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Note Set #2
• What are Continuous-Time Signals???
• Reading Assignment: Section 1.1 of Kamen and Heck

EECE 301 
Signals & Systems

Prof. Mark Fowler



2/22

Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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1.1 Continuous-Time Signal
Our first math model for a signal will be a “function of time”

Continuous Time (C-T) Signal:

A C-T signal is defined on the continuum of time values.  That is:

f(t) for t ∈ ℜ Real line

f(t)

t
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Unit Step Function u(t)
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Note: A step of height A can be made from Au(t)

Step & Ramp Functions
These are common textbook signals but are also common test 

signals, especially in control systems. 
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The unit step signal can model the act of switching on a DC 
source… t = 0
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Unit Ramp Function r(t)

Note: A ramp with slope m can be made from:  mr(t)
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Relationship between u(t) & r(t)

What is                           ?
Depends on t value
⇒function of t: f(t)

⇒ What is f(t)?
-Write unit step as a function of λ

-Integrate up to λ = t

-How does area change as t changes?

i.e., Find Area

u(λ)
1

λλ = t

Area = f(t)

⇒

⇒

“Running Integral of step = ramp”

∫ ∞−

t
du λλ)(

∫ ∞−
=

t
dutf λλ)()(

)(1)()( trttdutf
t

==⋅== ∫ ∞−
λλ

∫ ∞−
=

t
dutr λλ)()(



8/22

Also note: For   
we have:

Overlooking this, we can roughly say
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Not defined at t = 0!
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For example… If t0 = 2:

x(0 – 2)  =  x(–2)                      x(1 – 2)  =    x(–1) 

At t = 0, x(t – 2) takes the 
value of  x(t)  at t =  –2

Time Shifting Signals
Time shifting is an operation on a signal that shows up in many 
areas of signals and systems:

• Time delays due to propagation of signals
─ acoustic signals propagate at the speed of sound
─ radio signals propagate at the speed of light

• Time delays can be used to “build” complicated signals
─ We’ll see this later

At t = 1, x(t – 2) takes the 
value of  x(t)  at t =  –1

Time Shift: If you know x(t), what does x(t – t0) look like?



10/22

Example of Time Shift of the Unit Step u(t):

. . .
u(t)

1

t1    2    3    4-2  -1

. . .
u(t-2)

1

t1    2    3    4-2  -1

. . .
u(t+0.5)

1

t1    2    3    4-2  -1

General View:

x(t ± t0)    for t0 > 0

“+t0” gives Left shift  (Advance)

“–t0” gives Right shift  (Delay)
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The Impulse Function
One of the most important functions for understanding systems!!

Ironically…it does not exist in practice!!

⇒ It is a theoretical tool used to understand what is important to 
know about systems! 

But… it leads to ideas that are used all the time in practice!!

There are three views we’ll take of the delta function:

Other Names: Delta Function, 
Dirac Delta Function

Infinite height
Zero width 
Unit area

Rough View: a pulse with:

“A really narrow, really tall pulse that has unit area”
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Beware of Fig 1.4 in the 
book… it does not show 
the real δ(t)…
So its vertical axis should 
NOT be labeled with δ(t) 

Slightly Less-Rough View: )(1lim)(
0

tpt εε ε
δ

→
=
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Here we define                 as:

)(1 tpεε
ε
1

2
ε

2
ε− t

Pulse having… height of  1/ε and    width of ε
… which therefore has… area of 1 (1 = ε ×1/ε)

So as ε gets smaller the pulse gets higher and narrower but always 
has area of 1…

In the limit it “becomes” the delta function
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Precise Idea: δ(t) is not an ordinary function… It is defined 
in terms of its behavior inside an integral:

The delta function δ(t) is defined as 
something that satisfies the following two 
conditions:
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We show δ(t) on a plot using an arrow…
(conveys infinite height and zero width)

Caution… this is NOT the vertical 
axis… it is the delta function!!!
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The Sifting Property is the most important property of δ(t):
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tt0
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Integrating the 
product of f(t) 
and δ(t – to) 
returns a single 
number… the 
value of f(t) at
the “location” of 
the shifted delta 
function 

As long as the integral’s limits surround the 
“location” of the delta… otherwise it returns zero 
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Steps for applying sifting property:

