
  

Abstract— Knowing the exact position of the tumor is a very 

critical prerequisite in radiation therapy. Since the position of 

the tumor changes because of respiration or patient 

movements, a real-time tumor tracking method must be 

applied during the process of radiation therapy in order to 

deliver a sufficient dose of radiation to the tumor region 

without damaging the surrounding healthy tissues.  

In this paper, we develop a novel tumor positioning method 

based on spatial sparsity and then we investigate the sensitivity 

of this method to the uncertainty of tissue configuration. The 

proposed method is easier to implement, non-iterative, faster 

and more accurate compared to common magnetic transponder 

based approaches. The performance of the proposed method is 

evaluated in two different cases: (1) when the tissue 

configuration is perfectly determined (acquired beforehand by 

MRI or CT) and (2) when there are some uncertainties about 

the tissue boundaries. The results demonstrate the satisfactory 

accuracy and high performance of the proposed method, even 

when the tissue boundaries are imperfectly known.  

 

I. INTRODUCTION 

Radiation therapy (also called Radiotherapy) is an 

effective method to combat cancerous tumors by delivering 

high doses of radiation to a tumor to kill or control the 

growth of malignant cells by damaging its DNA ‎[1]. Three-

dimensional conformal radiation therapy (3DCRT) and 

Intensity-Modulated Radiation Therapy (IMRT) have 

significantly enhanced the ability to deliver an accurate 

radiation dose to the target volumes. In these methods, the 

radiation is split into hundreds of thin beamlets targeting the 

tumor from various angles to achieve a better focus on the 

cancerous region and reduce the damage to the surrounding 

healthy cells ‎[2]. In IMRT, beamlets can also have various 

radiation intensities and it helps to produce a treatment area 

that better conforms to the contour of the tumor ‎[3]. IMRT is 

an effective and efficient tool to treat the concave-shape 

tumors such as tumors wrapping around the organs. 

Knowing the exact position of the tumor is a very critical 

prerequisite in radiation therapy, because any slight bias in 

the position of the tumor will cause the radiation to be 

delivered to the surrounding healthy tissues rather than the 

tumor area, which not only degrades the performance of the 

treatment due to a lack of sufficient dose for the tumor 

treatment, but also it may cause severe side effects such as 

secondary cancer ‎[2],‎[4]. However, the position of the tumor 

changes during radiation therapy because of respiration, 

gastro-intestinal, bladder filling, cardiac system or patient 

movements. Thus a real-time tumor tracking mechanism is 

highly desired in radiation therapy treatments in order to 

deliver a precise amount of radiation to the tumor region 

without damaging the surrounding healthy tissues ‎[2],‎[4].  

Various methods have been proposed in the literature for 

tumor tracking in IMRT treatments based on implanting 

several wired or wireless devices (called beacon) inside or in 

vicinity of the tumor ‎[2]-‎[12]. The Calypso Localization 

system is one of the most prevalent methods that has been 

widely used for tumor positioning in prostate radiation 

therapy ‎[7],‎[4]. In the Calypso system, three magnetic 

transponders are implanted in or near the target. Localization 

of the transponders is achieved using an electromagnetic 

array consisting of four electromagnetic coils to excite the 

transponders and 32 receiving coils picking up the response 

signal coming from the transponders. The positions of 

implanted transponders are calculated relative to the 

magnetic array based on the response measurements ‎[7],‎[4]. 

There are several other electromagnetic tracking systems 

such as the methods proposed in ‎[2], ‎[12] that use the similar 

idea to track the tumor positions during the radiation 

therapy.  

In ‎[13], we presented preliminary results for a novel 

positioning and tracking method based on spatial sparsity in 

a 3D space with the goal of achieving better positioning 

accuracy. In the proposed method, we use only one wireless 

implantable RF transmitter (that has the potential to be 

smaller than magnetic transponders because there is no need 

for RLC resonance circuit) implanted inside or in the 

vicinity of the tumor. The implant plays the role of an 

emitter by transmitting an RF signal, which will be received 

by a sensor array mounted in a known position beneath or 

above‎the‎patient’s‎body. Then, the received signals will be 

processed to estimate the position of the emitter (i.e., the 

implant), based on both time-of-arrival (TOA) and received 

signal strength (RSS) exploiting the spatial sparsity of the 

emitter in the 3D space. The performance of the proposed 

method was examined using Monte-Carlo computer 

simulation and the results demonstrate the high localization 

accuracy of our method (i.e., less than 2 mm error) and its 

robustness to multipath conditions caused by massive signal 

reflections at the boundaries of body organs ‎[13]. 

