
Note Set #12
• DT Filters
• Reading Assignment: Sect. 5.4 of Proakis & Manolakis

EEO 401 
Digital Signal Processing

Prof. Mark Fowler
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From the time-shift property of the DTFT then we need:

f f( ) ( ) oj nY X Ce ωω ω −=

Hf(ω)
[ ]x n [ ] [ ]oy n Cx n n= −

Want to get out the signal we want “passed”… 
but we can accept a “small” delay (no > 0) and 

an amplitude scaling factor (C > 0)

f

f
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o
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ω

ω

ω

ω ω

−

−

= =

∠ = ∠ = −

For ω in the “pass 
band” of the filter

Thus we should treat this as Hf(ω), so we have: 

Line of slope –no
“Linear Phase”

Ideal LP Filter

Put in the signal we want 
“passed”.

Suppose that
f ( ) 0 [ , ]oX ω ω ω π= ∉

[ , ]o oω ω ω∈ −

Taking C = 1 is 
typical
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So… for an ideal low-pass filter (LPF) we have:

,
( )

0,

dj t
o oCe

H
otherwise

ω ω ω ω
ω

− − < <
= 


f ( )H ω∠

ω

Slope = on−

f ( )H ω

oωoω−
ω

ππ−

Phase is undefined in stop band:

?0
00
=∠

= θje

i.e. phase is undefined 
for frequencies outside 

the ideal passband

Summary of Ideal Filters
1. Magnitude Response:

a. Constant in Passband

b. Zero in Stopband

2. Phase Response

a. Linear in Passband (negative slope = delay)

b. Undefined in Stopband

ππ−
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Remember that for DT the frequency response is a DTFT so is 
periodic:

Cut-off frequency = ωo rad/sample

As always with DT… only need to look here

π2 π3 π4π4− π3− π2−

f| ( ) |H ω

π

C

π− ω

ω

ωo–ωo

Ideal Lowpass Filter (LPF)

π2 π3 π4π4− π3− π2−

f ( )H ω∠

ππ− -ωo ωo

Linear Phase
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Why can’t an ideal filter exist in practice??

So the impulse response is: [ ][ ] ( / )sinc ( / )( )o o oh n n nω π ω π= −

Ideal 
LPF

n

x[n] = δ[n]
[ ]h n

n

… …
dn

Starts before input starts…  
Thus, system is non-causal!

To answer this we will find the filter’s impulse response, which is the IDTFT 
of the frequency response.  The frequency response of the ideal LPF is

,
( )

0,

dj t
o oCe

H
otherwise

ω ω ω ω
ω

− − < <
= 


Using the IDTFT of a rectangle together with the time-shift property gives
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Ideal Filter Types
So far we’ve limited discussion to 
ideal lowpass filters.  These ideas 
can be extended to other filter 
types.  To be ideal they need to 
have 

• constant magnitude
• linear phase

in their passband(s).

Note: Although it is not shown 
here, all of these repeat 
periodically outside [–π, π]. 
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Pole-Zero Placement to Yield Filter Types
Although there are high-powered methods of filter design… it is useful to 
understand how to achieve some simple filters via proper placement of 
poles and zeros. ( )

( )
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1 1
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bo sets overall gain of filter

The locations of the poles pk
annd zeros zk impact the shape of 

the frequency response

Lowpass: poles near z = 1 = ej0

Highpass: poles near z = –1 = e±jπ

ω = 0 

ω = ±π 7/29
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Ω

Ω

Ω

Ω

Effect of Poles & Zeros on Frequency Response of DT filters

Figure from B.P. Lathi, Signal Processing and Linear Systems

Note: Including a 
pole or zero at the 
origin …

Placing a 
zero at ±π… …makes 

|H(π)| = 0

Placing more 
zeros/poles…

…doesn’t change 
the magnitude but 
does change the 
phase

… gives sharper 
transitions.
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Simple Lowpass Filters

