

EECE 301 Signals & Systems Prof. Mark Fowler

Discussion #3a

Review of Differential Equations

Differential Equations Review

Differential Equations like this are Linear and Time Invariant:

$$a_n \frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_0 y(t) = b_m \frac{d^m f(t)}{dt^m} + \dots + b_1 \frac{df(t)}{dt} + b_0 f(t)$$

- -coefficients are constants \Rightarrow **TI**
- -No nonlinear terms \Rightarrow **Linear**

Examples of Nonlinear Terms:

$$f^{n}(t)$$
, $\left[\frac{d^{k}y(t)}{dt^{k}}\right]\left[\frac{d^{p}y(t)}{dt^{p}}\right]$, $y^{n}(t)$, $\left[\frac{d^{k}y(t)}{dt^{k}}\right]\left[\frac{d^{p}y(t)}{dt^{p}}\right]$, etc.

In the following we will BRIEFLY review the basics of solving Linear, Constant Coefficient Differential Equations under the <u>Homogeneous</u> Condition

"Homogeneous" means the "forcing function" is zero

That means we are finding the "zero-input response" that occurs due to the effect

of the initial coniditions.

We will assume: $m \le n$

m is the highest-order derivative on the "input" side

n is the highest-order derivative on the "output" side

Use "operational notation":
$$\frac{d^k y(t)}{dt^k} \equiv D^k y(t)$$

 \Rightarrow Write D.E. like this:

$$\underbrace{\left(D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}\right)}_{\triangleq Q(D)} y(t) = \underbrace{\left(b_{m}D^{m} + \dots + b_{1}D + b_{0}\right)}_{\triangleq P(D)} f(t)$$

Diff.
$$Eq. \Rightarrow Q(D)y(t) = P(D)f(t)$$

<u>Due to linearity:</u> Total Response = Zero-Input Response + Zero-State Response

<u>Z-I Response</u>: found assuming the input f(t) = 0 but with given IC's

Z-S Response: found assuming IC's = 0 but with given f(t) applied

Finding the Zero-Input Response (Homogeneous Solution)

Assume f(t) = 0

$$\Rightarrow$$
 D.E.: $Q(D)y_{7i}(t) = 0$

$$\Rightarrow \left(D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}\right)y_{zi}(t) = 0 \qquad \forall t > 0$$

"linear combination" of $y_{7i}(t)$ & its derivatives must be = 0

Consider $y_0(t) = ce^{\lambda t}$

c and λ are possibly complex numbers

Can we find c and λ such that $y_0(t)$ qualifies as a homogeneous solution?

Put $y_0(t)$ into (\triangle) and use result for the derivative of an exponential: $\frac{d^n e^{\lambda t}}{dt^n} = \lambda^n e^{\lambda t}$

$$\frac{d^n e^{\lambda t}}{dt^n} = \lambda^n e^{\lambda t}$$

$$c(\underbrace{\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}})e^{\lambda t} = 0$$

$$\text{must} = 0$$

 $c_1 e^{\lambda_1 t}$ is a solution $c_2 e^{\lambda_2 t}$ is a solution : $c_n e^{\lambda_n t}$ is a solution

Characteristic polynomial

 $Q(\lambda)$ has at most n unique roots

(can be complex)

$$\Rightarrow Q(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n)$$

So...any linear combination is also a solution to (\triangle)

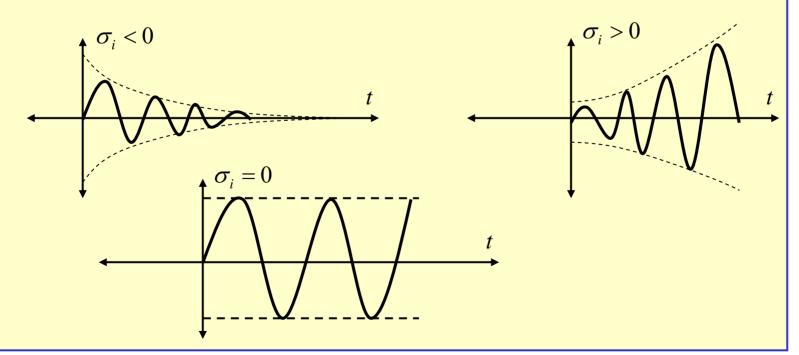
Z-I Solution:
$$y_{zi}(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + ... + c_n e^{\lambda_n t}$$

