

State University of New York

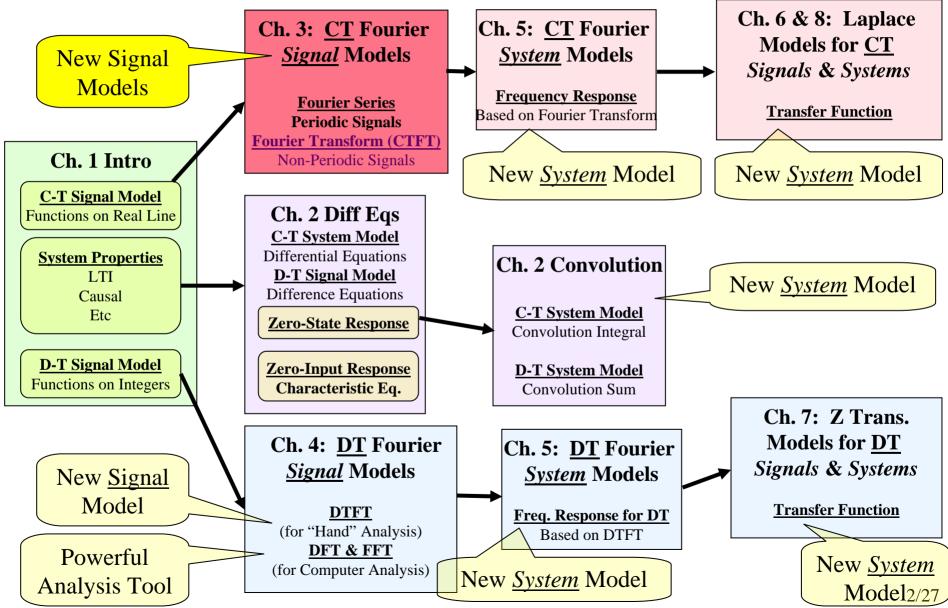
EECE 301 Signals & Systems Prof. Mark Fowler

<u>Note Set #14</u>

- C-T Signals: Fourier Transform (for <u>Non</u>-Periodic Signals)
- Reading Assignment: Section 3.4 & 3.5 of Kamen and Heck

Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between the pink blocks (C-T Freq. Analysis) and the blue blocks (D-T Freq. Analysis).



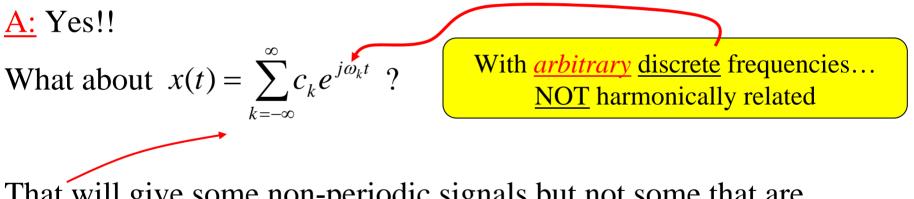
4.3 Fourier Transform

<u>Recall</u>: Fourier <u>Series</u> represents a <u>periodic</u> signal as a <u>sum</u> of sinusoids

or complex sinusoids $e^{jk\omega_0 t}$

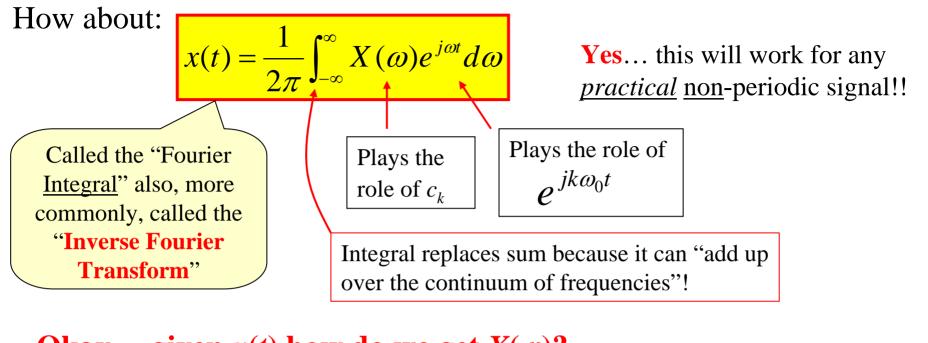
<u>Note</u>: Because the FS uses <u>"harmonically related</u>" frequencies $k\omega_0$, it can <u>only</u> create <u>periodic</u> signals

Q: Can we modify the FS idea to handle <u>non</u>-periodic signals?