1 1

1( )
1

z aH z
az−

−
=

−
Case #1:

>>  w=linspace(-pi,pi,2000);
>>  b = 0.1;
>>  b = [1 -0.9];
>>  H=freqz(b,a,w);

Case #2:

MATLAB for Case #1 w/ a = 0.9

For a = 0.9

Re{z}

Im{z}

ω

ω

Re{z}

Im{z}

1

2 1

1 1( )
2 1

z a zH z
az

−

−

 − +
=  − 
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Simple Highpass Filters

Looking back at pole-zero plots for HPF and LPF we see that each LPF 
can be converted into a HPF by flipping: z → –z

1

2 1

1 1( )
2 1

z a zH z
az

−

−

 − +
=  − 

LPF:
1

3 2 1

1 1( ) ( )
2 1

z z a zH z H z
az

−

−

 − −
= − =  + 

HPF:

ω ωIm{z}

Re{z}
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Simple Bandpass Filters
We can get a simple BPF if we put poles at /2

1,2
jp re π±=

… and zeros at z = ±1 ( ) ( )
( ) ( )

2

2 2

1 1
( )

1

z z z
H z G

z jr z jr

zG
z r

 − +
=  − + 

 −
=  + 

Re{z}

Im{z}

x

x

ω ω
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Simple LPF-to-HPF Transformation
If we have a lowpass filter but want to use it as a way to create a highpass
filter that is easily done as follows.

We’ll illustrate the idea using an ideal LPF (even though those don’t really 
exist!):

π2 π3 π4π4− π3− π2−

f| ( ) |lpH ω

ππ− ωωo–ωo

Shift this frequency response by π rad/sample:

π2 π3 π4π4− π3− π2−

f f| ( ) | | ( ) |lp hpH Hω π ω− =

ππ− ω

oπ ω−oω π−
f f( ) ( )hp lpH Hω ω π= −

Gives HPF!!!
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So… this gives us what we want…  but how do we actually *do* it???
If the frequency response of the LPF is given by

f 0

1

( )
1

M
j k

k
k

lp N
j k

k
k

b e
H

a e

ω

ω
ω

−

=

−

=

=
+

∑

∑

( )

( )

f f 0

1

( ) ( )
1

M
j k

k
k

hp lp N
j k

k
k

b e
H H

a e

ω π

ω π
ω ω π

− −

=

− −

=

= − =
+

∑

∑

f 0

1

( )
1

M
j k j k

k
k

hp N
j k j k

k
k

b e e
H

a e e

π ω

π ω
ω

−

=

−

=

=
+

∑

∑

( )

( )
f 0

1

1
( )

1 1

M
k j k

k
k

hp N
k j k

k
k

b e
H

a e

ω

ω
ω

−

=

−

=

−
=

+ −

∑

∑

ejπ = –1 Coefficients 
of HPF

Coefficients 
of HPF
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Now changing focus to the transfer function: 
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z z( ) ( )hp lpH z H z= − Flips poles & zeroes wrt
the Im and Re axes

Im{z}

Re{z}

x

x
○
○○

LPF PZ-Plot

x

x
○
○○ Re{z}

Im{z}

HPF PZ-Plot

Filters with real coefficients 
have pole-zero symmetry 

across the real axis
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And these results then impact the Difference Equation view:

1 0

[ ] [ ] [ ]
N M

k k
k k

y n a y n k b x n k
= =

= − − + −∑ ∑
Given D.E. 

for LPF

1 0

[ ] ( 1) [ ] ( 1) [ ]
N M

k k
k k

k k
y n a y n k b x n k

= =

= − − − + − −∑ ∑

Derived D.E. 
for HPF

Suppose you don’t have the TF, FR or DE…. But have the impulse response 
for a LPF…

