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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #27
• C-T Systems: Laplace Transform… “Power Tool” for system analysis
• Reading Assignment: Sections 6.1 – 6.3 of Kamen and Heck
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Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal 
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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• Diff. Equations describe systems
– Differential Eq. for CT
– Difference Eq. for DT

• Convolution with the Impulse Response can be used to analyze the system
– An integral for CT
– A summation for DT

• Fourier Transform (and Series) describe what frequencies are in a signal
– CTFT for CT has an integral form
– DTFT for DT has a summation form
– There is a connection between them from the sampling theorem

• The Frequency Response of a system gives a multiplicative method of 
analysis
– Freq. Response = CTFT of impulse response for CT system
– Freq. Response = DTFT of impulse response for DT system

What we have seen so far….

We now look at two “power tools” for system analysis:

Laplace Transform for CT Systems Z Transform for DT Systems

Extension of CTFT Extension of DTFT
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Ch. 6 Laplace Transform & Transfer Function
Back to C-T signals and systems…

We’ve seen that the FT is a useful tool for 

-signal analysis (understanding signal structure) 

-systems analysis/design

But only if:

1. System is in zero state

2. Impulse response satisfies

3. Input satisfies
∫
∞

∞−
∞<dtth )(

∫
∞

∞−
∞<dttx )(

Called 
“Absolutely Integrable”

So…frequency response is a tool that can only be used under these three conditions!

The Laplace Transform is a generalization of the CTFT…
it can handle cases when these three conditions are not met. 

Well… there are a few signals that we can handle with FT that do not satisfy this:
Sinusoids and unit step are two of them
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There are two analysis methods that the Laplace Transform enables:

x(t) and h(t) may or may not 
be absolutely integrable x(t) and h(t) may or may not be 

absolutely integrable

Zero state (Sect. 6.5)

LT & Transfer Function

Non zero-state (Sect. 6.4) 

LT-based solution of differential 
equations

First we’ll define the LT

Next… See some of its properties

Then… See how to use it in system analysis in these two ways

So… this just allows us to do the 
same thing that the FT does…
but for a larger class of 
signals/systems 

This not only admits a larger 
class of signals/systems… it also 
gives a powerful tool for solving 
for both the zero-state AND the 
zero-input solutions…

ALL AT ONCE
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Section 6.1: Define the LT

We’ll only use the one-sided LT

Two-Sided LT

ωσ jsdtetxsX st +== ∫
∞

∞−

−    with)()(2

complex variable
The book doesn’t do this

There are 2 types of LT:
One-sided (unilateral) 

Two-sided (bilateral)

One-Sided LT

ωσ jsdtetxsX st +== ∫
∞ − with   )()(

01

One-sided LT defined this way → even if x(t) ≠ 0, t < 0

But we will mostly focus on causal systems and causal inputs

complex variable
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One place the LT is most useful is when 

1. The system has Initial conditions at t = 0 

2. Input x(t) is “applied at t = 0” ⇒ x(t) = 0      t < 0

(This will be our focus in this course)

For this case: X1(s) = X2(s)    ⇒ Just use X(s) notation (drop the “1” subscript)

Causal signal

Note that X(s) is:
⎪⎩

⎪
⎨
⎧

+= ωσ jsriablecomplex vaa    of

function aluedcomplex  va  

Similarly for∠X(s) 

)(sX
{ }sj Im

“s plane”
{ }sRe
σ

ωj

Must plot on a plane…
the “s-plane”
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Example of Finding a LT
ℜ∈= − btuetx bt )()(Consider the signal

Back when we studied 
the FT we had to limit b

to being b > 0… with 
the LT we don’t need to 

restrict that!!!

∫ ∫
∞ ∞ +−−− ==

0 0

)()( dtedteesX tbsstbt

This is a causal signal.  

By definition of the LT:
This is an easy 
integral to do!!

look at this

[ ] [ ]1lim11)( )(
0

)( −
+
−

=
+
−

= +−
∞→

∞=
=

+− tbs
t

t
t

tbs e
bs

e
bs

sX

The limit is here by 
the definition of the 

integral

If this limit does not converge… then we say that the integral “does not exist”

So… we need to find out under what conditions this integral exists.

So… let’s look at the function inside this limit…
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bb −>⇒>+ σσ 0  if

t

[ ]tjbtbs ee ωσ ++−+− = )()(

t

bb −<⇒<+ σσ 0  if

be tbs
t −>+−

∞→ σfor only   exists""  lim  Thus, )(

So, we can’t “find” this X(s) for values of s such that Re{s} ≤ -b

But for s with Re{s} > -b we have no trouble.

