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Course Flow Diagram

The arrows here show conceptual flow between ideas. Note the parallel structure between
the pink blocks (C-T Freqg. Analysis) and the blue blocks (D-T Freq. Analysis).
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4.3 Fourier Transform

Recall: Fourier Series represents a periodic signal as a sum of sinusoids

] : JKat
| or complex sinusoids €

Note: Because the FS uses “harmonically related” frequencies kay,, it can only create
periodic signals

Q: Can we modify the FS idea to handle non-periodic signals?
A: Yesl!! Y

_ N jot o With arbitrary discrete frequencies...
What about x(t) k:ZOOCke ' [ NOT harmonically related

That will give some non-periodic signals but not some that are
Important!!

The problem with x(t) = ) c,e'™" is that it cannot include all possible
frequencies! k=—o0
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How about: 1
X()=——[ X(w)e"do Yes... this will work for any
27T 7 4 X practical non-periodic signal!!
/\\ | \
(" Called the “Fourier Plays the Plays the role of
Integral” also, more role of ¢, a JKagt
commonly, called the

“Inverse Fourier

\___lransform”

Integral replaces sum because it can “add up
over the continuum of frequencies”!

Okay... given x(t) how do we get X(w)?

X (@) = J‘: x(t)e “dt Called the

of x(t)

“Fourier Transform”

Note: X(w) Is complex-valued, function of @ € (-o0, o)

Y

/\ f Need to use two
|X(a))| ZX (Cf)) \ plots to show it

)
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Comparison of FT and FS

Fourier Series: Used for periodic signals

Fourier Transform: Used for non-periodic signals (although we
will see later that it can also be used for periodic signals)

Synthesis Analysis
Fourier C ik 1 (T i
. x(t)= ) ce" =" - ke
Series () Z K G T x(t)e dt
N=-—o0
Fourier Series Fourier Coefficients
Fourier 1 o . o .
X(t)=— 1| X(w)e'dw Xa):j x(t)e ' dt
Transform (®) an—oo (@) (@) 0 ()
Inverse Fourier Transform Fourier Transform

FS coefficients c, are a complex-valued function of integer k

FT X(w) Is a complex-valued function of the variable @ € (-o0, )
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Synthesis Viewpoints:

Es:  x(t)= ) ce

N=—o00

Ic,] shows how much there is of the signal at frequency ke,

~€, shows how much phase shift is needed at frequency ka,

[ We need two plots to show these }

FT: x(t):ifoX(a))e"“"da)
27T 9=

IX(w)| shows how much there is in the signal at frequency w

< X(®) shows how much phase shift is needed at frequency w

[ We need two plots to show these }

6/27



Some FT Notation:

If X(w) is the Fourier transform of x(t)...

then we can write this in several ways:

1. X(t) & X (o)

2. X(w) =8 {X(t)} = §{ } is an “operator” that operates on x(t) to give X(w)

3. X(t) = 8_1{X (a))} = §1{ } is an “operator” that operates on X(w) to give x(t)
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Fourier Transform Viewpoint

View FT as a transformation into a new “domain”

o

X(w) = jx{:}t jox

Time st Frequency
Domain /-\ Domain

x(1) Xlo)

1 o y
X(1)=— I_Y{ e’ dw

x(#) 1s the “time domain™ description of the signal
X(w) is the “frequency domain™ description of the signal

Analogy: Looking at X(w) is “like” looking at an x-ray of the signal- in the sense that an
X-ray lets you see what is inside the object... shows what stuff it is made from.

In this sense: X(®) shows what is “inside” the signal — it shows how much of each complex
sinusoid is “inside” the signal

Note: x(t) completely determines X(w) || There are some advanced mathematical issues
that can be hurled at these comments... we’ll
X(w) completely determines x(t) not worry about them
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FT Example: Decaying Exponential
Given a signal x(t) = eu(t) find X(w) ifb >0

Solution: First see what x(t) looks like:

1 A X(t)
b controls decay rate
t What does this look
)y | g like if b < 07??
\ The u(t) part forces this to zero

Now...apply the definition of the Fourier transform. Recall the general
form:

X (@)= x(t)e “dt
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Now plug in for our signal:

X(w)=| e u(t)edt =| e™e'dt=| e " 1)'dt
—00 \_ ) 0 0
Y

integrand =0 fort<0

due to the u(t)

Set lower limitto 0
and then u(t) = 1 over
Integration range

Easy
Integral!

=00
_ -1 a-(brjo)t _ [e ~(brio)e _ (b+jco)0]
b+ Jw o b+ o
_ _1 e booe—ja)oo_eo — _1 0_1
b+ jo| > o X b+ jo

Only if b>0... what
happens if b<0
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Summary of FT Result for Decaying Exponential

x(t) = e u(t)

Forb>0

X(t) = e ™u(t)

1 b > 0 controls

t:

J

1
X(w) =—
b+ Jw
(Complex Valued)
1
|X (0))| = \/bz > | Magnitude
+ @
X (@) = —tan l(fy)j Phase
T kel "
N " ©




Fourier Transform of e- IOtu(t) for b = 10

o

o
= T
o0 =

I\.

o o

X(w]) (volts)

/’/Technlca”y V/Hﬁ ........... .....

