
Note Set #14
• Practical A-to-D Converters and D-to-A Converters
• Reading Assignment: Sect. 6.3 of Proakis & Manolakis

EEO 401 
Digital Signal Processing

Prof. Mark Fowler
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Now that we have the basic theory for ideal sampling… How do real 
ADCs and DACs work??  What are the important aspects to take into 
account?

The first step was to see that this is possible: 

Can we recover the signal from its ideal samples???!!!

Quantization issues in the ADCs
Sample-and-Hold issues in the DACs
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Practical Analog-to-Digital Converter
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Ideal Quantization Operation

• An ADC’s number of bits sets the number of  levels
– Let b = # of bits used to represent a level
– There will be 2b quantization levels

• Each level = (integer)×∆
– where ∆ = ADC “resolution” or “step size”

• Sampled analog value converted to closest quantization level
– xq= round(x/∆)×∆
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Ideal ADC Specs
• Full-Scale Voltage: Vmax

• Number of bits: b
• Resolution: ∆ = 2Vmax / 2b

• Dynamic Range (DR)
• Signal-to-Noise Ratio (SNR)
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Dynamic Range of Ideal ADC

• DR = (Power of Max Signal) / (Power of Min Signal)
– Max Signal = Sinewave with Amplitude of Full Scale
– Min Signal = Smallest Sinewave That Can Change LSB = ∆/2
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Ideal Quantization Adds Noise

• Quantized Signal = Original + Noise
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• Need a Statistical Model
– Prob. Density Function (PDF)
– Power Spectral Density (PSD) / Auto-Correlation Function (ACF)

• Assume that no error value is more likely than others
– PDF = Uniformly Distributed:  U[–∆/2, ∆/2]

• Assume that “error then” does not affect “error now”
– Error is “uncorrelated”… aka “white noise”
– PSD is flat (“white”)   Sq( f ) = No

Ideal Quantization Noise Model

error ∆/2-∆/2

Histogram 
of Error
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Ideal Quantization Noise PSD
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• Signal-to-Noise Ratio (SNR)
– SNRADC = (Signal Power) / (Quant Noise Power)

• Uniform Quantization Noise: U[–∆/2, ∆/2]
– So Noise Power is…. 

• ADC Specs usually give SNR for “Full-Scale” Sinewave

Ideal ADC SNR
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• SNRADC,max is only for Full-Scale and Sinusoid
– For other cases:

– where C depends on Signal Level and Signal’s Peak Factor (PF)

• Peak Factor = (Signal Peak Value) / (Signal RMS)

Ideal ADC SNR & Peak Factor
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• Nonlinearities
– Nonlinear Relationship Between Input/Output Levels

• Aperture Jitter
– Variations in Sample Times (aren’t sampling on a regular time grid)

• Missing Output Code
– A Binary Code that Never Shows Up Regardless of Input Value

Non-Ideal ADC Error Sources
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These Errors Cause:
 Spurs in the Frequency Domain
 Increase in the SNRADC 12/19



-5 -4 -3 -2 -1 0 1 2 3 4 5
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (kHz)

|D
FT

| (
dB

)

Signal Spikes

Spurs

Noise Floor

SFDR

Effect of Non-Ideal Error Sources

13/19



These are common definitions – BUT check the data sheet!
• Signal-to-Noise Ratio (SNR)

– Ratio of Fundamental Sinusoid Power to Total Noise Power
– Power of Spurs is Excluded

• Signal-to-Noise-and-Distortion Ratio (SINAD)
– Ratio of Fundamental Sinusoid Power to Total Noise and Distortion Power
– Power of Spurs is Included

• Effective Number of Bits (ENOB)
– # of Bits for an Ideal ADC whose Theoretical SNRADC = SINAD of Device

• Spurious-Free Dynamic Range (SFDR)
– Ratio of Fundamental Sinusoid Power to Largest Spur’s Power

Specifications for Practical ADCs
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Practical Digital-to-Analog Converter
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Modeling the DAC’s Sample & Hold Effect
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Recall Ideal DAC Analysis
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DAC w/ S&H Analysis
DAC
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*Attenuates Desired Signal
* Passes Aliasing

Can design to “equalize” 
S&H effect
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DAC w/ S&H Analysis – Oversampling
DAC
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*Less Attenuation of  Desired Signal
* Aliasing farther out… easier for LPF   

to remove
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