⇒For each X(s) we need to know at which s values “things work”

This set of s is called the “Region of Convergence” (ROC)

Don’t worry 
too much 

about ROC…
at this level it 
kind of takes 
care of itself

Has Two 
Main

Behaviors

)()(for    So tuetx bt−= We have { } bs
bs

sX −>
+

= Re1)(
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This result… and many others… is on the Table of Laplace Transforms that is 
available on my web site

Please use the tables from the website… the ones in the book have some 
errors on them!!!!
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If b < 0 then x(t) itself “explodes”: )(tue bt−

tFor b < 0, -b is positive

If b > 0 then x(t) itself decays: )(tue bt−

tFor b > 0, -b is negative

And we have on the s-plane:
ωj

ROC

σ = –b
σ

And we have on the s-plane:
ωj

ROC

σ = –b
σ

This case can’t be 
handled by the FT… but 
by restricting our focus to 
values of s in the ROC, 
the LT can handle it!!!

This case can be 
handled by the FT…
and can also be 
handled by the LT
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Connection between FT & LT (for causal signals)

∫
∞ −=

0
)()(  :FT dtetxX tjωω ∫

∞ +−=+
0

)()()(  :LT dtetxjX tjωσωσ

It appears that letting σ = 0   gives     LT = FT…

But this is only true if ROC includes the “jω axis”!!!

If the ROC includes the “jω axis”…

Then the FT is “embedded” in the LT

Get the FT by taking the LT and evaluating it only on 
the jω axis… i.e., take a “slice” of the LT on the jω axis
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Let’s Revisit  the Example Above

bs
bs

sXtuetx bt −>
+

=↔= − }Re{1)()()(

⎥
⎦

⎤
⎢
⎣

⎡
+

=⎥⎦
⎤

⎢⎣
⎡

+
=⇒

=
= bjbs

sX
js

js ωω
ω

11)(

If b > 0, then ROC includes the “jω axis”:
ωj

ROC

σ = –b
σ

Same as on 
FT table
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Section 6.3 Inverse LT

Like the FT…once you know X(s) you can use the inverse LT to get x(t) 

∫
∞+

∞−
=

jc

jc

stdsesX
j

tx )(
2
1)(
π

with c chosen such that s = c + jω is in ROC

HARD TO DO!!

The definition of the inverse LT is:

This is a “complex line integral” in complex s-plane…

But…if 
01

1
1

01
1

1

...
...)(

asasasa
bsbsbsbsX N

N
N

N

M
M

M
M

++++
++++

= −
−

−
− Ratio of polynomials in s

“Rational Function”

Then its easy to find x(t) using partial fractions and a table of LT pairs

This will be covered in some other notes
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6.2 Properties of LT

Because of the connection between FT & LT we expect these to be similar to 
the FT properties we already know!

)()()()( sbYsaXtbytax +↔+

)()( sXectx cs−↔−

(c > 0, x(t) causal)

Note: There does not exist a result for “left sift” for causal signals and the 1-sided LT

Linearity:

Compare to time shift for FT: cscj evse −− .ω ωσ js +=Recall:

t

)(tx

t

)( ctx −causal Also causal for c > 0

c

Right shift in time (delay):

Stated here for causal signal (book gives general case)
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Time Scaling:
⎟
⎠
⎞

⎜
⎝
⎛↔

a
sX

a
atx 1)(

0>a Note: a < 0 makes x(at) non-causal
So we limit to a > 0

Compare to FT

[ ])()(
2

)sin()( 000 ωωω jsXjsXjttx −−+↔

[ ])()(
2

)cos()( 000 ωωω jsXjsXjttx −++↔

Note: Book does not use ω0 with subscript “0”

Warning! So s - jω0 above is written s - jω Danger! Let s = σ + jω ⇒ s - jω = σ!

Multiply by sinusoid:

Not what is intended!!

( ) )(1)( sX
ds
dtxt N

N
Nn −↔Multiply by tn:

)()( asXtxeat −↔
with a real or complex

Shift in s-plane
Multiply by Exponential:
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Time Differentiation: )0()()( xssXtx −↔
Warning: If x(t) is 
discontinuous at t = 0 then we 
use x(0-) instead

Very different from FT property 

This LT property allows 
handling of IC’s!!!

Integration:
)(1)(

0
sX

s
dx

t
↔∫ λλ

Note:   Differentiation   ⇒ Multiply by s

Integration         ⇒ Divide by s

“opposites” “opposites”

These two properties have a nice “opposite” relationship:

These two properties are crucial for linking the LT to the solution of Diff. Eq. 

They are also crucial for thinking about “system block diagrams”
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Convolution: )()()()( sHsXthtx ↔∗

Recall: If h(t) is system impulse response 

then H(ω) is system Frequency Response

Same as for FT!

We’ll see that H(s) is system “Transfer Function”

SKIP: Initial/Final Value Theorems

“Transfer Function”

is a 
generalization of 

“Frequency Response”

These properties… and some others… are on the Table of Laplace Transform 
Properties that is available on my web site

Please use the tables from the website… the ones in the book have some 
errors on them!!!!
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