

DT Filter Application

These notes explore the use of DT filters to remove an interference (in this
case a single tone) from an audio signal. Imagine that you are in the your
home recording studio and have just recorded what you feel is a “perfect take”
of a guitar solo for a song you are recording, but you discover that someone
had turned on some nearby electronic device that caused electromagnetic
radiation that was picked up somewhere in the audio electronics and was
recorded on top of the guitar solo. Rather than try to recreate this “perfect
take” you decide that maybe you can design a filter to remove it.

We will explore two different cases:

(i) a high-pitched tone that lies above the significant portion of the guitar
signal’s spectrum, and

(ii) a mid-pitched tone that lies in the middle of the guitar signal’s
spectrum.

I. Signal Access and Exploration

1. Use MATLAB’s wavread command to load the guitar1.wav file:

2. Listen to the guitar signal using MATLAB’s sound command.

3. Plot the first second or so of the signal in the time domain to see what the

signal looks like.

4. Look at the guitar signal in the frequency domain by computing and

plotting (in dB) the DFT of various 16384-pt blocks of the guitar signal.
Verify that the significant portion of the guitar signal’s spectrum lies below
5 kHz.

 2

II. Adding A High Frequency Interference

1. Create a sinusoid whose frequency is 10kHz that is sampled at the same

rate as the guitar signal and has the same length. The amplitude of this
sinusoid should be 1.

2. Add this signal to the guitar signal to create the simulated recorded signal

that has the interference (call this signal x_10 to indicate that it has an
interference at 10 kHz).

3. Listen to the guitar signal with interference using MATLAB’s sound

command.

4. Plot the first second or so of the signal with interference and the signal

without interference.

5. Compute the DFTs of the signal that has interference. Verify that the

interference is outside the significant portion of the guitar spectrum.

 3

III. Lowpass Filter Design
MATLAB contains some easy to use routines for designing FIR filters – FIR
(finite-impulse response) filters don’t use any output feedback – therefore they
don’t really have any poles and they will always be stable. They are the most
widely used type of DT filter in practice.

A simple FIR filter:]2[]1[][][3

1
3
1

3
1 −+−+= nxnxnxny

A more general FIR filter: ∑
=

−=
N

i
i inxbny

0
][][N = “Order of Filter”

They are quite easy to design using software-based tools. We’ll use the
MATLAB FIR design routines called remezord.m and remez.m

The command remezord will give an estimate of the FIR filter order needed to
achieve given specifications. The routine remez.m will then give the required
design.

Here is how we state the filter specifications:

Ω

|H(Ω)|

1 + δp

1 – δp

δs

Ωp Ωs

s

pp

H

H

δ≤Ω≤

δ+≤Ω≤δ−

)(0

1)(1

dB)(log20n Attenuatio Stopband

dB)1(log20 Ripple Passband

10

10

s

p

δ−=

δ+=

Lowpass Filter Specification

π

 4

Ω

|H(Ω)|

1 + δp

1 – δp

δs

ΩpΩs

Highpass Filter Specification

π

Ω

|H(Ω)|

1 + δp

1 – δp

δs1

Ωp2Ωs1

Bandpass Filter Specification

πΩs2Ωp1

δs2

 5

Ω

|H(Ω)|

1 + δp1

1 – δp1

δs

Ωp2Ωs1

Bandstop Filter Specification

πΩs2Ωp1

1 + δp2

1 – δp2

1. Use the “remezord” and “remez” commands to design a lowpass filter

needed to achieve:
− 60 dB of attenuation in the stopband for the undesired signal
− 1 dB of passband ripple
− passband edge at 7kHz
− stopband edge at 9 kHz.

Look at DFTs to see why 60 dB of attenuation is a reasonable choice.

Use the MATLAB variable b for the vector that holds the FIR filter
coefficients.

2. Plot the filter’s impulse response.
− For an FIR filter it is easy to show that the impulse response is

nothing more than the bi coefficients in its difference equation

∑
=

−=
N

i
i inxbny

0
][][

 6

3. Compute and plot the filter’s frequency response.

4. Make a pole-zero plot for the filter’s transfer function.

∑
=

−=
N

i
i inxbny

0
][][

N
N

NNN

N
N

z
bzbzbzb

zbzbzbbzH

++++
=

++++=

−−

−−−

!

!

2
2

1
10

2
2

1
10)(

IV. Remove Interference with Filter

1. Use the designed filter to remove the interference

− Filter x_10 using the LPF to get x_10_out

y = filter(b,a,x) filters the data in vector x with the
 filter described by vectors a and b to create the filtered
 data y. The vectors a and b come from the coefficients in the
difference equation:

∑∑
==

−=−
ba N

i
i

N

i
i inxbinya

00
][][

a = [a0 a1 a2 … aNa]

b = [b0 b1 b2 … bNb]

For an FIR filter like we have here the difference equation is:

∑
=

−=
N

i
i inxbny

0
][][so the a “vector” is a = 1

7

2. Assess the performance of the filter:
− Compare x_10_out, x_10, and x in the frequency domain.
− Compare x_10_out, x_10, and x in the time domain.
− Listen to the filtered guitar signal using MATLAB’s sound command.

V. Repeat for a Midrange Interferer
Now imagine that the interfering signal is a 3000 Hz sinusoid of unit
amplitude. Now you can’t simply design a lowpass filter because it would
filter out the guitar frequencies above 3000 Hz.

1. As a test, change the lowpass filter design above to have a passband cutoff

of 2500 and a stopband cutoff of 2900 and apply the filter to the original
(interference-free) guitar signal.

2. Compare the spectrum of this filter’s output to that of the original signal

3. Listen to this filter’s output.

4. Add a unit amplitude, 3000 Hz sinusoid to the guitar signal and use the

DFT to see what the spectrum looks like.

5. Design a bandstop (i.e., notch filter) using remezord and remez as follows.

a. Look at the spectrum of the interfered-with signal to make decisions
about appropriate filter spec values.

6. Look at the filter’s frequency response and pole-zero plot

7. Apply the filter to the signal and assess the result in the frequency and the

time domain as well as by listening to it.

	I. Signal Access and Exploration
	II. Adding A High Frequency Interference
	III. Lowpass Filter Design
	IV. Remove Interference with Filter
	V. Repeat for a Midrange Interferer