Applying the modulation (frequency shift) property of DTFT gives

f f( ) ( )hp lpH Hω ω π= − [ ] [ ]j n
hp lph n e h nπ=

( )[ ] 1 [ ]n
hp lph n h n= −
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Summary: LPF-to-HPF Transformation

z z( ) ( )hp lpH z H z= − f f( ) ( )hp lpH Hω ω π= −
Flips poles/zeros Shifts FR by π
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Some Useful Filters Design by Pole-Zero Placement

Digital Resonators
Has two complex-conjugate poles placed near the UC to create a resonate peak at 
a desired frequency.   Their location determines characteristics:

• Angle will be approximately at the resonant peak
• Radius determines how pronounced the peak is

Has two zeros that can be placed where desried… usually either
• Both at the origin
• One at z = 1 (ω = 0) and one at z = –1 (ω = ±π)

Zeros at z = ±1
( )( )
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1 1
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1 2 2

1 1
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1
1 2 cos( )

o o

z
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z z
H z G
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z
G

r z r z

ω ω

ω

− −
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=

− −

−
=
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1 1

1 2 2
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o o

z o
j j

o

o

bH z
re z re z

b
r z r z

ω ω

ω
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− −

=
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=
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Zeros at Origin
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ω

ω

Resonator w/ Zeros at the origin

( )( ) ( ) 1 2 21 1( )
1 2 cos( )1 1o o

z o o
j j

o

b bH z
r z r zre z re zω ω ω − −−− −

= =
− +− −

Book shows that:

( )( )21 1
2cos cosr

r orω ω− +=

( )3 2 1dB rω∆ ≈ −
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Resonator w/ Zeros at z = ±1
( )( )

( )( )
( )

( )

1 1 2

1 2 21 1

1 1 1
( )

1 2 cos( )1 1o o

z
j j

o

z z z
H z G G

r z r zre z re zω ω ω

− − −

− −−− −

− + −
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− +− −

○○ ω

ω
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( )( )

( )

1 1

1 2 2

( )
1 1

1 2 cos( )

o o

z o
j j

o

o

bH z
re z re z

b
r z r z

ω ω

ω

−− −

− −

=
− −

=
− +

Oscillator

( )0[ ] sin ( 1) [ ]
sin( )

n

o
o

b rh n n u nω
ω

= +

If we put the pole on the unit circle (r = 1) then this impulse response does not 
decay and the system can be used as an oscillator.

For more details see Sect. 5.4.7 of the text book. 
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Notch Filters
This simple version has two complex-conjugate zeros placed on the UC to create a 
null at a desired frequency.   Their angle will be at the null frequency

Has two poles that can be placed where desried… usually either
• Both at the origin (this results in an FIR filter)
• Two complex-conjugate poles at 1,2
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( )( )
( )( )
( )

( )

( )
( )

1 1

1 1

1 2

1 2 2

2

2 2

1 1
( )

1 1

1 2cos( )
1 2 cos( )

2cos( ) 1
2 cos( )
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o
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o
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=
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=
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=
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ω

ω

Poles at Origin

ω

ω

Poles at 1,2
ojp re ω±=
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Comb Filters These have a variety of uses…. When you have harmonics that 
either need to be passed and/or stopped.
The name comes from the fact that these filters have a FR magnitude that looks 
like a comb – many “teeth”.

Simplest form is an FIR filter with “uniform weights”:
0

1[ ] [ ]
1

M

k
y n x n k

M =

= −
+ ∑

Transfer Function: 
0

( 1)

1

1( )
1

1 1
1 1

M
z k

k

M

H z z
M

z
M z

−

=

− +

−

=
+

 −
=  + − 

∑

Impulse Response: 
1[ ] 1 1 1

1
h n

M ↑
 =  +

 Rectangle 
starting @ n = 0

Frequency Response: 
( )( )
( )

/2
f sin 1 2
( )

1 sin 2

j M MeH
M

ω ω
ω

ω

−  +
=  

+   
Found by taking DTFT of rectangle starting at 0 (use time-shift property)

Pole @ z = 1 (cancelled 
by zero @ z = 1)

zeros @ z = ej2πk/(M+1), 

k = 0, 1, … , M

M Even
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( )( )
( )

