Note Set #15

- C-T Signals: Fourier Transform Properties
- Reading Assignment: Section 3.6 of Kamen and Heck
Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).

Ch. 1 Intro
C-T Signal Model
Functions on Real Line
System Properties
LTI
Causal
Etc
D-T Signal Model
Functions on Integers

Ch. 3: CT Fourier Signal Models
Fourier Series
Periodic Signals
Fourier Transform (CTFT)
Non-Periodic Signals

Ch. 2 Diff Eqs
C-T System Model
Differential Equations
D-T Signal Model
Difference Equations
Zero-State Response
Zero-Input Response
Characteristic Eq.

Ch. 4: DT Fourier Signal Models
DTFT
(for “Hand” Analysis)
DFT & FFT
(for Computer Analysis)

Ch. 5: CT Fourier System Models
Frequency Response
Based on Fourier Transform

Ch. 2 Convolution
C-T System Model
Convolution Integral
D-T System Model
Convolution Sum

Ch. 3 Convolution
New System Model

Ch. 4: DT Fourier System Models
Freq. Response for DT
Based on DTFT

Ch. 5: DT Fourier System Models
Fouier Transform (DTFT)
New System Model

Ch. 6 & 8: Laplace Models for CT Signals & Systems
Transfer Function

Ch. 7: Z Trans. Models for DT Signals & Systems
Transfer Function

New Signal Models
New System Model
Powerful Analysis Tool
New System Model
Fourier Transform Properties

Note: There are a few of these we won’t cover….
see Table on Website or the inside front cover of the book for them.

I prefer that you use the tables on the website… they are better than the book’s

As we have seen, finding the FT can be tedious (it can even be difficult)
But…there are certain properties that can often make things easier.
Also, these properties can sometimes be the key to understanding how the FT can be used in a given application.

So… even though these results may at first seem like “just boring math” they are important tools that let signal processing engineers understand how to build things like cell phones, radars, mp3 processing, etc.
1. **Linearity** (Supremely Important)

If \(x(t) \leftrightarrow X(\omega) \) & \(y(t) \leftrightarrow Y(\omega) \)

then \([ax(t) + by(t)] \leftrightarrow [aX(\omega) + bY(\omega)] \)

Another way to write this property:

\[\mathcal{F}\{ax(t) + by(t)\} = a\mathcal{F}\{x(t)\} + b\mathcal{F}\{y(t)\} \]

To see why:

\[\mathcal{F}\{ax(t) + by(t)\} = \int_{-\infty}^{\infty} [ax(t) + by(t)] e^{-j\omega t} \, dt \]

By standard Property of Integral of sum of functions

\[= a \int_{-\infty}^{\infty} x(t) e^{-j\omega t} \, dt + b \int_{-\infty}^{\infty} y(t) e^{-j\omega t} \, dt \]

\[= X(\omega) + Y(\omega) \]

Get used virtually all the time!!
Example Application of “Linearity of FT”: Suppose we need to find the FT of the following signal…

\[x(t) \]

\[t \]

-2 -1 1 2

Finding this using straight-forward application of the definition of FT is not difficult but it is tedious:

\[
\mathcal{F}\{x(t)\} = \int_{-2}^{-1} e^{-j\omega t} dt + 2\int_{-1}^{0} e^{-j\omega t} dt + \int_{0}^{1} e^{-j\omega t} dt
\]

So… we look for short-cuts:
- One way is to recognize that each of these integrals is basically the same
- Another way is to break \(x(t) \) down into a sum of signals on our table!!!
Break a complicated signal down into simple signals before finding FT:

Mathematically we write: \(x(t) = p_4(t) + p_2(t) \) \(\Rightarrow X(\omega) = P_4(\omega) + P_2(\omega) \)

From FT Table we have a known result for the FT of a pulse, so…

\[
X(\omega) = 4 \text{sinc} \left(\frac{2\omega}{\pi} \right) + 2 \text{sinc} \left(\frac{\omega}{\pi} \right)
\]

From FT Table we have a known result for the FT of a pulse, so…
2. Time Shift (Really Important!)

If \(x(t) \leftrightarrow X(\omega) \) then \(x(t - c) \leftrightarrow X(\omega)e^{-j\omega c} \)

Note: If \(c > 0 \) then \(x(t - c) \) is a delay of \(x(t) \)

So… what does this mean?!