Step 1: Find variable of integration
Step 2: Find the argument of δ(•)
Step 3: Find the value of the 
variable of integration that causes 
the argument of δ(•) to go to zero.
Step 4:  If value in Step 3 lies inside 
limits of integration… Take 
everything that is multiplying δ(•) 
and evaluate it at the value found in 
step 3; Otherwise… “return” zero
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Step 1: t      Step 2: t – 1
Step 3: t – 1 = 0   ⇒ t = 1
Step 4: t = 1 lies in [–4,7] so 
evaluate… sin(π×1) = sin(π) = 0

Example #1:

?)1()sin(
7

4
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)sin( tπ
)1( −tδ

0)1()sin(
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Example #2: ?)5.2()sin(
2

0

=−∫ dttt δπ

0)5.2()sin(
2

0

=−∫ dttt δπ

Step 1: Find variable of integration:   t
Step 2: Find the argument of δ(•): t – 2.5
Step 3: Find the value of the variable of integration that causes the 
argument of δ(•) to go to zero: t – 2.5 = 0  ⇒ t = 2.5
Step 4:  If value in Step 3 lies inside limits of integration… No!
Otherwise… “return” zero…

t1 2 3

)sin( tπ
)5.2( −tδ

Range of Integration Does NOT “include delta function”
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Example #3: ?)43()3)(sin(
7

4

2 =+−∫
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dtttt δω

( )ωδω 3/4sin26.6)43()3)(sin(
7

4

2 −=+−∫
−

dtttt

Step 1: Find variable of integration: τ
Step 2: Find the argument of δ(•): τ + 4
Step 3: Find the value of the variable of integration that causes the argument of 
δ(•) to go to zero: τ = –4
Step 4:  If value in Step 3 lies inside limits of integration… Yes!
Take everything that is multiplying δ(•): (1/3)sin(ωτ/3)(τ/3 – 3)2

…and evaluate it at the value found in step 3:

(1/3)sin(–4/3ω)(–4/3 – 3)2 = 6.26sin(–4/3ω)

Because of this… handle 
slightly differently!

Step 0: Change variables: let τ = 3t  dτ = 3dt limits: τL = 3(-4) τL = 3(7) 

?)4()33/)(3/sin(
3
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One Relationship Between δ(t) & u(t) )()( tud
t

=∫
∞−

λλδ

For t < 0:     the integrand = 0          ⇒ integral = 0 for t < 0

λ0

δ(λ)

λ = t < 0

Range of Integration

For t > 0: we “integrate over” the delta    ⇒ integral = 1  for t > 0

λ0

δ(λ)

λ = t > 0

Range of Integration

Defines 
the unit 

step 
function

Defines 
the unit 

step 
function
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. . .
u(t)

1
Derivative = 0

Derivative = 0

Derivative = “∞” (“Engineer Thinking”)

)()( tu
dt
dt =δAnother Relationship Between δ(t) & u(t)

t

Our view of the delta function having infinite height but 
zero width matches this interpretation of the values of 
the derivative of the unit step function!!
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A Continuous-Time signal x(t) is periodic with period T

if: x(t + T) = x(t) ∀t

T

t

x(t). . . . . .

Periodic Signals

Fundamental period = smallest such T
When we say “Period” we almost always mean “Fundamental Period”

x(t) x(t + T)

Periodic signals are important because many human-made 
signals are periodic.  Most test signals used in testing circuits 
are periodic signals (e.g., sine waves, square waves, etc.)
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Rectangular Pulse Function: pτ(t)

-τ/2 τ/2

1
pτ(t) 

pτ(t) = u(t + τ/2) – u(t – τ/2) 

u(t + τ/2)

t

1

-τ/2 t
u(t - τ/2)

1

tτ/2

Subscript 
specifies the 
pulse width

We can build a Rectangular Pulse from Unit Step Functions:

0 – 0 = 0 1 – 0 = 1 1 – 1 = 0

-τ/2

This is helpful because we 
will have lots of results that 
apply to the step function
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Building Signals with Pulses: shifted pulses are used to “turn other 
functions on and off”.  This allows us to mathematically describe complicated 
functions in terms of simpler functions.

1    2 t

2

1

g(t) = 0.5t + 1
Continues up forever

Continues down 
forever

This

This

Times

3

2

1

t1    2

f(t) = (0.5t + 1)p2(t - 1)

Gives

This

2

1
p2(t - 1)

t

Width of 2

Delay by 1

Multiplying
By Zero 

“Turns Off”
g(t)

Multiplying By One 
“Turns On” g(t)
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