....... _ Note that

5 magnitude
plot has even
symmetry

I i i i i i
-?00 -80 -60 -40 -20 0 20

<X(w) (rad)

Note that
phase plot has
odd symmetry

i i i True for every

2 i i i i
-100 -80 -60 -40 -20 0 20
Frequency o (rad/sec)

40 60 80 100 -
real-valued signal

MATLAB Commands to Compute FT
w=-100:0.2:100;

b=10;

X=1./(b+j*w);

Note: Book’s Fig. 3.12 only
shows one-sided spectrum plots

Plotting Commands
subplot(2,1,1); plot(w,abs(X))
xlabel(‘Frequency \omega (rad/sec)")
ylabel(‘|X(\omega|) (volts)'); grid
subplot(2,1,2); plot(w,angle(X))
xlabel(‘Frequency \omega (rad/sec)")
ylabel('<X(\omega) (rad)"); grid ,




Fourier Transform (
1 1 Exploring\

Time Signal
1 I I I 10
E05F 4N\t ;, BF-—--- - B it decay rate b
1 - ; on the
l 1 A 1 Fourier
10 0 10 20 30 40 100 -50 0 50 100 Transform ’S
t (sec)
1 ‘ \ Shape )
| b:1 i
05l |
-010 0 1‘0 2‘0 3b 40 -100 -50 0 50 100
t (sec) o (rad/sec)
1 T T Ol T
 b=10 _ b=10
S05 b 8005 SN
; x
% 0 10 20 30 40 -100 50 0 50 100
t (sec) o (rad/sec)

Short Signals have FTs that spread

Note: As b increases... more into Hiah Freauencies! !
1. Decay rate in time signal increases 0 g au
2. High frequencies in Fourier transform are more prominent. 1327




Example: FT of a Rectanqular pulse

7 = pulse width
1p. (1)

v

Given: a rectangular pulse signal p_(t) <

Find: P (e)... the FT of p.(t)

Recall: we use this symbol
to indicate a rectangular
pulse with width =

Note the Notational Convention:
lower-case for time signal and
corresponding upper-case for its FT

Solution:

Note that .
1, —L<t<t
p.()=1 2 2

|0, otherwise
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Now apply the definition of the FT: Limit integral to\
/2 where p (t) is non-

|:)T (w) = f; p. (t)e—ja’tdt — je—ja’tdt zero... and use the

fact that it is 1 over

~ele that region )
_ or _jﬂ_
B 1[ _ja,tF 2le ? —e 2 Avrtificially
- € -z T P2 inserted 2 in
Jo 2 @ J numerator and
c - denominator

Y

— sin Use Euler’s
Formula
sin goes up and down
ZSin(m £ between -1 and 1 j
2

PT (Ct)) — 1/m decays down as |w| gets
0 big... this causes the overall
function to decay down
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For this case the FT is real valued so we can plot it using a single plot
(shown in solid blue here):

0.5

04

o
(N}

o
—

X(e) (volts)

Frequency » (rad/sec)

The sine wiggles up &

2
PT (a)) = \down “between +2/w”
w
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Now... let’s think about how to make magnitude/phase plot...

Even though this FT is real-valued we can still plot it using magnitude

and phase plots:

We can view any real number as a complex
number that has zero as its imaginary part

-

A positive real number R will have:
Im IR|=R /R =0

o

>

>
R Re

~

/

»

 Im

Re

A negative real number R will have:
IR| =-R /R==%r

Can use
Leither onel!

_
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Applying these Ideas to the Real-valued FT P (@

Phase = 0 ]

R sty

X{w) (volts)

00 80 60 : 466 20 : O :20F 40 : 60 80 100

[X(w)| (volts)
o o o
I~

e Rl e L EE TR R TERE o BT e S SR e R R SR B e S B Rkt .
m
bo
— - - - - —|— - —— - - — - - - —— - — - —— - —— - —
=
<
(0 N s - S A SR _

4 . . : . .
-100 -80 -60 -40 -20 0 20 40 60 80 100
Frequency w (rad/sec)

[ Here | have chosen -z to display odd symmetry ] 18/27




Effect of Pulse Width on the FT P (w)

1rH------------- : f*f*f*f*f‘f fffff
T=2 =
——————————\—————————4—————————+————‘+ ————— vl 7777777777777777777777777777777777777
0.5 : X
O . . I . . O ‘ NYW ‘
-4 -3 -2 -1 0 1 2 3 4 -100 -50 0 50 100
‘ t(s‘ec)
T A S S
0_5—————\—————\—————\————4:————4————+————J:r —————
0 1
-4 3 2 1 0 1 2 3 4
‘ t(s‘ec)
]
| t=1/2
0_577777\77777\77777\77774‘777747777+7777T 77777
oL [ | |
-4 3 2 1 0 1 2 3 4

t (sec) o (rad/sec)