First… it does nothing to the magnitude of the FT: \(|X(\omega)e^{-j\omega c}| = |X(\omega)| \)

That means that a shift doesn’t change “how much” we need of each of the sinusoids we build with

Second… it does change the phase of the FT: \(\angle\{X(\omega)e^{-j\omega c}\} = \angle X(\omega) + \angle e^{-j\omega c} \)

\[= \angle X(\omega) + \omega c \]

Line of slope \(-c\)

Phase shift increases linearly as the frequency increases

Shift of Time Signal \(\leftrightarrow \) “Linear” Phase Shift of Frequency Components

Used often to understand practical issues that arise in audio, communications, radar, etc.
Example Application of Time Shift Property: Room acoustics.

Practical Questions: Why do some rooms sound bad? Why can you fix this by using a “graphic equalizer” to “boost” some frequencies and “cut” others?

Very simple case of a single reflection:

So… You hear: \(y(t) = x(t) + \alpha x(t - c) \) instead of just \(x(t) \)

Use linearity and time shift to get the FT at your ear:

\[
Y(\omega) = \mathcal{F}\{x(t) + \alpha x(t - c)\} = \mathcal{F}\{x(t)\} + \alpha \mathcal{F}\{x(t - c)\}
\]

\[
= X(\omega) + \alpha X(\omega) e^{-j\omega c}
\]

\[
Y(\omega) = X(\omega)\left[1 + \alpha e^{-j\omega c}\right]
\]

This is the FT of what you hear… It gives an equation that shows how the reflection affects what you hear!!!!
The big picture!

\[|Y(\omega)| = |X(\omega)| \left| 1 + \alpha e^{-j\omega c} \right| \]
\[\equiv |H(\omega)| \]

|H(\omega)| changes shape of \(|X(\omega)|\)

The room changes how much of each frequency you hear…

Let’s look closer at |H(\omega)| to see what it does…

\[|H(\omega)| = \left| 1 + \alpha e^{-j\omega c} \right| = \left| 1 + \alpha \cos(c\omega) - j\alpha \sin(c\omega) \right| \]

\[= \sqrt{(1 + \alpha \cos(\omega c))^2 + \alpha^2 \sin^2(\omega c)} = \sqrt{1 + 2\alpha \cos(\omega c) + \alpha^2 \cos^2(\omega c) + \alpha^2 \sin^2(\omega c)} \]

\[\text{mag} = \sqrt{(\text{Re})^2 + (\text{Im})^2} \]

Expand 1st squared term

Use Trig ID

\[\text{mag} = \alpha^2 \]

\[|H(\omega)| = \sqrt{1 + \alpha^2} + 2\alpha \cos(\omega c) \]
The big picture... revisited:

\[|Y(\omega)| = |X(\omega)|\sqrt{(1 + \alpha^2) + 2\alpha \cos(\omega c)} \]

Effect of the room... what does it look like as a function of frequency?? The cosine term makes it wiggle up and down... and the value of \(c \) controls how fast it wiggles up and down.

Speed of sound in air \(\approx 340 \) m/s

Typical difference in distance \(\approx 0.167 \) m

\[c = \frac{0.167 \text{m}}{340 \text{m/s}} = 0.5 \text{ msec} \]

\[\Rightarrow \text{Spacing} = 2 \text{ kHz} \]
Attenuation: $\alpha = 0.2$
Delay: $c = 0.5$ ms
(Spacing = $1/0.5\times10^{-3} = 2$ kHz)

Longer delay causes closer spacing… so more dips/peaks over audio range!

FT magnitude at the speaker (a made-up spectrum… but kind of like audio)

$|H(\omega)|$… the effect of the room

FT magnitude at your ear… room gives slight boosts and cuts at closely spaced locations

Longer delay causes closer spacing… so more dips/peaks over audio range!
Attenuation: $\alpha = 0.8$
Delay: $c = 0.5$ ms
(Spacing = $1/0.5 \times 10^{-3} = 2$ kHz)

FT magnitude at the speaker

$|H(\omega)|$... the effect of the room

FT magnitude at your ear... room gives large boosts and cuts at closely spaced locations

Stronger reflection causes bigger boosts/cuts!!
Attenuation: $\alpha = 0.2$
Delay: $c = 0.1$ ms
(Spacing = 1/0.1e-3 = 10 kHz)

Shorter delay causes wider spacing… so fewer dips/peaks over audio range!