It is manifest that in emitter localization problems, the 

number of emitters (even when we have more than one 

emitter) is usually much smaller than the number of all grid 

points in a fine grid on the x-y plane in a two-dimensional 

case, or x-y-z space in a three-dimensional scenario. Thus, 

by assigning a positive number to each one of the grid points 

containing an emitter and assigning zeros to the rest of the 

grid points, we will have a very sparse grid matrix that can 
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be reformed as a sparse vector. In this context, a sparse 

vector is a vector containing only a small number of non-

zero elements ‎[14]. Since each element of this grid vector 

corresponds to one grid point in the x-y-z space, we can 

estimate the location of the emitters by extracting the 

positions of all non-zero elements within the sparsest vector 

that can satisfy the delay relationship between transmitted 

signals and received signals ‎[13], ‎[15].  

The human body is made up of various organs that 

consist of different types of tissues; thus, the electrical 

characteristics of the body – such as conductivity, power 

absorption, path loss, and relative permittivity – show 

significant heterogeneity and anisotropy. For example, the 

relative permittivity value varies for different tissues. Since 

the signal propagation velocity is expressed as a function of 

the relative permittivity, the propagation velocity and 

consequently the time-of-arrival (TOA) highly depends on 

the specific tissue layers that the signal passes through from 

the implant to the sensor. The power absorption parameters 

and path loss exponent also vary by thickness of the tissue 

‎[16]. 

We seek to estimate the average signal propagation 

velocity for the paths from each one of the grid points to the 

sensors. This estimation is accomplished after calculating 

the percentage of each tissue layer on the entire path that the 

signal travels through. Note that this velocity estimation can 

be performed in an off-line manner given the configuration 

of the body tissue layers, which could be acquired 

beforehand from MRI or CT systems ‎[17]. Such propagation 

velocity information will be used later in the real-time 

localization and tracking step.  

In ‎[13] we assumed that the accurate configuration of 

human body tissues is available. Moreover, for the purpose 

of simplification, we used a uniform homogenous tissue 

configuration in the experimental simulation. However, 

given the fact that the localization performance in the 

proposed method highly relies on an accurate understanding 

of the tissue configuration, it is imperative to investigate the 

sensitivity of our method to the uncertainty of determined 

tissue layer boundaries. In this paper, we intend to address 

this problem by assessing the performance of our proposed 

sparsity-based approach in the case when the tissue 

configuration is not perfectly determined because of errors 

in estimating tissue boundaries. Unlike ‎[13], in the 

simulation process of this study, the body model includes 

various tissues with different electrical characteristics (such 

as relative permittivity) and the RF signal is designed to pass 

through at least 3 different tissues (fat, muscle, lung tissue) 

to reach the receiver sensors.  

II. PROBLEM FORMULATION 

Suppose that an implanted beacon transmits a signal and 

L sensors receive that signal. The complex baseband signal 

observed by the l
th

 sensor is  

 

( ) ( ) ( )l l l lr t s t n t   
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where ( )s t  is the transmitted signal, l  is the signal delay, 

l  is the path attenuation, and ( )ln t is the noise.  

In (1), l  represents the path loss in addition to a 

constant phase shift. The path loss model in dB is given by 

‎[16], 
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where PL(d) is the path loss at distance d, PL(d0) is the path 

loss at the reference distance d0, β is the path loss exponent 

value and S is a zero mean Gaussian random variable (in dB) 

representing the shadowing effect, 2~ (0, )sS N   ‎[16]. Table 

I shows the path loss ‎[16]. 

TABLE I.  PATH LOSS PARAMETERS: IMPLANT TO BODY SURFACE MODEL 

Implant to Body Surface PL(d0) (dB) Β σs  (dB) 

Deep Tissue 47.14 4.26 7.85 

Near Surface 49.81 4.22 6.81 

 

In free space, we can reasonably assume that the signal 

propagation velocity is constant. However, for the 

localization inside the human body the propagation velocity 

is not constant. We can calculate the average relative 

permittivity and average velocity for the path along which 

the signal is traveling as follows ‎[17], 
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where vavg is the average propagation velocity, NI  is the 

number of different tissue layers on the path, εi is the relative 

permittivity of i
th

 tissue at desired frequency and pi is the 

percentage of each tissue on the path. Table II shows the 

average relative permittivity of some of the body tissues 

‎[17]. We are able to obtain the vavg for each path using (3), 

given the configuration of body tissues that was acquired 

beforehand from MRI or CT systems ‎[13], ‎[17].   

