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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #29
• C-T Systems: Laplace Transform… Transfer Function 
• Reading Assignment: Section 6.5 of Kamen and Heck
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Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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6.5 Transfer Function
We’ve seen that the system output’s LT is:
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So, if the system is in zero-state then we only get the second term:
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H(s) = “transfer function”

⇒ System effect in zero-state case is completely set by the transfer function

Part due to Input
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Note: If the system is described by a linear, constant coefficient differential 
equation, we can get H(s) by inspection!!  Let’s see how…

)()()()()( 0101
2 sXbssXbsYassYasYs +=++

)()()()()(
01012

2

txb
dt

tdxbtya
dt

tdya
dt

tyd
+=++

To illustrate…Take the LT of a Diff. Eq. under the zero-state case:

The condition 
under which we 

get the TF

Solve for Y(s) and identify the H(s):
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With zero ICs we have that each higher derivative 
corresponds to just another power of s.

We can then apply this idea to get the Transfer Function…
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So… now it is possible to directly identify the TF H(s) from the Diff. Eq.:
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But, we have also seen that for the zero-state case the system output is:

)(*)()()()(
0

txthdtxhty
t

=−= ∫ λλλ

These limits arise by assuming h(t) and x(t) are causal

But…We have an LT property for convolution that says:

)(*)()()()()( txthtysXsHsY =↔=

where: { })()( thsH L=

{ }Response ImpulseFunctionTransfer L=

So, we have two ways to get H(s)

- Inspect the Diff. Eq. and identify the transfer function H(s)

- Take the LT of the impulse response h(t)

This gives an easy way to get the impulse response from a Diff. Eq.:

- Identify the H(s) from he Diff. Eq. and then find the ILT of that
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Recall: If the ROC of H(s) includes the jω axis, then 
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This is the connection between 
The transfer function and 

frequency response.

Note that the transfer function does essentially the same thing that the frequency 
response does…
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Recall that the LT is a generalized, more-powerful version of the FT… this 
result just says that we can do the same thing with H(s) that we did with H(ω),
but we can do it for a larger class of systems…

There are some systems for which we can use either method… those are the 
ones for which the ROC of H(s) includes the jω axis.
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Poles and Zeros of a system
Given a system with Transfer Function:
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We can factor B(s) and A(s): (Recall: A(s) =  characteristic polynomial)

))...()((
))...()(()(

21

21

N

MM

pspsps
zszszsbsH

−−−
−−−

=

Assume any common factors in B(s) and A(s) have been cancelled out

So… we know that H(s) is completely described by the Diff. Eq…. Therefore 
we should expect that we can tell a lot about a system by looking at the 
structure of the transfer function H(s)… This structure is captured in the idea 
of “Poles” and “Zeros”…
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Note: pi are the roots of the char. polynomial

{ } )"( of zeros" called are sHzi
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Note that knowing the sets { } { }N
ii

M
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tells us what H(s) is: (up to the multiplicative scale factor bM)

-bM is like a gain (i.e. amplification) 

Pole-Zero Plot

This gives us a graphical view of the system’s behavior

x denotes a pole

o denotes a zero
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Pole-Zero Plot for this H(s)
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Real coefficients ⇒ complex conjugate pairs

Example:
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From the Pole-Zero Plots we can Visualize the TF function on the s-plane:
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From our Visualization of the TF function on the s-plane we can see the 
Freq. Resp.:
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As the pole moves closer to the jω
axis it has a stronger effect on the 
frequency response H(ω).  Poles 
close to the jω axis will yield 
sharper and taller bumps in the 
frequency response. 

By being able to visualize what |H(s)| 
will look like based on where the poles 
and zeros are, an engineer gains the 
ability to know what kind of transfer 
function is needed to achieve a desired 
frequency response… then through 
accumulated knowledge of electronic 
circuits (requires experience 
accumulated AFTER graduation) the 
engineer can devise a circuit  that will 
achieve the desired effect.

Can also look at a pole-zero plot and see the effects on Freq. Resp.
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This Chart provides a “Roadmap” to the CT System Relationships!!!
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1. From the differential equation you can get:

a. Transfer function, then the impulse response, the pole-zero 
plot, and if allowable you can get the frequency response

2. From the impulse response you can get:

a. Transfer function, then the Diff. Eq., the pole-zero plot, and 
if allowable you can get the frequency response

3. From the Transfer Function you can get:

a. Diff. Eq., the impulse response, the pole-zero plot, and if 
allowable you can get the frequency response

4. From the Frequency Response you can get:

a. Transfer function, then the Diff. Eq., the pole-zero plot, and 
the impulse response

5. From the Pole-Zero Plot you can get:

a. (up to a scaling factor) Transfer function, then the Diff. Eq., 
the impulse response, and possible the Frequency Response

In practice you may need to start your work in any spot on this diagram…
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Similarly, we can get the transfer function using the s-domain impedances:
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Recall: We get the frequency response from a  circuit by using frequency 
dependent impedances…
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…and then doing circuit analysis.

In Practice we often get the transfer function from a circuit… Here’s an example: 
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Example 6.37 (Assume zero-state) We must assume this to find 
the transfer function
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Now we treat everything here as if we have a 
“DC Circuit”… which leads to simple algebraic 
manipulation rather than differential equations!

For this circuit the easiest approach is to use the Voltage Divider

)(
)/1(

/1)( sX
CsLsR

CssY ⎥
⎦

⎤
⎢
⎣

⎡
++

= )(
)/1()/(

/1
2 sX

LCsLRs
LC

⎥
⎦

⎤
⎢
⎣

⎡
++

=⇒

)(sH
A “standard” form: 
• a ratio of two polynomials in s
•unity coefficient on the highest power in the denominator  
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For RLC circuits, the ROC always includes jω

Once you start including linear amplifiers with gain > 1 this may not be true

If you include non-linear devices ⇒ the system becomes non-linear

But, you may be able to “linearize” the system over a small operating range

E.g. – A transistor can be used to build a (nearly) linear amplifier even though 
the transistor is itself a non-linear device

Some comments:
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