FT magnitude at the speaker

$|H(\omega)|$… the effect of the room

FT magnitude at your ear… room gives small boosts and cuts at widely spaced locations
function room_delay(atten,delay)

f=0:100:20000; % Freq range: 0 Hz to 20 kHz
w=2*pi*f; % convert to rad/sec

H=abs(1 + atten*exp(-j*w*delay)); % Compute Room Effect

% Make up a fictitious audio spectrum
X=50000*w./((2*pi*2000+w)).^2;

% Now do plots
subplot(3,1,1) % splits figure into 3 subplots, pick 1st one
plot(f/1000,X) % note f converted into kHz
xlabel('f (kHz)')
ylabel('Original Audio Spectrum')
axis([0 20 0 2]) % set axis ranges as desired
grid % put grid lines on

subplot(3,1,2) % splits figure into 3 subplots, pick 2nd one
plot(f/1000,H)
xlabel('f (kHz)')
ylabel('Room Effect')
axis([0 20 0 2])
grid

subplot(3,1,3) % splits figure into 3 subplots, pick 3rd one
plot(f/1000,H.*X)
xlabel('f (kHz)')
ylabel('Changed Audio Spectrum')
axis([0 20 0 2])
grid
3. Time Scaling (Important)

Q: If $x(t) \leftrightarrow X(\omega)$, then $x(at) \leftrightarrow ???$ for $a \neq 0$

A: $x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$

If the time signal is Time Scaled by a Then… The FT is Freq. Scaled by $1/a$

An interesting “duality”!!!
To explore this FT property…first, what does $x(at)$ look like?

$|a| > 1$ makes it “wiggle” faster ⇒ need more high frequencies

$|a| < 1$ makes it “wiggle” slower ⇒ need less high frequencies
When $|a| > 1 \Rightarrow |1/a| < 1$

$x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$

Time Signal is Squished

FT is Stretched Horizontally and Reduced Vertically

Original Signal & Its FT

Squished Signal & Its FT
When $|a| < 1 \Rightarrow \frac{1}{|a|} > 1$

$x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$

Time Signal is Stretched

FT is Squished Horizontally and Increased Vertically

Original Signal & Its FT

Original Signal

Stretched Signal & Its FT

Stretched Signal

Rough Rule of Thumb we can extract from this property:

\uparrow Duration \Rightarrow \downarrow Bandwidth

\downarrow Duration \Rightarrow \uparrow Bandwidth

Very Short Signals tend to take up Wide Bandwidth
4. Time Reversal (Special case of time scaling: $a = -1$)

\[x(-t) \leftrightarrow X(-\omega) \]

Note: $X(-\omega) = \int_{-\infty}^{\infty} x(t)e^{-j(-\omega)t} \ dt = \int_{-\infty}^{\infty} x(t)e^{+j\omega t} \ dt = \text{“No Change”}$

\[= \int_{-\infty}^{\infty} \overline{x(t)}e^{+j\omega t} \ dt \]

Conjugate changes to $-j$

\[= \int_{-\infty}^{\infty} x(t)e^{-j\omega t} \ dt = \overline{X(\omega)} \]

So if $x(t)$ is real, then we get the special case:

\[x(-t) \leftrightarrow \overline{X(\omega)} \]

Recall: conjugation doesn’t change abs. value but negates the angle

\[|\overline{X(\omega)}| = |X(\omega)| \]

\[\angle \overline{X(\omega)} = -\angle X(\omega) \]
5. Multiply signal by t^n

\[t^n x(t) \leftrightarrow (j)^n \frac{d^n X(\omega)}{d\omega^n} \quad n = \text{positive integer} \]

This property is mostly useful for finding the FT of typical signals.

Example Find $X(\omega)$ for this $x(t)$

Notice that: $x(t) = tp_2(t)$
So… we can use this property as follows:

\[X(\omega) = j \frac{d}{d\omega} P_2(\omega) = j \frac{d}{d\omega} \left(2 \text{sinc} \left(\frac{\omega}{\pi} \right) \right) \]

\[= j2 \left[\frac{\omega \cos(\omega) - \sin(\omega)}{\omega^2} \right] \]

From entry on FT Table with \(\tau = 2 \).

Now… how do you get the derivative of the sinc???

