"AC Coupling"

Transistor amplifiers are often "AC coupled" and here I'll explain why. A transistor must be biased before it will work as an amp.

Biasing: Using Resistors & Voltage supplies to establish the needed DC voltages (& currents) to get the transistor "ready" to work as an amp.

Here is a typical biasing circuit:
The goal of this biasing is to ensure that \(V_b \) is somewhere around \(\frac{V_{cc}}{2} \) so that if we somehow make \(V_b \) wiggle up & down... there is room to wiggle:
- if \(V_b \) is too close to 0 then can't "wiggle down" very much
- if \(V_b \) is too close to \(V_{cc} \) then can't "wiggle up" very much

The other goal is to ensure the \(V_{ce} \approx 0.7 \) \& \(V_{ce} > 0 \)
By choosing \(R_1, R_2, R_3, \) \& \(R_4 \) we can do this!
Now we are all set to inject the signal we want to amplify.

We must use this signal to make \(V_b \) wiggle up and down.

Most signals we want to amplify wiggle around 0V (e.g., audio signals):

\[
X(t)
\]

Can we connect this directly to the \(V_b \) point? No!
To see why let's just consider the case of $X(t) = \sin(\omega t)$

And... instead of analyzing the transistor exactly we'll make some approximations... namely that the current I_b into the base is small compared to the current through R_1 & R_2.

Then the "front part" of the biasing circuit looks like:

$$V_b = \frac{V_{cc}}{2}$$

We only need to analyze this front part to see the need for AC coupling.
So... without the sinusoidal signal applied we have $V_b = \frac{V_{cc}}{2}$.

When we apply the sinusoid we want:

$$V_b(t) = \frac{V_{cc}}{2} + \sin(\omega t)$$

which makes V_b wiggle above & below $\frac{V_{cc}}{2}$.

Let's see if this works if we directly connect $X(t)$:

Does $V_b(t) = \frac{V_{cc}}{2} + \sin(\omega t)$?
There are many ways to analyze this (Loop, Node, etc.)

We'll use superposition:

- Set the other sources to zero (i.e. short a voltage source, open a current source) and find the response.
- Repeat for each source.
- Add all the responses.

So...

1. Set \(V_{CC} = 0 \) (short \(V_{CC} \))

\[V(t) = 5 \sin(wt) \]
Re-arranging gives:

\[V_b(t) = 5 \sin(\omega t) \]

\[R_{11} \]

\[R_{11} = \frac{R_1}{R_2} \]

\[\Rightarrow V_{b_1}(t) = 5 \sin(\omega t) \]

2. Set \[x(t) = 0 \] (short it)

This short across \(R_2 \) causes \(V_{b_2}(t) = 0 \)!!

\[\Rightarrow V_b(t) = V_{b_1}(t) + V_{b_2}(t) = 5 \sin(\omega t) \]

Not \[\frac{V_{cc}}{2} + 5 \sin(\omega t) \] as desired!
So... applying \(V_{ct} \) directly causes \(V_{bt} \) to go negative which will reverse bias B-E, which makes the transistor not work!

So how do we fix this!? = AC coupling!!
AC Coupling used in actual circuit \Rightarrow Equiv. Ckt. to analyze

Does $V_B(t) = \frac{V_{cc}}{2} + \sin(\omega t)$?

Now re-analyze using superposition.
So...

1. Set $Vcc = 0$ (short Vcc)

\[v(t) = 5\sin(\omega_0 t) \]

\[R_{11} \quad + \quad R_2 \quad - \]

\[V_{B_1}(t) \]

Re-Arranging gives:

\[R_{11} = R_1 \parallel R_2 \]

\[v(t) = 5\sin(\omega_0 t) \]

\[R_{11} \quad + \quad V_{B_1}(t) \]

\[|H(\omega)| \]

\[\frac{1}{R_{11}C} \]

\[\omega \]

\[\Rightarrow V_{B_1}(t) = 5\sin(\omega_0 t) \quad \text{if} \quad \frac{\omega}{R_{11}C} < \omega_0 \]
2. Set $X(t) = 0$ (short it)

This cap. across R_2 causes acts like open circuit to DC source V_{CC}.

$$V_{B_1}(t) = \frac{V_{CC}}{2}$$

$$\Rightarrow V_B(t) = V_{B_1}(t) + V_{B_2}(t) = \frac{V_{CC}}{2} + \sin(\omega t)$$

AC Coupling Works!!