EECE 301
Signals & Systems
Prof. Mark Fowler

Note Set #20

• C-T Systems: Ideal Filters - Frequency-Domain Analysis
• Reading Assignment: Section 5.3 of Kamen and Heck
Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

Ch. 1 Intro

- C-T Signal Model
 - Functions on Real Line
- System Properties
 - LTI
 - Causal
 - Etc
- D-T Signal Model
 - Functions on Integers

Ch. 3: CT Fourier Signal Models

- Fourier Series
- Periodic Signals
- Fourier Transform (CTFT)
- Non-Periodic Signals

Ch. 4: DT Fourier Signal Models

- DTFT
 - (for “Hand” Analysis)
- DFT & FFT
 - (for Computer Analysis)

Ch. 2 Diff Eqs

- C-T System Model
 - Differential Equations
- D-T Signal Model
 - Difference Equations
- Zero-State Response
- Zero-Input Response
 - Characteristic Eq.

Ch. 2 Convolution

- C-T System Model
 - Convolution Integral
- D-T System Model
 - Convolution Sum

Ch. 5: CT Fourier System Models

- Frequency Response
 - Based on Fourier Transform

Ch. 5: DT Fourier System Models

- Freq. Response for DT
 - Based on DTFT

Ch. 6 & 8: Laplace Models for CT Signals & Systems

- Transfer Function

Ch. 7: Z Trans. Models for DT Signals & Systems

- Transfer Function

New Signal Models

New System Model

New System Model
5.3 Ideal Filters

Often we have a scenario where we have a “good” signal, \(x_g(t) \), corrupted by a “bad” signal, \(x_b(t) \), and we want to use an LTI system to remove (or filter out) the bad signal, leaving only the good signal.

\[
x(t) = x_g(t) + x_b(t)
\]

How do we do this? What \(H(\omega) \) do we want?

Note: You cannot design the circuit until you know which \(H(\omega) \) the circuit must implement
Case #1: \(x_g(t) \) is a low-frequency signal \(x_b(t) \) is a high-frequency signal

The spectrum of the input signal is shown below.

In this case, we want a filter like this:

Mathematically:

\[
|H(\omega)| = \begin{cases}
1, & -\Omega < \omega < \Omega \\
0, & \text{otherwise}
\end{cases}
\]

“Passband”

“Stopband”
Then:

\[Y(\omega) = X(\omega)H(\omega) \]

\[
|Y(\omega)| = |H(\omega)||X_g(\omega)| + |H(\omega)||X_b(\omega)|
\]

\[
= |X_g(\omega)|
= |X_g(\omega)| = 0
\]

as desired

Such a filter is called a “low-pass filter”
Case #2: $X_g(\omega)$ is a high-frequency signal

$X_b(\omega)$ is a low-frequency signal

We then want:

$$|H(\omega)| = \begin{cases}
0, & -\Omega < \omega < \Omega \\
1, & \text{otherwise}
\end{cases}$$

This is called a “high-pass filter”

Case #3:

“Bandstop Filter” or “Notch Filter”
Note that in Cases #3 and #4 the filter can’t remove the bad signal without causing some damage to the desired signal…

…this is not specific to bandpass and bandstop filters…

…it can also happen with low-pass and high-pass filters.

In practice this is almost always the case!!
What about the **phase** of the filter’s $H(\omega)$?

Well…we could tolerate a small delay in the output so…

Put in the signal we want “passed”

From the time-shift property of the FT then we need:

$$Y(\omega) = X_g(\omega)e^{-j\omega t_d}$$

Thus we should treat the exponential term here as $H(\omega)$, so we have:

$$|H(\omega)| = |e^{-j\omega t_d}| = 1$$

$$\angle H(\omega) = \angle e^{-j\omega t_d} = -\omega t_d$$

For ω in the “pass band” of the filter

Line of slope $-t_d$ “Linear Phase”
So... for an ideal low-pass filter (LPF) we have:

\[
H(\omega) = \begin{cases}
1e^{-j\omega t_d}, & -\Omega < \omega < \Omega \\
0, & \text{otherwise}
\end{cases}
\]

Summary of Ideal Filters

1. Magnitude Response:
 a. Constant in Passband
 b. Zero in Stopband

2. Phase Response
 a. Linear in Passband (negative slope = delay)
 b. Undefined in Stopband

Phase is undefined here:
\[0 = 0e^{j\theta}\]
\[\angle 0 = ?\]

i.e. phase is undefined for frequencies outside the ideal passband
Example of the effect of a nonlinear phase but an ideal magnitude

Here is the scenario: Imagine we have a signal $x(t)$ given by

$$x(t) = 9 - 5\cos(2\pi t) - 3\cos(2\pi 2t) - \cos(2\pi 3t)$$

Figure 1: The input signal.
\[x(t) = 9 - 5 \cos(2\pi t) - 3 \cos(2\pi 2t) - \cos(2\pi 3t) \]

Filter has **Non-Linear Phase**

Circles Show the Frequencies in Input Signal

Filter does **NOT** change **amplitudes** of input components

Figure 2: Filter’s Frequency Response
So, at the filter’s output we have four sinusoids at the same frequencies and amplitudes as at the input…BUT, they are not aligned in time in the same way they were at the input

\[y(t) = 9 - 5 \cos\left(2\pi \frac{t}{4} - \frac{\pi}{4}\right) - 3 \cos\left(2\pi 2t - \pi\right) - \cos\left(2\pi 3t - \frac{\pi}{10}\right) \]

Point of this Example

A filter with an ideal magnitude response but non-ideal phase response can degrade a signal as much as a filter with a non-ideal magnitude response!!!