

State University of New York

EECE 301 Signals & Systems Prof. Mark Fowler

Note Set #2

- What are Continuous-Time Signals???
- Reading Assignment: Section 1.1 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

1.1 Continuous-Time Signal

Our first math model for a signal will be a "function of time" <u>Continuous Time (C-T) Signal:</u>

A C-T signal is defined on the continuum of time values. <u>That is:</u>

f(t) for $t \in \Re$ Real line

Step & Ramp Functions

These are common textbook signals but are also common test signals, especially in control systems.

Unit Step Function *u*(*t*)

The unit step signal can model the act of switching on a DC

<u>Note:</u> A ramp with slope *m* can be made from: mr(t)

$$mr(t) = \begin{cases} mt, \ t \ge 0\\ 0, \ t < 0 \end{cases}$$

Relationship between u(t) & r(t)

Time Shifting Signals

Time shifting is an operation on a signal that shows up in many areas of signals and systems:

- Time delays due to propagation of signals
 - acoustic signals propagate at the speed of sound
 - radio signals propagate at the speed of light
- Time delays can be used to "build" complicated signals
 - We'll see this later

<u>Time Shift:</u> If you know x(t), what does $x(t - t_0)$ look like? For example... If $t_0 = 2$:

$$x(0-2) = x(-2)$$

$$x(1-2) = x(-1)$$
At $t = 0$, $x(t-2)$ takes the value of $x(t)$ at $t = -2$

$$x(1-2) = x(-1)$$
At $t = 1$, $x(t-2)$ takes the value of $x(t)$ at $t = -1$

Example of Time Shift of the Unit Step *u*(*t*):

The Impulse Function -

Other Names: Delta Function, Dirac Delta Function

One of the most important functions for <u>understanding</u> systems!!

Ironically...it does not exist in practice!!

 \Rightarrow It is a <u>theoretical tool</u> used to understand what is important to know about systems!

<u>But</u>... it leads to <u>ideas</u> that are used <u>all</u> the time in practice!!

There are three views we'll take of the delta function:

Rough View: a pulse with:

Infinite height Zero width <u>Unit</u> area

"A *really* narrow, *really* tall pulse that has unit area"

$$\delta(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} p_{\varepsilon}(t)$$

<u>Precise Idea:</u> $\delta(t)$ is not an ordinary function... It is defined in terms of its behavior inside an integral:

The delta function $\delta(t)$ is defined as something that satisfies the following two conditions: $\delta(t) = 0$, for any $t \neq 0$ $\int_{-\varepsilon}^{\varepsilon} \delta(t) dt = 1$, for any $\varepsilon > 0$

We show $\delta(t)$ on a plot using an arrow...

(conveys infinite height and zero width)

The <u>Sifting Property</u> is the most important property of $\delta(t)$:

Steps for applying sifting property:

$$\int_{t_0-\varepsilon}^{t_0+\varepsilon} f(t)\delta(t-t_0)dt = f(t_0)$$

Example #1:

$$\int_{-4}^{7} \sin(\pi t) \delta(t-1) dt = ?$$

$$\frac{\sin(\pi t)}{1 \sqrt{2} \sqrt{3}} \sqrt{t}$$

Step 1: Find variable of integration Step 2: Find the argument of $\delta(\bullet)$ Step 3: Find the value of the variable of integration that causes the argument of $\delta(\bullet)$ to go to zero. Step 4: If value in Step 3 lies inside limits of integration... Take everything that is multiplying $\delta(\bullet)$ and evaluate it at the value found in step 3; Otherwise... "return" zero

Step 1: t Step 2: t-1Step 3: $t-1=0 \implies t=1$ Step 4: t=1 lies in [-4,7] so evaluate... $sin(\pi \times 1) = sin(\pi) = 0$

$$\int_{-4}^{7} \sin(\pi t) \delta(t-1) dt = 0$$

Example #2:

$$\int_{0}^{2} \sin(\pi t) \delta(t-2.5) dt = ?$$

<u>Step 1</u>: Find variable of integration: t<u>Step 2</u>: Find the argument of $\delta(\bullet)$: t-2.5<u>Step 3</u>: Find the value of the variable of integration that causes the argument of $\delta(\bullet)$ to go to zero: $t-2.5 = 0 \Rightarrow t = 2.5$ <u>Step 4</u>: If value in Step 3 lies inside limits of integration... No! Otherwise... "return" zero...

$$\int_{0}^{2} \sin(\pi t) \delta(t-2.5) dt = 0$$

Range of Integration Does NOT "include delta function"

Step 0: Change variables: let $\tau = 3t \Rightarrow d\tau = 3dt \Rightarrow$ limits: $\tau_L = 3(-4) \tau_L = 3(7)$ $\int_{12}^{21} \frac{1}{3} \sin(\omega\tau/3)(\tau/3-3)^2 \delta(\tau+4) d\tau = ?$

<u>Step 1</u>: Find variable of integration: τ

<u>Step 2</u>: Find the argument of $\delta(\bullet)$: $\tau + 4$

<u>Step 3</u>: Find the value of the variable of integration that causes the argument of $\delta(\bullet)$ to go to zero: $\tau = -4$

<u>Step 4</u>: If value in Step 3 lies inside limits of integration... Yes! Take everything that is multiplying $\delta(\bullet)$: $(1/3)\sin(\omega\tau/3)(\tau/3-3)^2$...and evaluate it at the value found in step 3:

$$(1/3)\sin(-4/3\omega)(-4/3-3)^2 = 6.26\sin(-4/3\omega)$$

 $\int_{-4} \sin(\omega t) (t-3)^2 \delta(3t+4) dt = 6.26 \sin(-4/3\omega)$

Another Relationship Between $\delta(t)$ & u(t)

Our view of the delta function having infinite height but zero width matches this interpretation of the values of the derivative of the unit step function!!

Periodic Signals

Periodic signals are important because many human-made signals are periodic. Most test signals used in testing circuits are periodic signals (e.g., sine waves, square waves, etc.)

A Continuous-Time signal
$$x(t)$$
 is periodic with period T
if: $x(t+T) = x(t)$ $\forall t$

<u>Fundamental</u> period = $\underline{smallest}$ such T

When we say "Period" we almost always mean "Fundamental Period"

We can build a Rectangular Pulse from Unit Step Functions:

Building Signals with Pulses: shifted pulses are used to "turn other functions on and off". This allows us to mathematically describe complicated functions in terms of simpler functions.

22/22