
1/27

EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #14
• C-T Signals: Fourier Transform (for Non-Periodic Signals)
• Reading Assignment: Section 3.4 & 3.5 of Kamen and Heck
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Ch. 1 Intro
C-T Signal Model

Functions on Real Line

D-T Signal Model
Functions on Integers

System Properties
LTI

Causal
Etc

Ch. 2 Diff Eqs
C-T System Model

Differential Equations
D-T Signal Model

Difference Equations

Zero-State Response

Zero-Input Response
Characteristic Eq.

Ch. 2 Convolution

C-T System Model
Convolution Integral

D-T System Model
Convolution Sum

Ch. 3:  CT Fourier 
Signal Models

Fourier Series
Periodic Signals

Fourier Transform (CTFT)
Non-Periodic Signals

New System Model

New Signal 
Models

Ch. 5:  CT Fourier 
System Models

Frequency Response
Based on Fourier Transform

New System Model

Ch. 4:  DT Fourier 
Signal Models

DTFT
(for “Hand” Analysis)

DFT & FFT
(for Computer Analysis)

New Signal
Model

Powerful 
Analysis Tool

Ch. 6 & 8:  Laplace 
Models for CT

Signals & Systems

Transfer Function

New System Model

Ch. 7:  Z Trans.
Models for DT

Signals & Systems

Transfer Function

New System
Model

Ch. 5:  DT Fourier 
System Models

Freq. Response for DT
Based on DTFT

New System Model

Course Flow Diagram
The arrows here show conceptual flow between ideas.  Note the parallel structure between 

the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).
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4.3 Fourier Transform
Recall: Fourier Series represents a periodic signal as a sum of sinusoids

Note: Because the FS uses “harmonically related” frequencies kω0, it can only create 
periodic signals

∑
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k
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k

kectx ω)(

or complex sinusoids tjke 0ω

With arbitrary discrete frequencies…
NOT harmonically related

∑
∞

−∞=

=
k

tj
k

kectx ω)(The problem with                             is that it cannot include all possible 
frequencies!

Q: Can we modify the FS idea to handle non-periodic signals?

A: Yes!! 

What about                             ?

That will give some non-periodic signals but not some that are 
important!!
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How about:
∫
∞

∞−
= ωω

π
ω deXtx tj)(

2
1)(

Called the “Fourier 
Integral” also, more 

commonly, called the 
“Inverse Fourier 

Transform”

Plays the 
role of ck

Plays the role of
tjke 0ω

Integral replaces sum because it can “add up 
over the continuum of frequencies”!

Okay… given x(t) how do we get X(ω)?

∫
∞

∞−

−= dtetxX tjωω )()(

Note: X(ω) is complex-valued function of ω ∈ (-∞, ∞)

|X(ω)| )(ωX∠

Yes… this will work for any 
practical non-periodic signal!!

Called the 
“Fourier Transform”

of x(t)

Need to use two 
plots to show it
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Comparison of FT and FS

Fourier Series: Used for periodic signals

Fourier Transform: Used for non-periodic signals (although we 
will see later that it can also be used for periodic signals)
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Synthesis Analysis

Fourier
Series

Fourier Series Fourier Coefficients

Fourier
Transform

Inverse Fourier Transform Fourier Transform

FS coefficients ck are a complex-valued function of integer k

FT X(ω) is a complex-valued function of the variable ω ∈ (-∞, ∞)
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Synthesis Viewpoints:

We need two plots to show these
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kectx 0)( ω

|X(ω)| shows how much there is in the signal at frequency ω

∠ X(ω) shows how much phase shift is needed at frequency ω

∫
∞

∞−
= ωω

π
ω deXtx tj)(

2
1)(

We need two plots to show these

FS:

|ck|   shows how much there is of the signal at frequency kω0

∠ck shows how much phase shift is needed at frequency kω0

FT:
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Some FT Notation:

)()( ωXtx ↔1.

If X(ω) is the Fourier transform of x(t)…

then we can write this in several ways:

{ })()( txX F=ω2. ⇒ F{ } is an “operator” that operates on x(t) to give X(ω)

⇒ F-1{ } is an “operator” that operates on X(ω) to give x(t){ })()( 1 ωXtx −= F3.
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Analogy: Looking at X(ω) is “like” looking at an x-ray of the signal- in the sense that an      
x-ray lets you see what is inside the object… shows what stuff it is made from.