Note: As width decreases, FT is more widely spread

=>» Narrow pulses “take up more frequency range”
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Definition of “Sinc” Function Zsin(@j
The result we just found had this mathematical form: P.(w) =

This kind of structure shows up frequently enough
that we define a special function to capture it:

: sin(zzx
Define: | SINC(X) = ()

\

1 !Plo!t O!f SEHC!(X)! Note that sinc(0) = 0/0. )

bbb Y T~ So... Why issinc(0) = 1?
0.8 b e
Y IO N U N B S It follows from

L’Hopital’s Rule

_
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With a little manipulation we can re-write the FT result for a pulse in terms of the
sinc function:

Recall:
sinc(x) = sin(zx) Need 7 times
X something...
Now we need
2 Sin(— the same thing
P.(w) = down here as

inside the sine. .

i wT : T
................ . 23”’](72’2—) sm(nz—)
= =7 = 7sing| —
=- 27

................

................
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Table of Common Fourier Transform Results / ST \

We have just found the FT for two common signals... tables in the
— 1 book but |
X(1) = e "u(t) e X (@)= 7= recommend
that you use
- - the Tables |
p.(t) = |1’ 2552 <+ |P () = 7 sinc (KJ provide on the
0, otherwise 2z Website /

See FT Table on the Course Website for a list of these and many other FT.
You should study this table...

e [f you encounter a time signal or FT that is on this table you should recognize
that it is on the table without being told that it is there.

* You should be able to recognize entries in graphical form as well as In
equation form (so... it would be a good idea to make plots of each function
In the table to learn what they look like! See next slide!!!)

* Youshould be able to use multiple entries together with the FT properties
we’ll learn in the next set of notes (and there will be another Table!)
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For yvour FT Table you should spend time making sketches of the entries
... like this:

d(t — €) &3 e ™, ¢ any real number

I X(@)
B b=0
, e nlr) ‘_)Ijm s
| t =

r

e’ 3 2ad{w — wy), w, any real number ! @
N P}
A0.(0) p, ()| sinc .
t
< > R
7 z T sinc — ¢ 2ap (o)
2 2 L
20t T, T @
1 — —|p (1) &> sinc™| ——

ks |||I it 'I'I .|Ir jli’i:li‘ll.
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Bandlimited and Timelimited Signals
Now that we have the FT as a tool to analyze signals, we can use it to identify

certain characteristics that many practical signals have.
A signal x(t) is timelimited (or of finite duration) if there are 2 numbers T, & T,

such that: X(t) _0 Vig [Tl,Tz]

A
<
~—t

A (real-valued) signal x(t) is bandlimited if there is a number B such that

X(@)|=0 Vo>218

/1{(0)) L 21B is in rad/sec
R BisinHz

) 2B 7 2B 7,

t )
Recall: If x(t) is real-valued then |X(w)| has “even symmetry” .




FACT: Asignal can not be both timelimited and bandlimited

= Any timelimited signal is not bandlimited

= Any bandlimited signal is not timelimited

Note: All practical signals must “start” & “stop”

= timelimited = | Practical signals are not bandlimited!

But... engineers say practical signals are effectively bandlimited

because for almost all practical signals |X(w)| decays to zero as
@ gets large

Recall: sinc decays as 1/® !

Some application-specific level
__@_\ that specifies “small enough to

o5 ¥ a3 be negligible

FT of pulse —

This signal is effectively bandlimited to B Hz because |X(w)| falls
below (and stays below) the specified level for all @ above 27B
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Bandwidth (Effective Bandwidth) Abbreviate Bandwidth as “BW”

For a lot of signals — like audio — they fill up the lower frequencies but then decay
as w gets large:

X ()
a) Signals like this are
« > called “lowpass” signals

— 278 27B

We say the signal’s BW = B in Hz if there is “negligible” content for |w| > 2B

Must specify what
“negligible” means

1. High-Fidelity Audio signals have an accepted BW of about 20 kHz

For Example:

2. A speech signal on a phone line has a BW of about 4 kHz

Early telephone engineers determined that limiting speech to a BW
of 4kHz still allowed listeners to understand the speech
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For other kinds of signals — like “radio frequency (RF)” signals — they
are concentrated at high frequencies

Signals like this are
‘ ‘X (0))‘ called “bandpass” signals

-, -, w, = 2xf, w, = 2xf,

If the signal’s FT has negligible content for |o| ¢ [0, ®,]
then we say the signals BW =f,-f, in Hz

For Example:
1. The signal transmitted by an FM station has a BW of 200 kHz = 0.2 MHz

a. The station at 90.5 MHz on the “FM Dial” must ensure that its signal
does not extend outside the range [90.4, 90.6] MHz

b. Note that: FM stations all have an odd digit after the decimal point.
This ensures that adjacent bands don’t overlap:
I.  FM90.5 covers [90.4, 90.6]
1.  FM90.7 covers [90.6, 90.8], etc.

2. The signal transmitted by an AM station has a BW of 20 kHz
a. A station at 1640 kHz must keep its signal in [1630, 1650] kHz

b. AM stations have an even digit in the tens place and a zero in the ones
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