That will give <u>some</u> non-periodic signals but not some that are important!!

The problem with $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\omega_k t}$ is that it cannot include <u>all</u> possible frequencies!



Okay... given x(t) how do we get $X(\omega)$?

 $X(\omega)$

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Called the
"Fourier Transform"
of $x(t)$

Note: $X(\omega)$ is complex-valued function of $\omega \in (-\infty, \infty)$

 $\angle X(\omega)$

Need to use two plots to show it

Comparison of FT and FS

Fourier Series: Used for <u>periodic</u> signals

Fourier Transform: Used for <u>non-periodic</u> signals (although we will see later that it can also be used for periodic signals)

	Synthesis	Analysis
Fourier Series	$x(t) = \sum_{n=-\infty}^{\infty} c_k e^{jk\omega_0 t}$	$c_{k} = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} x(t) e^{-jk\omega_{0}t} dt$
	Fourier Series	Fourier Coefficients
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$ <u>Inverse</u> Fourier Transform	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$ Fourier Transform

FS coefficients c_k are a <u>complex-valued</u> function of integer k **FT** $X(\omega)$ is a <u>complex-valued</u> function of the variable $\omega \in (-\infty, \infty)$

Synthesis Viewpoints:

<u>FS:</u> $x(t) = \sum_{n=-\infty}^{\infty} c_k e^{jk\omega_0 t}$

 $|c_k|$ shows how much there is of the signal at frequency $k\omega_0$

 $\angle c_k$ shows how much phase shift is needed at frequency $k\omega_0$

We need two plots to show these

FT:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

 $|X(\omega)|$ shows how much there is in the signal at frequency ω

 $\angle X(\omega)$ shows how much phase shift is needed at frequency ω

We need two plots to show these

Some FT Notation:

If $X(\omega)$ is the Fourier transform of x(t)...

then we can write this in several ways:

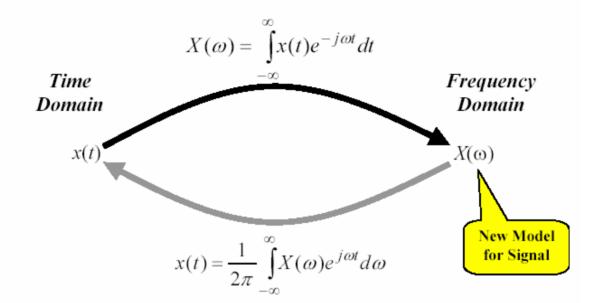
1. $x(t) \leftrightarrow X(\omega)$

2. $X(\omega) = \Im\{x(t)\} \implies \Im\{x(t)\} \implies \Im\{x(t)\} \implies \Im\{x(t)\}$ is an "operator" that operates on x(t) to give $X(\omega)$

3. $x(t) = \mathcal{F}^{-1}\{X(\omega)\} \implies \mathcal{F}^{-1}\{\}$ is an "operator" that operates on $X(\omega)$ to give x(t)

Fourier Transform Viewpoint

View FT as a transformation into a new "domain"



x(t) is the "time domain" description of the signal $X(\omega)$ is the "frequency domain" description of the signal

<u>Analogy</u>: Looking at $X(\omega)$ is "like" looking at an x-ray of the signal- in the sense that an x-ray lets you see what is inside the object... shows what stuff it is made from.

In this sense: $X(\omega)$ shows what is "inside" the signal – it shows how much of each complex sinusoid is "inside" the signal

<u>Note:</u> x(t) completely determines $X(\omega)$

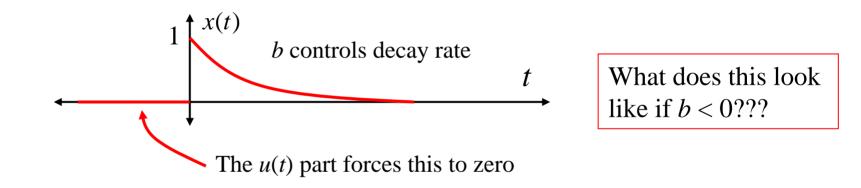
 $X(\omega)$ completely determines x(t)