Use the definition of sinc and then use the rule for the derivative of a quotient you learned in Calc I:

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{df(x)}{dx} - f(x) \frac{dg(x)}{dx}}{g^2(x)}
\]
6. Modulation Property

Super important!!!

Essential for understanding practical issues that arise in communications, radar, etc.

There are two forms of the modulation property…

1. **Complex Exponential Modulation** … simpler mathematics, doesn’t \textit{directly} describe real-world cases
2. **Real Sinusoid Modulation** … mathematics a bit more complicated, directly describes real-world cases

Euler’s formula connects the two… so you often can use the Complex Exponential form to analyze real-world cases
Complex Exponential Modulation Property

\[x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0) \]

Multiply signal by a complex sinusoid
Shift the FT in frequency
Real Sinusoid Modulation

Based on Euler, Linearity property, & the Complex Exp. Modulation Property

\[
\mathcal{F}\{x(t) \cos(\omega_0 t)\} = \mathcal{F}\left\{\frac{1}{2} [x(t)e^{j\omega_0 t} + x(t)e^{-j\omega_0 t}]\right\}
\]

\[
= \frac{1}{2} \left[\mathcal{F}\{x(t)e^{j\omega_0 t}\} + \mathcal{F}\{x(t)e^{-j\omega_0 t}\}\right]
\]

\[
= \frac{1}{2} \left[X(\omega - \omega_0) + X(\omega + \omega_0)\right]
\]

The Result:

\[x(t) \cos(\omega_0 t) \iff \frac{1}{2} \left[X(\omega + \omega_0) + X(\omega - \omega_0)\right]\]

Shift Down Shift Up

Related Result:

\[x(t) \sin(\omega_0 t) \iff \frac{j}{2} \left[X(\omega + \omega_0) - X(\omega - \omega_0)\right]\]

Exercise: \[x(t) \cos(\omega_0 t + \phi_0) \iff ???\]
Visualizing the Result

\[x(t) \cos(\omega_0 t) \leftrightarrow \frac{1}{2} [X(\omega - \omega_0) + X(\omega + \omega_0)] \]

Shift up *Shift down*

Interesting… This tells us how to move a signal’s spectrum up to higher frequencies without changing the shape of the spectrum!!!

What is that good for?? Well… only high frequencies will radiate from an antenna and propagate as electromagnetic waves and then induce a signal in a receiving antenna….
Application of Modulation Property to Radio Communication

FT theory tells us what we need to do to make a simple radio system… then electronics can be built to perform the operations that the FT theory calls for:

Transmitter

- Sound and microphone
- Modulator
 - $x(t)$
 - $\cos(\omega_0 t)$
 - Oscillator
- Antenna

FT of Message Signal

- $X(\omega)$
- $\mathcal{F}\{x(t)\cos(\omega_0 t)\}$

Choose $f_0 > 10$ kHz to enable efficient radiation (with $\omega_0 = 2\pi f_0$)

AM Radio: around 1 MHz FM Radio: around 100 MHz
Cell Phones: around 900 MHz, around 1.8 GHz, around 1.9 GHz etc.
The next several slides show how these ideas are used to make a receiver:

The “Filter” removes the Other signals (We’ll learn about filters later)
By the Real-Sinusoid Modulation Property… the De-Modulator shifts up & down:

Shifted Up

Shifted Down

Add… gives double
Amp & Filter multiply oscillator Amp & Filter
De-Modulator
Extra Stuff we don’t want

Receiver

\[\cos(\omega_0 t) \]

The “Filter” removes the Extra Stuff

Speaker is driven by desired message signal!!!
So... what have we seen in this example:

Using the Modulation property of the FT we saw…

1. Key Operation at Transmitter is up-shifting the message spectrum:
 a) FT Modulation Property tells the theory then we can build…
 b) “modulator” = oscillator and a multiplier circuit

2. Key Operation at Transmitter is down-shifting the received spectrum
 a) FT Modulation Property tells the theory then we can build…
 b) “de-modulator” = oscillator and a multiplier circuit
 c) But... the FT modulation property theory also shows that we need filters to get rid of “extra spectrum” stuff
 i. So... one thing we still need to figure out is how to deal with these filters…
 ii. Filters are a specific “system” and we still have a lot to learn about Systems…
 iii. That is the subject of much of the rest of this course!!!
7. Convolution Property *(The Most Important FT Property!!!)*

The ramifications of this property are the subject of the entire Ch. 5 and continues into all the other chapters!!!