/2
f sin 1 2
( )

1 sin 2

j M MeH
M

ω ω
ω

ω

−  +
=  

+   

Taking a look at the frequency response over the [-π, π ] range:

–π ω

( )( )sin 1 2Mω +

π

π–π ω

( )sin 2ω

ω

( )1 2M kω π+ =
Numerator is zero when

( )2 1k Mω π= +

M = 10
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More General Approach

Start with some FIR filter
0

( ) [ ]
M

z k

k
H z h k z−

=

= ∑

Replace z by zL where L is a positive integer:
0

( ) [ ]
M

z kL
L

k
H z h k z−

=

= ∑

The resulting frequency response is f f

0

( ) [ ] ( )
M

jkL
L

k
H h k e H Lωω ω−

=

= =∑
“Scrunches” by factor of L… e.g., when ω = π/L 

we get the original FR’s point at π

L = 5

Illustrate with triangle 
FR… not a real FIR’s 

shape!   Just easy to see!
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2

0

( ) [ ] [0] [1] [2] [ ]
M

z kL L L ML
L

k
H z h k z h h z h z h M z− − − −

=

= = + + + +∑ 

Let’s see what z → zL does from an impulse response and block 
diagram viewpoint.

1 ( 1) ( 1) (2 1) 2[0] 0z 0 [1] 0z 0 [2] [ ]L L L L L MLh z h z z h z h M z− − − − − + − − − −= + + + + + + + +  

etc.
L 0s inserted between 

h[0] & h[1]
L 0s inserted between 

h[1] & h[2]

[ ][ ] [0] 0 0 [1] 0 0 [2] 0 0 [3] 0 0 [M]Lh n h h h h h=     

L 0s L 0s L 0s L 0s

M = 3

L = 3
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Applying this idea to the uniform weight FIR filter we get

Transfer Function: 
( 1)1 1( )

1 1

L M
z

L
zH z

M z

− +

−

 −
=  + − 

Frequency Response: 
( )( )
( )

/2
f sin 1 2
( )

1 sin 2

j LM L MeH
M L

ω ω
ω

ω

−  +
=  

+   

ω

M = 10
L = 3

See book’s discussion of the use of such a comb filter to separate solar 
harmonics from lunar harmonics in ionospheric measurements!
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All-Pass Filters These have constant magnitude response everywhere!   So what is 
their purpose??!!  They are used to modify the phase response of an existing system 
without changing its magnitude response (i.e., “Phase Equalization”)

For some given real-valued coefficients { }ka

Define the polynomial 0
0

( ) , 1
N

k
k

k
A z a z a−

=

= =∑

Then an all-pass filter can be formed as 
1( )( )

( )
z N
ap

A zH z z
A z

−
−=

We can easily verify that this is indeed all-pass:
1)2f 1

1

( ( )( ) ( ) ( ) 1
( ) ( )j

j

z z N N
ap ap ap z e

z e

A z A zH H z H z z z
A z A zω

ω

ω
−

− −
−=

=

     = = =         

So as long as the filter is former like this, the filter is all-pass regardless of 
the values of the coefficients {ak}… so the coefficients can be chosen to 
try to achieve a desired phase response!
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All-Pass Pole-Zero Reciprocal Locations

Because A(z) is in the denominator and A(z-1) is in numerator, if there is a pole 
at zp then there is a zero at 1/zp.  In other words, poles and zeros occur in 
reciprocal pairs

General form for All-Pass Filter

( )( )
( ) ( )

1 1 *1

1 1 * 1
1 1

( )
1 1 1

CR NN
k kz k

ap
k kk k k

z zzH z
z z z

β βα
α β β

− −−

− − −
= =

 − − −
=   − − −    
∏ ∏

NR = Real pole/zero 
Reciprocal Pairs

NR = Real pole/zero 
Conjugate/Reciprocal Quads
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