There are some advanced mathematical issues that can be hurled at these comments... we'll not worry about them

FT Example: Decaying Exponential

Given a signal $x(t) = e^{-bt}u(t)$ find $X(\omega)$ if b > 0

Solution: First see what x(t) looks like:



Now...apply the definition of the Fourier transform. Recall the general form:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

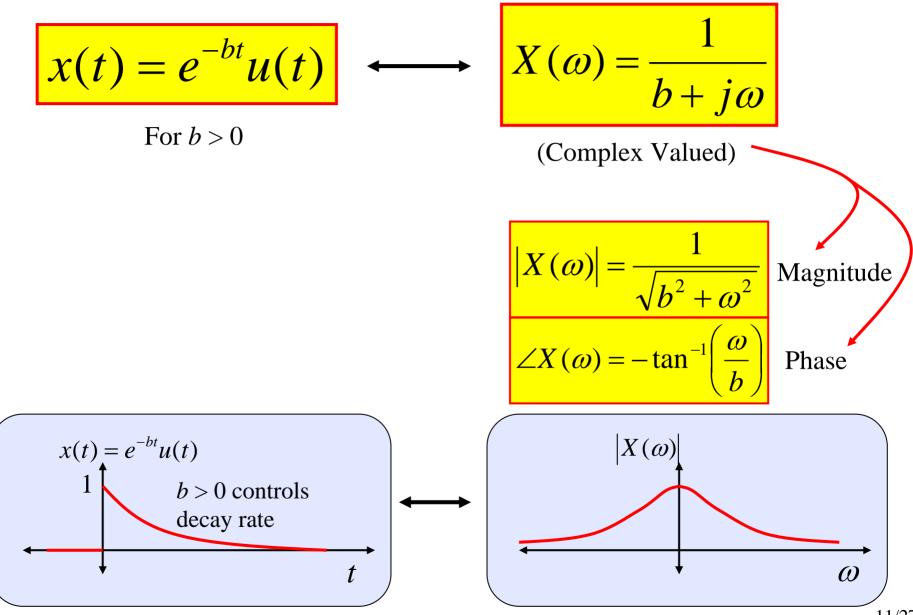
Now plug in for our signal:

$$X(\omega) = \int_{-\infty}^{\infty} e^{-bt} u(t) e^{-j\omega t} dt = \int_{0}^{\infty} e^{-bt} e^{-j\omega t} dt = \int_{0}^{\infty} e^{-(b+j\omega)t} dt$$

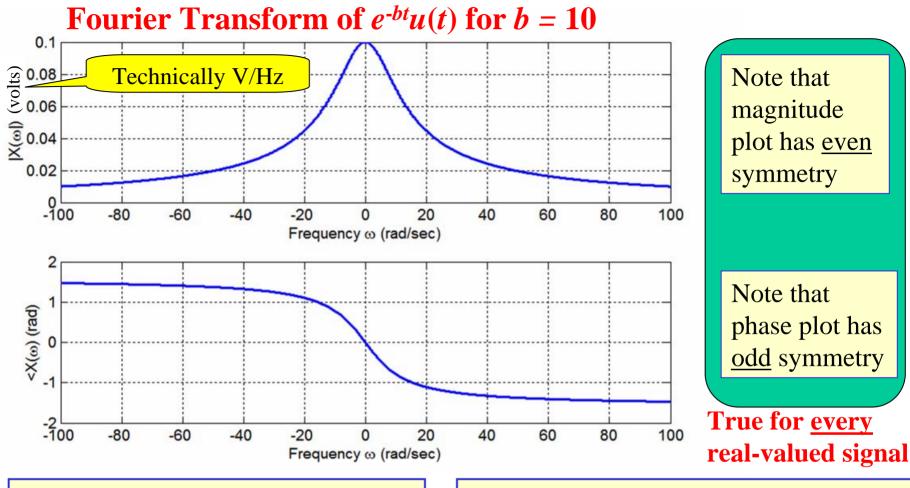
integrand = 0 for t < 0
due to the u(t)
Set lower limit to 0
and then u(t) = 1 over
integral!
Easy
integral!

$$= \left[\frac{-1}{b+j\omega}e^{-(b+j\omega)t}\right]_{t=0}^{t=\infty} = \frac{-1}{b+j\omega}\left[e^{-(b+j\omega)\infty} - e^{-(b+j\omega)0}\right]$$