Then, choose $c_1, c_2, ..., c_n$ to satisfy the given IC's

$$\{e^{\lambda_i t}\}_{i=1}^n$$
 Set of characteristic modes

Complex Root:
$$\lambda_i = \sigma_i + j\omega_i$$

Mode: $e^{\lambda_i t} = e^{\sigma_i t} + e^{j\omega_i t}$

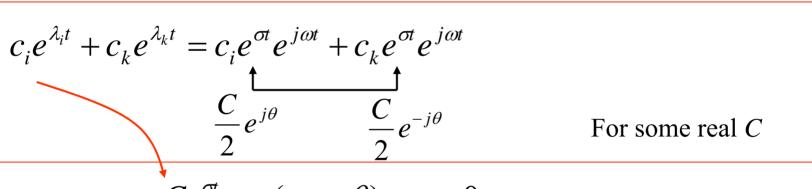


To get only real-valued solutions requires the system coefficients to be real-valued.

⇒ Complex roots of C.E. will appear in conjugate pairs:

$$\lambda_i = \sigma + j\omega$$

$$\lambda_k = \sigma - j\omega$$
Conjugate pair



Use Euler! $Ce^{\sigma t}\cos(\omega t + \theta)$ t > 0

Repeated Roots

Say there are *r* repeated roots

$$Q(\lambda) = (\lambda - \lambda_1)^r (\lambda - \lambda_2)(\lambda - \lambda_3)...(\lambda - \lambda_p) \qquad p = n - r$$

We "can verify" that: $e^{\lambda_i t}, te^{\lambda_1 t}, t^2 e^{\lambda_1 t}, ..., t^{r-1} e^{\lambda_1 t}$ satisfy (\blacktriangle)

ZI Solution:

$$y_{zi}(t) = \underbrace{\left(c_{11} + c_{12}t + \dots + c_{1r}t^{r-1}\right)}_{\text{effect of }r\text{-repeated roots}} + \text{other modes}:$$

See examples on the next several pages

Differential Equation Examples

Find the zero-input response (i.e., homogeneous solution) for these three Differential Equations.

Example (a)

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{df(t)}{dt}$$

$$D^{2}y(t) + 3Dy(t) + 2y(t) = Df(t)$$

w/ I.C.'s

The zero-input form is:

$$\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = 0$$

$$D^{2}y(t) + 3Dy(t) + 2y(t) = 0$$

The Characteristic Equation is:

$$\lambda^2 + 3\lambda + 2 = 0 \implies (\lambda + 1)(\lambda + 2) = 0$$

The Characteristic Equation is:

$$\lambda^2 + 3\lambda + 2 = 0 \implies (\lambda + 1)(\lambda + 2) = 0$$

The Characteristic Roots are:

$$\lambda_1 = -1$$
 & $\lambda_2 = -2$

The Characteristic "Modes" are:

$$e^{\lambda_1 t} = e^{-t}$$
 & $e^{\lambda_2 t} = e^{-2t}$

The zero-input solution is:

$$y_{zi}(t) = C_1 e^{-t} + C_2 e^{-2t}$$

The <u>System</u> forces this form through its Char. Eq.

The IC's determine the specific values of the C_i 's

The zero-input solution is:

$$y_{zi}(t) = C_1 e^{-t} + C_2 e^{-2t}$$

and it must satisfy the ICs so:

$$0 = y_{zi}(0) = C_1 e^{-0} + C_2 e^{-0} \implies C_1 + C_2 = 0$$

The derivative of the z-s soln. must also satisfy the ICs so:

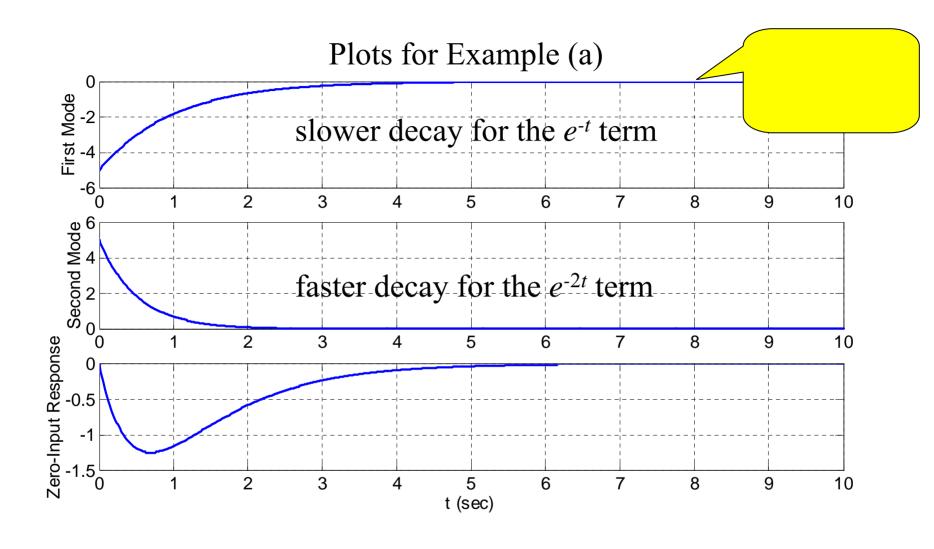
$$-5 = y'_{zi}(0) = -C_1 e^{-0} - 2C_2 e^{-0} \implies C_1 + 2C_2 = 5$$

Two Equations in Two Unknowns leads to:

$$C_1 = -5$$
 & $C_2 = 5$

The "particular" zero-input solution is:

$$y_{zi}(t) = \underbrace{-5e^{-t}}_{\text{first mode}} + \underbrace{5e^{-2t}}_{\text{second mode}}$$



Because the characteristic roots are <u>real and negative</u>... the modes and the Z-I response all <u>decay to zero w/o oscillations</u>

Example (b):

$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 9y(t) = 3\frac{df(t)}{dt} + 5f(t)$$
$$D^2y(t) + 6Dy(t) + 9y(t) = 3Df(t) + 5f(t)$$

<u>w/ I.C.'s</u>

The zero-input form is:

$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 9y(t) = 0$$

$$D^{2}y(t) + 6Dy(t) + 9y(t) = 0$$

The Characteristic Equation is:

$$\lambda^2 + 6\lambda + 9 = 0 \implies (\lambda + 3)^2 = 0$$

The Characteristic Equation is:

$$\lambda^2 + 6\lambda + 9 = 0 \implies (\lambda + 3)^2 = 0$$

The Characteristic Roots are:

$$\lambda_1 = -3$$
 & $\lambda_2 = -3$

The Characteristic "Modes" are:

$$e^{\lambda_1 t} = e^{-3t} \quad \& \quad te^{\lambda_2 t} = te^{-3t}$$

The zero-input solution is:

$$y_{zi}(t) = C_1 e^{-3t} + C_2 t e^{-3t}$$

Using the "rule" to handle repeated roots

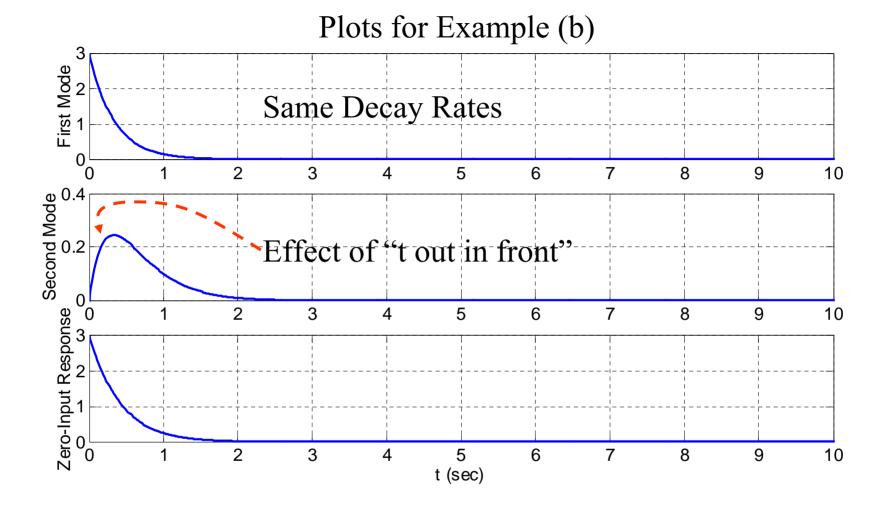
The <u>System</u> forces this form through its Char. Eq.

The $\underline{IC's}$ determine the specific values of the C_i 's

Following the same procedure (do it for yourself!!) you get...