In this sense: X(ω) shows what is “inside” the signal – it shows how much of each complex 
sinusoid is “inside” the signal

Note: x(t) completely determines X(ω)

X(ω) completely determines x(t)

There are some advanced mathematical issues 
that can be hurled at these comments… we’ll 
not worry about them
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FT Example: Decaying Exponential
Given a signal  x(t) = e-btu(t) find X(ω) if b > 0 

Now…apply the definition of the Fourier transform.  Recall the general 
form:

dtetxX tj∫
∞

∞−

−= ωω )()(

1 )(tx

t
b controls decay rate

The u(t) part forces this to zero

What does this look 
like if b < 0???

Solution: First see what x(t) looks like:
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dtetueX tjbt∫
∞
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Easy 
integral!
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Now plug in for our signal:

integrand = 0 for t < 0  
due to the u(t)

dtedtee tjbtjbt ∫∫
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Set lower limit to 0 
and then u(t) = 1 over 

integration range
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Only if b>0… what 
happens if b<0 
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ω
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(Complex Valued)

Magnitude

Phase

)()( tuetx bt−=
For b > 0

1
)()( tuetx bt−=

t

b > 0 controls 
decay rate

)(ωX

ω

Summary of FT Result for Decaying Exponential
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MATLAB Commands to Compute FT
w=-100:0.2:100;
b=10;
X=1./(b+j*w);

Plotting Commands
subplot(2,1,1); plot(w,abs(X))
xlabel('Frequency \omega (rad/sec)')
ylabel('|X(\omega|) (volts)'); grid
subplot(2,1,2); plot(w,angle(X))
xlabel('Frequency \omega (rad/sec)')
ylabel('<X(\omega) (rad)'); grid

Fourier Transform of e-btu(t) for b = 10

Note that 
magnitude 
plot has even
symmetry

Note that 
phase plot has 
odd symmetry

True for every
real-valued signal

Note: Book’s Fig. 3.12 only 
shows one-sided spectrum plots

(v
ol

ts
) Technically V/Hz
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Note: As b increases…
1. Decay rate in time signal increases 
2. High frequencies in Fourier transform are more prominent.

Time Signal Fourier Transform
Exploring 
Effect of 

decay rate b
on the 
Fourier 

Transform’s
Shape

Short Signals have FTs that spread 
more into High Frequencies!!!
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Example: FT of a Rectangular pulse

Given: a rectangular pulse signal  pτ(t)
t

2
τ

2
τ

−

)(tpτ
τ = pulse width

Recall: we use this symbol 
to indicate a rectangular 

pulse with width τ

⎪
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⎪
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⎧ ≤≤−
=

otherwise

t
tp

,0

22
,1

)(
ττ

τ

Solution:

Note that 

Note the Notational Convention: 
lower-case for time signal and 

corresponding upper-case for its FT

Note the Notational Convention: 
lower-case for time signal and 

corresponding upper-case for its FT

Find: Pτ(ω)… the FT of pτ(t)
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inserted 2 in 

numerator and 
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Now apply the definition of the FT: Limit integral to 
where pτ(t) is non-
zero… and use the 
fact that it is 1 over 

that region

⎟
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⎜
⎝
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2
sin ωτ Use Euler’s 

Formula

ω

ωτ

ωτ

⎟
⎠
⎞

⎜
⎝
⎛

= 2
sin2

)(P

sin goes up and down 
between -1 and 1

1/ω decays down as |ω| gets 
big… this causes the overall 

function to decay down
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For this case the FT is real valued so we can plot it using a single plot 
(shown in solid blue here):

2/ω
2/ω

-2/ω
-2/ω

ω

ωτ

ωτ

⎟
⎠
⎞

⎜
⎝
⎛

= 2
sin2

)(P
The sin wiggles up down 

“between ±2/ω”
The sine wiggles up & 
down “between ±2/ω”

τ = 1/2
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Even though this FT is real-valued we can still plot it using magnitude 
and phase plots: We can view any real number as a complex 

number that has zero as its imaginary part 

Re

Im
A positive real number R will have:  

|R| = R         ∠R = 0

R

Re

Im
A negative real number R will have:  

|R| = -R         ∠R = ±π

R

+π

-π
Can use 

either one!!

Now… let’s think about how to make magnitude/phase plot…
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Applying these Ideas to the Real-valued FT Pτ(ω)

Phase = 0

Phase = ±π

Here I have chosen -π to display odd symmetry
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Note: As width decreases, FT is more widely spread

Narrow pulses “take up more frequency range”

Effect of Pulse Width on the FT Pτ(ω)
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The result we just found had this mathematical form:
ω

ωτ

ωτ

⎟
⎠
⎞

⎜
⎝
⎛

= 2
sin2

)(P

x
xx

π
π )sin()(sinc =

This kind of structure shows up frequently enough 
that we define a special function to capture it: 

Define:

Note that sinc(0) = 0/0. 
So… Why is sinc(0) = 1?