Summary of FT Result for Decaying Exponential



11/27



MATLAB Commands to Compute FT w=-100:0.2:100;

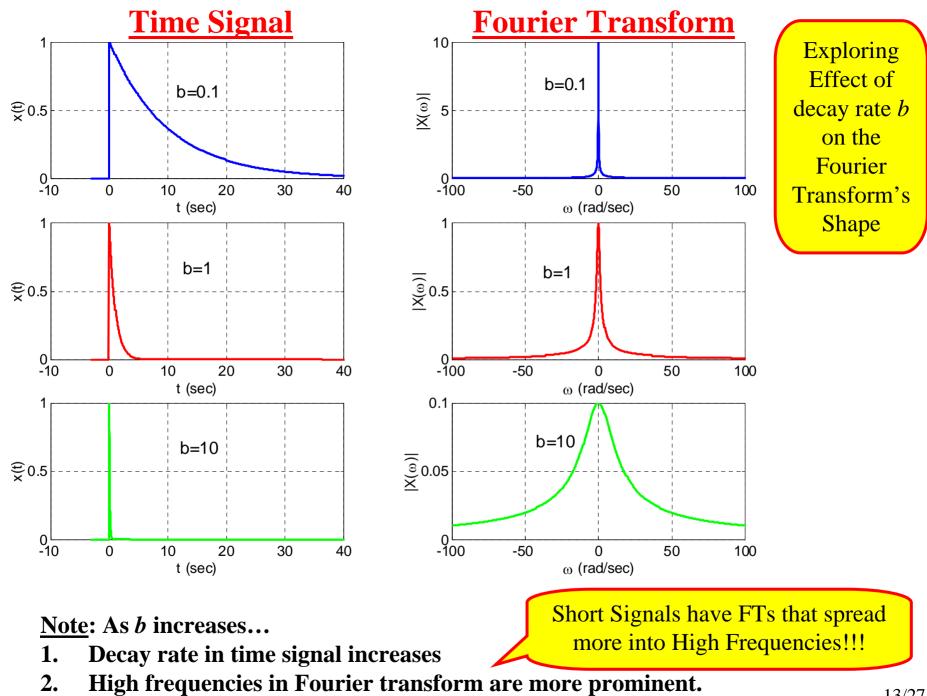
b=10;

X=1./(b+j*w);

Note: Book's Fig. 3.12 only shows <u>one</u>-sided spectrum plots

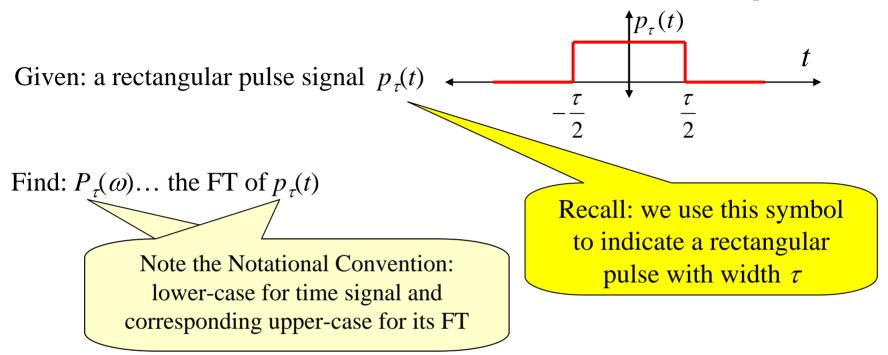
Plotting Commands

subplot(2,1,1); plot(w,abs(X))
xlabel('Frequency \omega (rad/sec)')
ylabel('|X(\omega|) (volts)'); grid
subplot(2,1,2); plot(w,angle(X))
xlabel('Frequency \omega (rad/sec)')
ylabel('<X(\omega) (rad)'); grid</pre>



Example: FT of a Rectangular pulse

 τ = pulse width



Solution:

Note that

$$p_{\tau}(t) = \begin{cases} 1, & -\frac{\tau}{2} \le t \le \frac{\tau}{2} \\ 0, & otherwise \end{cases}$$

r

Now

apply the definition of the FT:

$$P_{\tau}(\omega) = \int_{-\infty}^{\infty} p_{\tau}(t) e^{-j\omega t} dt = \int_{-\tau/2}^{\tau/2} e^{-j\omega t} dt$$
Limit integral to where $p_{\tau}(t)$ is non-zero... and use the fact that it is 1 over that region

$$= \frac{-1}{j\omega} \left[e^{-j\omega t} \right]_{-\tau}^{\frac{\tau}{2}} = \frac{2}{\omega} \left[\frac{e^{j\omega \tau}}{2} - e^{-j\frac{\omega \tau}{2}}}{j2} \right]$$
Artificially inserted 2 in numerator and denominator

$$= \sin\left(\frac{\omega \tau}{2}\right)$$
Use Euler's Formula

$$= \sin\left(\frac{\omega \tau}{2}\right)$$
use Euler's Formula

$$= \sin\left(\frac{\omega \tau}{2}\right)$$

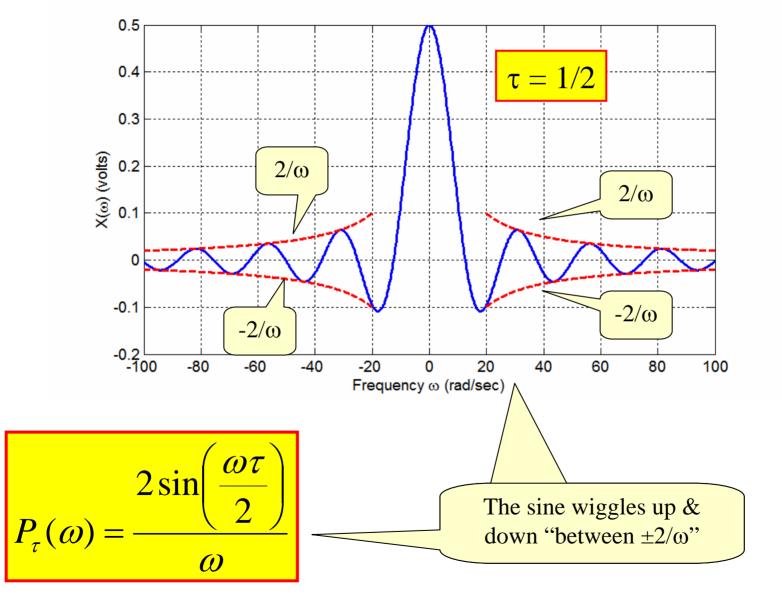
$$\int_{-\tau}^{\infty} e^{-j\omega t} \frac{2 \sin\left(\frac{\omega \tau}{2}\right)}{\omega}$$

$$\int_{-\tau/2}^{0} e^{-j\omega t} dt$$

$$= \sin\left(\frac{\omega \tau}{2}\right)$$

$$\int_{-\tau/2}^{0} e^{-j\omega t} dt$$

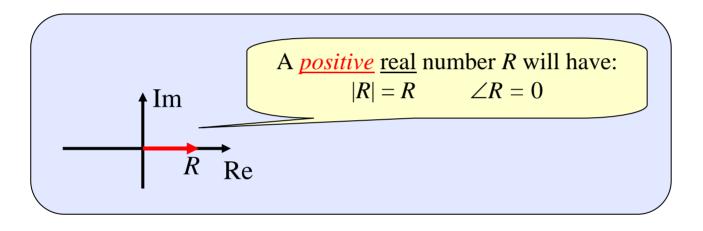
For <u>this</u> case the FT is real valued so we can plot it using a single plot (shown in solid blue here):

