flip periodized version around this point
2. No shift needed to get n = 0 Output Value
3. Sum over one cycle

Same as in Linear Conv!!!! Not Present in Linear Conv!!!!

8/18

“Last” Output Sample (i.e., n = 8):

1. Flip periodized version around this point
2. Shift by 8 to get n = 8 Output Value
3. Sum over one cycle

Same as in Linear Conv!!!!

Note: If I try to compute the output for n = 9 Exactly the same case as for n = 0!!
Thus, the output is cyclic (i.e., periodic) with unique values for n = 0, 1, …. 8

In General: Length of Output of Cyclic Convolution = max{N1 , N2}

Linear Convolution for the Example (cont.)

9/18

Making Cyclic = Linear Convolution

From the example above we can verify:
If we choose K ≥ N1 + N2 – 1
And Zero-Pad Each Signal to Length K
Then Cyclic = Linear Convolution

N1 = Length of x[n]
N2 = Length of h[n]

Exercise: Verify this for the
above example!!!!

So…. Some of the output values of cyclic conv are different from linear conv!!!
Some of the output values of cyclic conv are same as linear conv

And….
The length of cyclic conv differs from the length of linear conv!!!

10/18

Why Do This?
The FFT’s Efficiency Makes This Faster

Than Time-Domain Implementation
(In Many Cases)

Why Do This?
The FFT’s Efficiency Makes This Faster

Than Time-Domain Implementation
(In Many Cases)

K-pt
FFT

K-pt
FFT

K-pt
IFFT

X(0)H(0)
X(1)H(1)

:
X(K-1)H(K-1)

The DFT of
h(n) is usually
Pre-Computed

The DFT of
h(n) is usually
Pre-Computed

x(0)
x(1)

:
x(N1-1)

0
:
0

h(0) h(1) … h(N2-1) 0 … 0
Zero-Pad Both to

Length K ≥ N1+N2−1
Zero-Pad Both to

Length K ≥ N1+N2−1

Simple Frequency-Domain Implementation
of FIR Filtering

y(0)
y(1)

:
:

y(K-1)

If K is Strictly > N1+N2−1
Then there will be extra zeros
here that can be ignored

11/18

Problems with the Simple FD Implementation
Q: What if N1 >> N2?
A: Then, need Really Big FFT Not Good!!!

(Input signal much longer than filter length)
Also… can’t get any output samples until after whole signal is
available and FFT processing is done. Long Delay.

Example: Filter 0.2 sec of a radar signal sampled at Fs = 50 MHz
N1 = (0.2 sec)×(50×106 samples/sec) = 107 samples
FFT Size > 107 Really Big FFT!!!!

Q: What if N1 is unknown in advance?
Example: Filtering a stream of audio

A: FFT size can’t be set ahead of time – difficult programming

Simple FD Implementation Has Serious Limitations!!!

12/18

Better FD-Based FIR Filter Implementations
Two Very Similar Methods Exist

• Overlap – Add (OLA)
• Overlap – Save (OLS)

Covered Here

The difference between OLA & OLS
lies in how the xi[n] blocks are formed

Use the Simple
FD-Based
Method to

Compute Each
Output Block∑

∑

=

=

=

=

i
i

i nz
i

nz

nhx
nhxnz

i

][

])[*(
])[*(][

][

∑=
i

i nxnx][][
Both methods exploit linearity of filter:

• Break input signal into a sum of blocks
• Output = sum of response to each block

13/18

OLA Method for FD-Based FIR

NB is a
Design Choice

For OLA: Choose xi[n] to be non-overlapped blocks of length NB
(blocks are contiguous)

⎩
⎨
⎧ +<≤

=
otherwise ,0

)1(],[
][BB

i
NiniNnx

nx

<See Fig. 5.8 (a) on next slide>

Q: Now what happens when each of these length-NB blocks gets
convolved with the length-N2 filter?

A: The output block has length N2+ NB – 1 > NB
* Output Blocks are Bigger than Input Blocks
* But are separated by NB points
* Thus… Output Blocks Overlap
* Total Output = “Sum of Overlapped Blocks”

<See Fig. 5.8 (b) – (d) on next slide>

“Overlap-Add”

14/18

Figure from Porat’s Book

15/18

OLA Method Steps
Assume: Filter h[n] length N2 is specified
Choose: Block Size NB & FFT Size NFFT = 2p ≥ NB + N2 – 1

Choose NB such that:
NB + N2 – 1 = 2p

It gives minimal complexity for method (see below)
Run:
Zero-Pad h[n] & Compute NFFT-pt FFT (can be pre-computed)
For each i value (“For Each Block”)

• Compute zi[n] using Simple FD-Based Method
Zero-Pad xi[n] & Compute NFFT-pt FFT
Multiply by FFT of h[n]
Compute IFFT to get zi[n]

• Overlap the zi[n] with previously computed output blocks
• Add it to the output buffer

<See Fig. 5.8 (e) on previous slide>

16/18

OLA Method Complexity
• The FFT of filter h[n] can be pre-computed Don’t Count it!
• We’ll measure complexity using # Multiplies/Input Sample
• Use 2NFFTlog2NFFT Real Multiplies as measure for FFT
• Assume input samples are Real Valued

Can do 2 real-signal FFT’s for price of ≈ 1 Complex FFT (Classic FFT Result!)

• For Each Pair of Input Blocks
One FFT: 2NFFTlog2NFFT Real Multiplies
Multiply DFT × DFT: 4NFFT Real Multiplies
One IFFT: 2NFFTlog2NFFT Real Multiplies
Total: 4NFFT [1 + log2NFFT] Real Multiplies

= 4(NB + N2 – 1) [1 + log2(NB + N2 – 1)]
• The Number of Input Samples = 2 Blocks = 2NB

• # Multiplies/Input Sample = 2(1 + (N2 – 1)/ NB) [1 + log2(NB + N2 – 1)]

17/18

Comparison to TD Method Complexity
Complexity of TD Method
•Filter h[n] has length of N2
• To get each output sample:

Multiply each filter coefficient by a signal sample: N2 Multiplies
• # Multiplies/Input Sample = N2 Multiplies

Condition Needed For OLA to Be More Efficient:

Thus… For a given N2, Choose NB to minimize the left-hand side

()[] 222
2 1log1112 NNN
N

N
B

B
<−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+

18/18

FD Complexity vs TD Complexity
Plot of: [Left-Hand Side]/[Right-Hand Side] of (5.38)

20 40 60 80 100 120 140 160 180 200
10

1

10
2

10
3

10
4

10
5

0.2

0.3

0.4
0.6

0.8

1

1.5

2.5

Filter Length N2

Bl
oc

k
S

ize
 N

B
Contours = (OLA Multiplies)/(TD Multiplies)

OLA More Efficient Only For
Filters Longer than 19

Optimal
Block Size
For Filter
Length of
≈ 125

(Compare
to Table

5.2 in
Porat)

	DFT-Based FIR Filtering

