I-1: Review of DT Signal & System Concepts

Notational Conventions (P-1.2)

<u>Recall</u>: We don't <u>want</u> Circular convolution – it is what we get if we try to <u>implement</u> Convolution in the frequency domain by multiplying DFT's (but not $D\underline{T}FT$'s) But... we can fix it so that it works.... We use proper zero-padding!!!

Transforms (P-2)

Proakis & Manolakis don't follow this Notation

Fourier Transforms for DT Signals (P-2.7, P-4, PM-4, PM-7)

<u>DTFT</u> = "In Head/On Paper" tool for analysis & design

- <u>**DFT**</u> = "In Computer" tool for <u>Implementation/Analysis&Design</u> (In both cases you generally strive to make the DFT behave like DTFT)
 - DFT for Implementation:
 - Compute DFT of signal to be processed and manipulate DFT values
 - May or may not need zero-padding (depends on application)
 - DFT for Analysis & Design:
 - Compute DFT of given filter's TF to see its frequency response
 - Generally use zero-padding to get fine grid to get approximate DTFT

DFT/DTFT Properties you Must Know:

• Periodicity...... (DFT&DTFT both periodic in FD)

..... (IDFT gives periodic TD signal)

- Time Shift...... (Time Shift in TD ⇔ Linear Phase Shift in FD)
- Frequency Shift...... (Mult. by complex sine in TD \ Freq Shift in FD)
- Convolution Theorem (Conv. in Time Domain ⇔ Mult. in Freq Domain)
- Multiplication Theorem...... (Mult. in Time Domain ⇔ Conv. in Freq Domain)
- Parseval's Theorem...... (Sum of Squares in TD = Sum of Squares in FD)

Summation Rules (P-1.3)

Make sure you are familiar with rules for dealing with summations, as shown in Section 1.3 of Porat.

In addition, a particular summation formula that shows up often is the **"Geometric Summation"**:

$$\sum_{n=N_{1}}^{N_{2}-1} \alpha^{n} = \begin{cases} \frac{\alpha^{N_{1}} - \alpha^{N_{2}}}{1 - \alpha}, & \text{if } \alpha \neq 1 \\ N_{2} - N_{1}, & \text{if } \alpha = 1 \end{cases}$$

Special Case:
$$N_1 = 0$$

$$\sum_{n=0}^{N_2 - 1} \alpha^n = \begin{cases} \frac{1 - \alpha^{N_2}}{1 - \alpha}, & \text{if } \alpha \neq 1 \\ \\ N_2, & \text{if } \alpha = 1 \end{cases}$$

Euler's Formulas

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$
$$e^{-j\theta} = \cos(\theta) - j\sin(\theta)$$

Discrete-Time Processing (P-2, PM-5)

h[n] = system's "Impulse Response" It is response of system to input of $\delta[n]$

 $H^{f}(\theta) =$ system's "Frequency Response" It is DTFT of impulse response

 $H^{z}(z) =$ system's "Transfer Function" It is ZT of impulse response

Discrete-Time System Relationships

Poles and Zeros of Transfer Function

IIR and FIR Filters

$$H^{z}(z) = \frac{b_{0} + b_{1}z^{-1} + \dots + b_{q}z^{-q}}{1 + a_{1}z^{-1} + \dots + a_{p}z^{-p}}$$

<u>FIR</u>: Finite Impulse Response... h[n] has only finite many nonzero values **<u>Filter is FIR</u>**: If $a_i = 0$ for i = 1, 2, ..., p (It is <u>IIR</u> otherwise)

$$H^{z}(z) = b_0 + b_1 z^{-1} + \dots + b_q z^{-q}$$

$$h[n] = \begin{cases} b_n, & n = 0, 1, \dots, q\\ 0, & otherwise \end{cases}$$

TF coefficients *are* the impulse response values!!