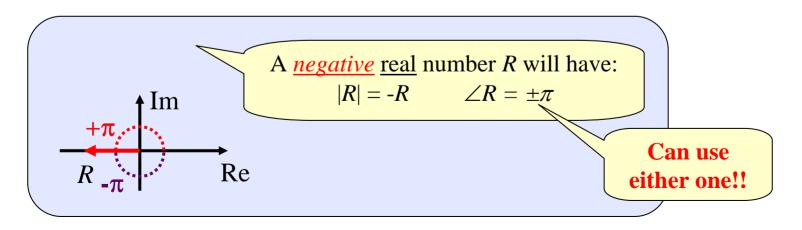


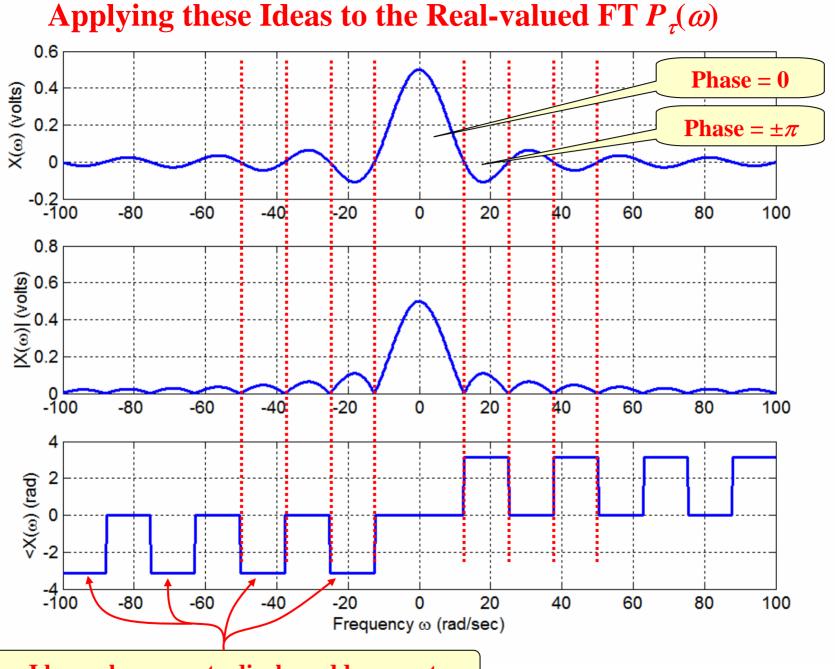
Now... let's think about how to make magnitude/phase plot...

Even though this FT is real-valued we can still plot it using magnitude and phase plots: We can view any real number as a complex

number that has zero as its imaginary part

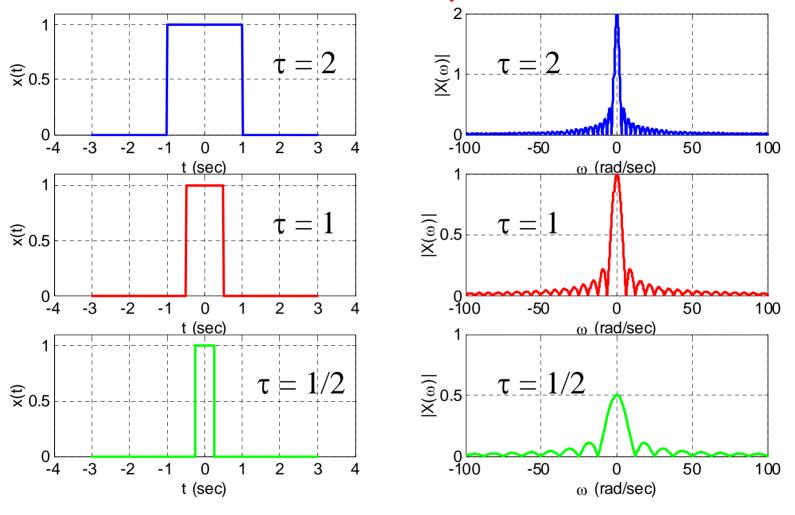






Here I have chosen - π to <u>display</u> odd symmetry

Effect of Pulse Width on the FT $P_{\tau}(\omega)$



Note: As width decreases, FT is more widely spread

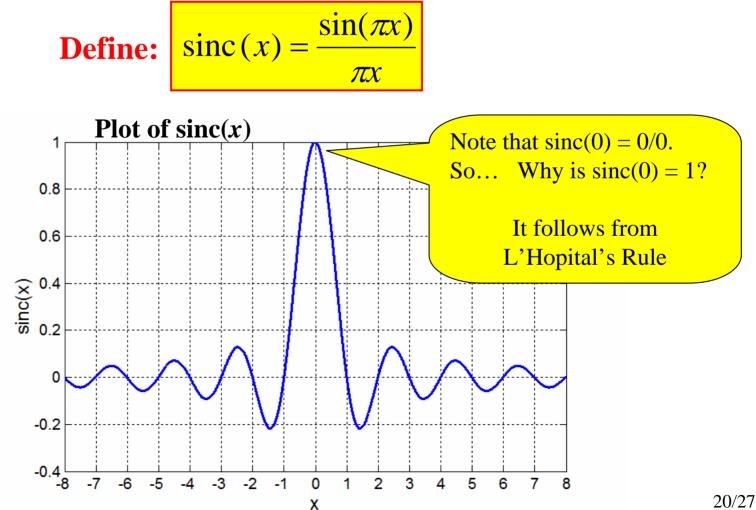
→ Narrow pulses "take up more frequency range"