The "particular" zero-input solution is:

$$y_{zi}(t) = \underbrace{3e^{-3t}}_{\text{first mode}} + \underbrace{2te^{-3t}}_{\text{second mode}} = (3+2t)e^{-3t}$$



Because the characteristic roots are <u>real and negative</u>... the modes and the Z-I response all

Example (c):

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 40y(t) = \frac{df(t)}{dt} + 2f(t)$$
$$D^2y(t) + 4Dy(t) + 40y(t) = Df(t) + 2f(t)$$

w/ I.C.'s

The zero-input form is:

$$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 40y(t) = 0$$

$$D^{2}y(t) + 4Dy(t) + 40y(t) = 0$$

The Characteristic Equation is:

$$\lambda^2 + 4\lambda + 40 = 0 \implies (\lambda + 2 - i6)(\lambda + 2 + i6) = 0$$

The Characteristic Equation is:

$$\lambda^2 + 4\lambda + 40 = 0 \quad \Rightarrow \quad (\lambda + 2 - j6)(\lambda + 2 + j6) = 0$$

The Characteristic Roots are:

$$\lambda_1 = -2 + j6$$
 & $\lambda_2 = -2 - j6$

The Characteristic "Modes" are:

$$e^{\lambda_1 t} = e^{-2t} e^{+j6t}$$
 & $e^{\lambda_2 t} = e^{-2t} e^{-j6t}$

The zero-input solution is:

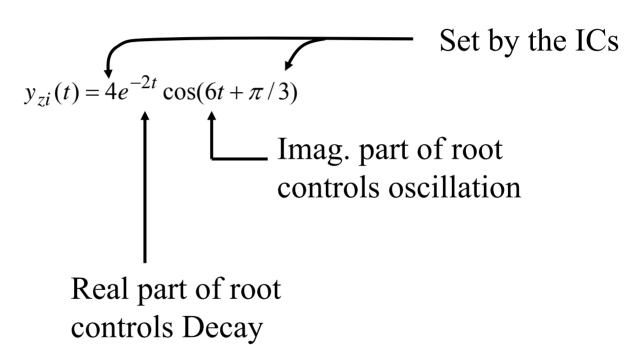
$$y_{7i}(t) = C_1 e^{-2t} e^{+j6t} + C_2 e^{-2t} e^{-j6t}$$

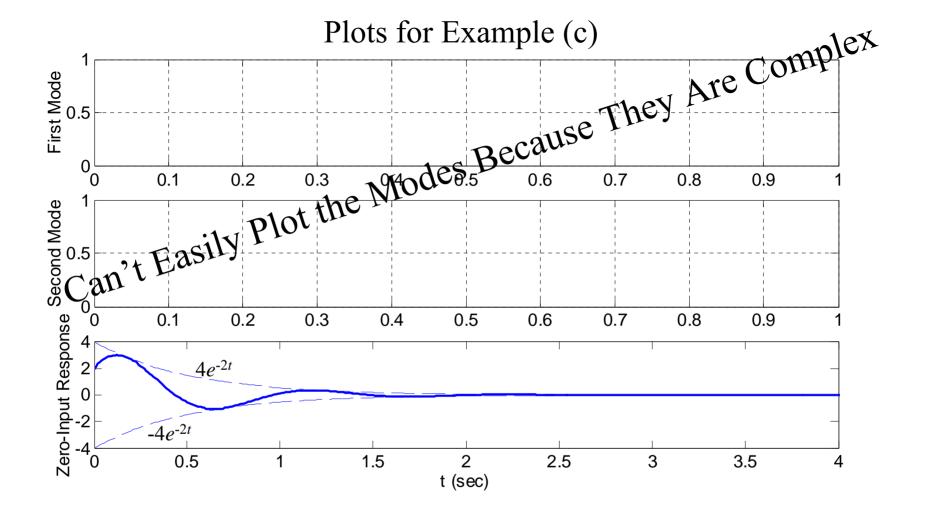
The <u>System</u> forces this form through its Char. Eq.

The <u>IC's</u> determine the specific values of the C_i 's

Following the same procedure with some manipulation of complex exponentials into a cosine...

The "particular" zero-input solution is:





Because the characteristic roots are <u>complex</u>... have oscillations! Because real part of root is negative... _____!!!

Big Picture...

The <u>structure</u> of the D.E. determines the char. roots, which determine the "character" of the response:

- Decaying vs. Exploding (controlled by real part of root)
- Oscillating or Not (controlled by imag part of root)

The D.E. structure is determined by the physical system's structure and component values.