Example System

Z / Freq Domain

Review of Standard Sampling Theory

Sampling Analysis (#1)

Goal = Determine Under What Conditions We Have: Reconstructed CT Signal = Original CT Signal $\tilde{x}(t) = x(t)$

Simplify to Develop Theory: Use $\tilde{p}(t) = \delta(t)$

Why???? 1. Because delta functions are <u>EASY</u> to analyze!!!2. Because it leads to the best possible case

$$\widetilde{x}_p(t) \implies x_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)$$

 $x_p(t)$ is called the "Impulse Sampled" signal

Note: $x_p(t)$ shows up during Reconstruction, not Sampling!!

Sampling Analysis (#2)

Now, the impulse sampled signal $x_p(t)$ is filtered to give the reconstructed signal $x_r(t)$

Need to find $X_p(f)$ But First a Trick!!!

Sampling Analysis (#3)

Sampling Analysis (#4)

<u>What this says</u>: Samples of a bandlimited signal completely define it as long as they are taken at $F_s \ge 2B$

<u>Impact</u>: To extract the info from a bandlimited signal we only need to operate on its (properly taken) samples

 \rightarrow Use computer to process signals

Sampling Analysis (#5)

$$X_p^F(\theta/T) = X^f(\theta)$$

 $n = -\infty$

 $n = -\infty$

23/30

Sampling Analysis (#6)

Read notes on web on "Concept of Digital Frequency"

Introduction to EE521 Case Study

EE521 Case Study: Emitter Location

Processing Tasks

- Intercept RF Signal @ Rx's
- Sample Signal Suitably for Processing
- Detect Presence of Emitter's Signal
- Estimate Characteristics of Signal
- Use Est'd Char's to Classify Emitter
- Share Data Between Rx's
- Cross-Correlate Signals to Locate Tx

Processing Tasks Overview (#1)

<u>RF Front-End (Analog Circuitry)</u>: "RF" = "Radio Frequency"

- Selects reception band; may need to scan bands
- Amplifies signal to level suitable for ADC, etc.
- Frequency-shifts signal spectrum to range suitable for ADC
 - Technology trend is toward requiring less shifting
- Unfortunately: noise introduced by analog electronics (*Random Signals*)

Processing Tasks Overview (#2)

Sampling Sub-System (Mixed Analog/Digital Circuitry):

- Converts analog CT signal into digital DT signal (*Bandpass Sampling*)
- Converts real-valued RF signal into complex LP signal (*Equiv. LP Signals*)

Topics

We'll

Cover

<u>Digital Front-End (Digital Processing)</u>:

- Convert to complex LP signal (*Equiv. LP Signals*)
- Equalizes response of analog front-end (*DFT-Based Filtering*) *****
 - Magnitude <u>and</u> Phase
- Bank of digital filters splits signal into sub-bands for further processing (*Filter Banks*)
- Reduce sampling rate after filtering to sub-bands (Multi-Rate Processing)

Processing Tasks Overview (#3)

Detect Presence of Signal (Digital Processing):

• Has signal been intercepted or only noise in subband (*DFT-Based Proc.*)

Estimate Parameters of Signal (Digital Processing) (see also EE522):

• Estimate frequency of signal (*DFT-Based Processing*)

Classify/Model Signal (Digital Processing):

• What type of signal is it? (Spectral Analysis of Random Signals)

$$PSD Model$$

$$-\pi$$

$$\pi \theta$$

$$P_{x}(\theta) = \sigma^{2} \left[\frac{b_{0} + b_{1}z^{-1} + b_{2}z^{-2} + \dots + b_{p}z^{-p}}{1 + a_{1}z^{-1} + a_{2}z^{-2} + \dots + a_{q}z^{-q}} \right]_{z=e^{j\theta}}$$

Use PSD Model parameters $\{b_i\}$ and $\{a_i\}$ to classify signal type

Compress/De-Compress Signal (Digital Processing) (see also EE523):

• Exploit signal structure to allow efficient transfer (*DFT-Based Proc./ Filter Banks / Spectral Analysis*)

Cross-Correlate Signals (Digital Processing):

• Compute relative delay and Doppler (*DFT-Based Proc.*& *Multi-Rate Proc.*)