Definition of "Sinc" Function

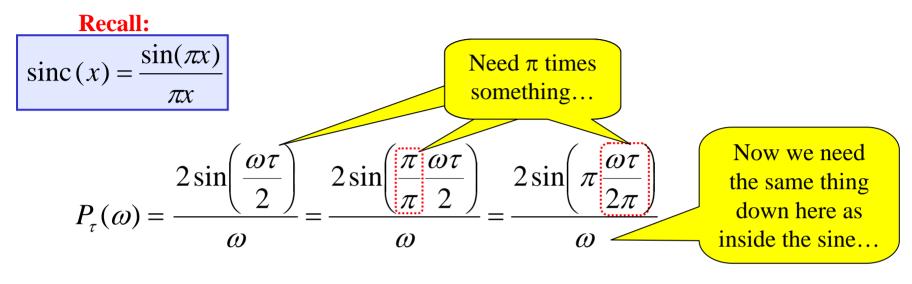
The result we just found had this mathematical form:

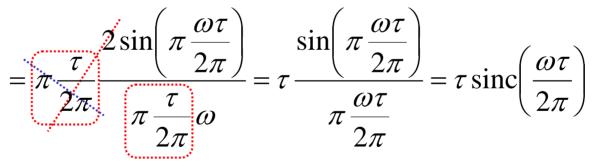
$$P_{\tau}(\omega) = \frac{2\sin\left(\frac{\omega\tau}{2}\right)}{\omega}$$

This kind of structure shows up frequently enough that we define a special function to capture it:



With a little manipulation we can re-write the FT result for a pulse in terms of the sinc function:





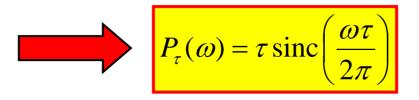


Table of Common Fourier Transform Results

We have just found the FT for two common signals...

There are tables in the book but I recommend that you use the Tables I provide on the Website

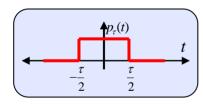
See FT Table on the Course Website for a list of these and many other FT.

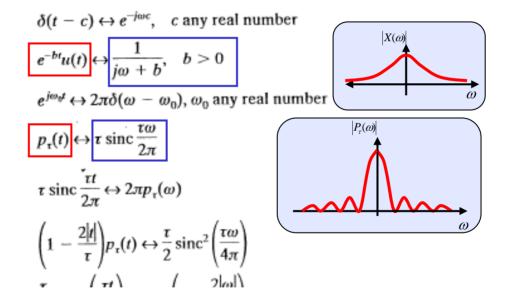
You should study this table...

- If you encounter a time signal or FT that is on this table you should recognize that it is on the table without being told that it is there.
- You should be able to recognize entries in graphical form as well as in equation form (so... it would be a good idea to make plots of each function in the table to learn what they look like! See next slide!!!)
- You should be able to use multiple entries together with the FT properties we'll learn in the next set of notes (and there will be another Table!)

For your FT Table you should spend time making sketches of the entries ... like this:



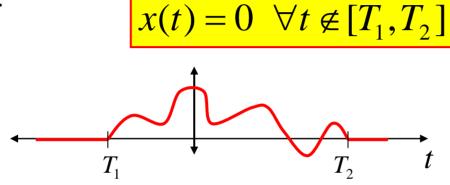




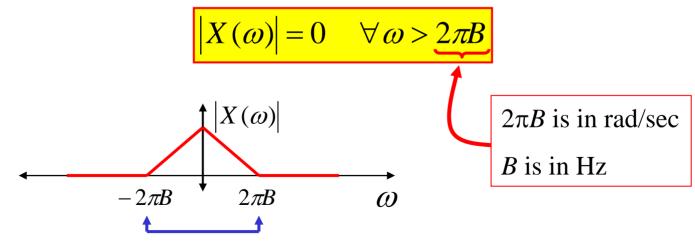
Bandlimited and Timelimited Signals

Now that we have the FT as a tool to analyze signals, we can use it to identify certain characteristics that many practical signals have.