It is this property that makes us study the FT!!

Mathematically we state this property like this:

\[x(t) * h(t) \iff X(\omega)H(\omega) \]

Another way of stating this is:

\[\mathcal{F}\{x(t) * h(t)\} = X(\omega)H(\omega) \]
Now… what does this mean and why is it so important??!!

Recall that convolution is used to described what comes out of an LTI system:

\[x(t) \rightarrow h(t) \rightarrow y(t) = x(t) * h(t) \]

Now we can take the FT of the input and the output to see how we can view the system behavior “in the frequency domain”:

\[X(\omega) \rightarrow H(\omega) \rightarrow Y(\omega) = X(\omega)H(\omega) \]

It is easier to think about and analyze the operation of a system using this “frequency domain” view because visualizing multiplication is easier than visualizing convolution.

System’s \(H(\omega) \) changes the shape of the input’s \(X(\omega) \) via \textbf{multiplication} to create output’s \(Y(\omega) \)

Use the Conv. Property!!
Let’s revisit our “Room Acoustics” example:

$$y(t) = x(t) * h_{room}(t)$$

Recall:

$$|Y(\omega)| = |X(\omega)| \left| 1 + \alpha e^{-j\omega} \right|$$

$$H_{room}(\omega)$$

Plot of $|H_{room}(\omega)|$

What we hear is not right!!!
So, we fix it by putting in an “equalizer” (a system that fixes things)

\[X_2(\omega) = H_{eq}(\omega)X(\omega) \]

(by convolution property)

\[y(t) = x_2(t) * h_{room}(t) \]

\[= \left[x(t) * h_{eq}(t) \right] * h_{room}(t) \]

Then:

\[|Y(\omega)| = |X(\omega)| |H_{eq}(\omega)| \left| 1 + \alpha e^{-j\omega} \right| \]

Recall: Peaks and dips

Want this whole thing to be \(= 1 \) so \[|Y(\omega)| = |X(\omega)| \]
Equalizer’s $|H_{eq}(\omega)|$ should peak at frequencies where the room’s $|H_{room}(\omega)|$ dips and vice versa.
8. Multiplication of Signals

\[x(t)y(t) \leftrightarrow \frac{1}{2\pi} X(\omega) * Y(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\lambda)Y(\omega - \lambda)d\lambda \]

This is the “dual” of the convolution property!!!

"Convolution in the Time-Domain" gives "Multiplication in the Frequency-Domain"

"Multiplication in the Time-Domain" gives "Convolution in the Frequency-Domain"
9. Parseval’s Theorem (Recall Parseval’s Theorem for FS!)

\[
\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega
\]

Energy computed in time domain

Energy computed in frequency domain

\[
|x(t)|^2 dt = \text{energy at time } t
\]

\[
|X(\omega)|^2 \frac{d\omega}{2\pi} = \text{energy at freq. } \omega
\]

Generalized Parseval’s Theorem:

\[
\int_{-\infty}^{\infty} x(t)y(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)Y(\omega)d\omega
\]
10. Duality:

\[X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} \, dt \]

\[x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} \, d\omega \]

Both FT & IFT are pretty much the “same machine”:

\[c \int_{-\infty}^{\infty} f(\lambda)e^{\pm j\lambda \xi} \, d\lambda \]

So if there is a “time-to-frequency” property we would expect a virtually similar “frequency-to-time” property

Illustration:

- **Delay Property:**
 \[x(t - c) \leftrightarrow X(\omega)e^{-j\omega c} \]

- **Modulation Property:**
 \[x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0) \]

Other Dual Properties:

- (Multiply by \(t^n \)) vs. (Diff. in time domain)
- (Convolution) vs. (Mult. of signals)
Also, this duality structure gives FT pairs that show duality.

Suppose we have a FT table that a FT Pair A… we can get the dual Pair B using the general Duality Property:

1. Take the FT side of (known) Pair A and replace ω by t and move it to the time-domain side of the table of the (unknown) Pair B.

2. Take the time-domain side of the (known) Pair A and replace t by $-\omega$, multiply by 2π, and then move it to the FT side of the table of the (unknown) Pair B.

Here is an example… We found the FT pair for the pulse signal:

Here we have used the fact that $p_\tau(-\omega) = p_\tau(\omega)$.