It follows from 
L’Hopital’s Rule

Plot of sinc(x)

Definition of “Sinc” Function 
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With a little manipulation we can re-write the FT result for a pulse in terms of the 
sinc function:

Now we need 
the same thing 
down here as 

inside the sine…
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Need π times 
something…
Need π times 
something…
Need π times 
something…
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Recall:
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Table of Common Fourier Transform Results
We have just found the FT for two common signals…

ω
ω
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π
ωττωτ 2

sinc)(P

See FT Table on the Course Website for a list of these and many other FT.

There are 
tables in the 
book but I 

recommend 
that you use 
the Tables I 

provide on the 
Website

You should study this table…

• If you encounter a time signal or FT that is on this table you should recognize 
that it is on the table without being told that it is there.

• You should be able to recognize entries in graphical form as well as in 
equation form (so… it would be a good idea to make plots of each function 
in the table to learn what they look like!   See next slide!!!)

• You should be able to use multiple entries together with the FT properties 
we’ll learn in the next set of notes (and there will be another Table!)
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For your FT Table you should spend time making sketches of the entries
… like this:

t

)(ωX

ω

t

2
τ

2
τ

−

)(tpτ
)(ωτP

ω
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Bandlimited and Timelimited Signals

t

],[0)( 21 TTttx ∉∀=

1T 2T

A signal x(t) is timelimited (or of finite duration) if there are 2 numbers T1 & T2
such that:

A (real-valued) signal x(t) is bandlimited

Now that we have the FT as a tool to analyze signals, we can use it to identify 
certain characteristics that many practical signals have.

if there is a number B such that 

ωBπ2−

)(ωX

Bπ2

BX πωω 20)( >∀=

2πB is in rad/sec 

B is in Hz

Recall: If x(t) is real-valued then |X(ω)| has “even symmetry”
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FACT: A signal can not be both timelimited and bandlimited
⇒ Any timelimited signal is not bandlimited

⇒ Any bandlimited signal is not timelimited

This signal is effectively bandlimited to B Hz because |X(ω)| falls 
below (and stays below) the specified level for all ω above 2πB

But… engineers say practical signals are effectively bandlimited
because for  almost all practical signals |X(ω)| decays to zero as 
ω gets large

Practical signals are not bandlimited!

Note:  All practical signals must “start” & “stop”
⇒ timelimited ⇒

ω
Bπ2−

)(ωX

Bπ2

FT of pulse Some application-specific level 
that specifies “small enough to 
be negligible”

Recall: sinc decays as 1/ω
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Bandwidth (Effective Bandwidth) Abbreviate Bandwidth as “BW”

For a lot of signals – like audio – they fill up the lower frequencies but then decay 
as ω gets large:

ω
Bπ2−

)(ωX

Bπ2

We say the signal’s BW = B in Hz if there is “negligible” content for |ω| > 2πB

Must specify what 
“negligible” means

For Example:

1. High-Fidelity Audio signals have an accepted BW of about 20 kHz

2. A speech signal on a phone line has a BW of about 4 kHz

Signals like this are 
called “lowpass” signals

Early telephone engineers determined that limiting speech to a BW 
of 4kHz still allowed listeners to understand the speech
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For other kinds of signals – like “radio frequency (RF)” signals – they 
are concentrated at high frequencies

ω
)(ωX

1ω−2ω− 11 2 fπω = 22 2 fπω =

If the signal’s FT has negligible content for |ω| ∉ [ω1, ω2] 
then we say the signals BW = f2 - f1 in Hz

For Example:
1. The signal transmitted by an FM station has a BW of 200 kHz = 0.2 MHz

a. The station at 90.5 MHz on the “FM Dial” must ensure that its signal 
does not extend outside the range [90.4, 90.6] MHz

b. Note that: FM stations all have an odd digit after the decimal point.  
This ensures that adjacent bands don’t overlap: 
i. FM90.5 covers [90.4, 90.6]
ii. FM90.7 covers [90.6, 90.8], etc. 

2. The signal transmitted by an AM station has a BW of 20 kHz
a. A station at 1640 kHz must keep its signal in [1630, 1650] kHz 
b. AM stations have an even digit in the tens place and a zero in the ones 

Signals like this are 
called “bandpass” signals
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