A signal x(t) is <u>timelimited</u> (or of finite duration) if there are 2 numbers $T_1 \& T_2$ such that:



A (real-valued) signal x(t) is **<u>bandlimited</u>** if there is a number *B* such that



Recall: If x(t) is real-valued then $|X(\omega)|$ has "even symmetry"

FACT: A signal can not be both timelimited and bandlimited

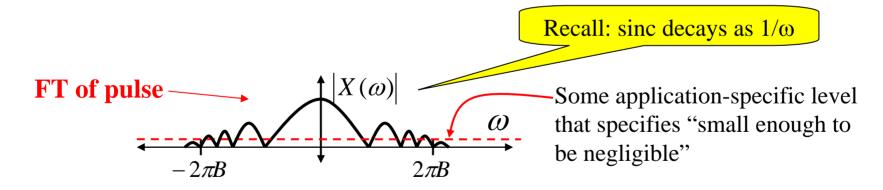
 \Rightarrow Any timelimited signal is <u>not</u> bandlimited

 \Rightarrow Any bandlimited signal is <u>not</u> timelimited

Note: All practical signals must "start" & "stop"

 \Rightarrow timelimited \Rightarrow <u>Practical</u> signals are <u>not</u> bandlimited!

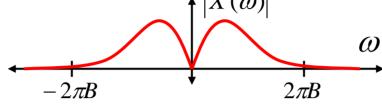
But... engineers say <u>practical</u> signals are <u>effectively bandlimited</u> because for <u>almost all</u> practical signals $/X(\omega)$ / decays to zero as ω gets large



<u>This signal is effectively bandlimited to *B* Hz</u> because $|X(\omega)|$ falls below (and stays below) the specified level for all ω above $2\pi B$

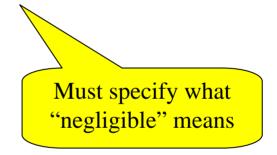
Bandwidth (Effective Bandwidth) Abbreviate Bandwidth as "BW"

For a lot of signals – like audio – they fill up the lower frequencies but then decay as ω gets large: $\uparrow |X(\omega)|$



Signals like this are called "lowpass" signals

We say the signal's BW = B in Hz if there is "negligible" content for $|\omega| > 2\pi B$

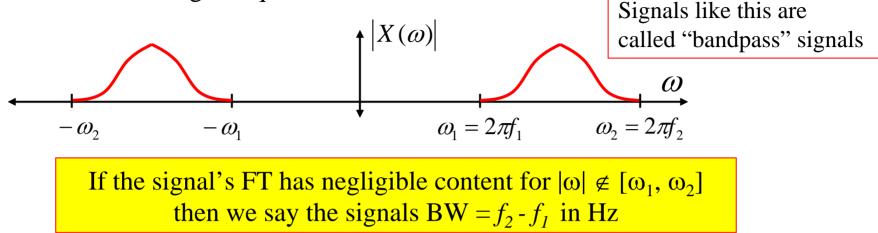


For Example:

- 1. High-Fidelity Audio signals have an accepted BW of about 20 kHz
- 2. A speech signal on a phone line has a BW of about 4 kHz

Early telephone engineers determined that limiting speech to a BW of 4kHz still allowed listeners to understand the speech

For other kinds of signals – like "radio frequency (RF)" signals – they are concentrated at high frequencies



For Example:

- 1. The signal transmitted by an FM station has a BW of 200 kHz = 0.2 MHz
 - a. The station at 90.5 MHz on the "FM Dial" must ensure that its signal does not extend outside the range [90.4, 90.6] MHz
 - b. Note that: FM stations all have an odd digit after the decimal point. This ensures that adjacent bands don't overlap:
 - i. FM90.5 covers [90.4, 90.6]
 - ii. FM90.7 covers [90.6, 90.8], etc.
- 2. The signal transmitted by an AM station has a BW of 20 kHz
 - a. A station at 1640 kHz must keep its signal in [1630, 1650] kHz
 - b. AM stations have an even digit in the tens place and a zero in the ones