TABLE II.  THE AVERAGE RELATIVE PERMIITTIVITY OF BODY TISSUES 

Tissue Muscle Fat Bone Lung Stomach Intestine Tendon 

εr 47.83 4.08 7.85 42.56 56.99 50.67 37.61 

 

Assume that each sensor collects Ns signal samples at 

sampling frequency 1/s sF T . Then we have 
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where 
1 2[ ( ) , ( ) , ... , ( )]T

l l l l Nsr t r t r tr  is the vector 

containing Ns samples of the received signal by l
th

 sensor, 

1 2[ ( ) , ( ) , ... , ( )]T

Nss t s t s ts is Ns samples of the 

transmitted signal, nl is the noise vector and Dl is the time 

sample shift operator by ( / )l l sk T  samples where 

,( / )l l avg ld v  is delay, dl  is the distance between emitter 

and the l
th 

sensor and ,avg lv
 
is the average velocity on the 

path from emitter to the l
th 

sensor derived from (3). We can 

write lk

l D D where D  is an s sN N
 
permutation matrix 

defined as [ ] 1 if 1ij i j  D  , 0, 1[ ] 1N D  and [ ] 0ij D

otherwise.  

In this study, we estimate the target location in the two-

dimensional (x-y) plane. However, it can be easily extended 

into a three-dimensional case. 

Now, we assign a number ,x yz  to each one of the grid 

points (x,y). Assume that , 1x yz   for the grid point 

containing the implant beacon and , 0x yz   for the rest of the 

grid points. Thus, the signal vector received by l
th

 sensor will 

be 

, , , , ,l x y l x y l x y l

x y

z  r D s n
 ,       (5)  

where , ,l x yD is the time sample shift operator w.r.t sensor l 

assuming that the emitter is located in the grid point (x,y) 

and the summations are over all grid points in the desired 

(x,y) range. Note that , ,l x yD and 
, ,l x y are known in (5) since 

the location of the sensor l and each grid point (x,y) is known 

and we are able to find the path loss and delay from (2) and 

(3) for the distance from grid point (x,y) to the sensor l. The 

unknown term is ,x yz
 

which represents the grid point 

containing the implant beacon. Now, if we reform all of the 

grid points in a column vector and re-arrange the indices, we 

will have
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Now, we define the matrix nΓ  as the delay and path-loss 

operator with respect to all L sensors, assuming that the 

received signal comes from the grid point n:  
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Then, we can define  , 1, 2, ,n n Nθ as an 1sLN   

vector containing all signals received by all L sensors when 

the emitter is in grid point n as, 
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where (.)
T
 is the matrix transpose.  

Now, if we arrange all vectors nθ  for n:1...N  as the 

columns of a matrix Θ  as,  

 

 1 2[ ... ]
sN LN NΘ θ θ θ

 ,   
(9) 

then we have 
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where 1 2 1[ ... ]
s

T T T T

L LN r r r r
 

is the vector of all L 

received signals, 
1 2 1[ ... ]T

N Nz z z z
 

is the sparse 

vector of z-values assigned to each grid point and n is the 

noise.  

Now, we can estimate the location of the emitter by 

extracting the position of non-zero elements of the sparsest 

vector that satisfies the delay and path-loss relationship 

between transmitted signals and received signals. In other 

words, because the signals are noisy, we need to find a 

sparse vector that minimizes the cost which is defined as the 

Euclidean distance between r  and Θ z  in equation (10). 

In principle, sparsity of the grid vector can be enforced by 

minimizing its ℓ0-norm which is defined as the number of 

non-zero elements in the vector. However, since the ℓ0-norm 

minimization is an NP-hard non-convex optimization 

problem, it is very common to approximate it with ℓ1-norm 

minimization, which is a convex optimization problem and 

also achieves the sparse solution very well ‎[14].  

Thus, we can solve our problem by forming the 

regularized BPDN (Basis Pursuit Denoising) problem as 

‎[18]: 

2 1
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is the p -norm defined as 
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III. SIMULATION RESULTS AND CONCLUSION 

We examined the performance of the proposed method 

using Monte-Carlo computer simulation with 100 runs each 

time for two different cases: (1) when the body tissue 

configuration is perfectly known and (2) when there is some 

uncertainty on the tissue configuration and tissue 

boundaries. Figure 1 shows an example when the signal 

(emitted by the target implant) travels through three different 

tissues including organ tissue (such as lung tissue), muscle 

and fat to reach the external sensors. In this case the sensors 

are mounted on the body surface, although they can also be 

mounted‎ anywhere‎ above‎ or‎ beneath‎ the‎ patient’s‎ body.‎

Figure 1-(a) shows the case when the tissue configuration is 

perfectly known and Figure 1-(b) demonstrates the case 

when the tissue boundaries are known with uncertainty. To 

simulate this uncertainty, we added unknown random noise 

to the simulated perfect tissue boundaries. 

Figure 2 shows the simulation results for the two cases 

illustrated in Figure 1. Figure 2-(a) shows a simple pattern 

for tumor (or implant) movement in the X direction. Figure 



  

2-(b) shows the RMS (Root Mean Square) Errors of the 

implant localization results for the aforementioned two 

scenarios. In this simulation, we chose the parameters such 

as SNR=10dB, the signal is BPSK modulated with carrier 

frequency 405 MHz and the sampling frequency is 100 

MHz. We use a sensor array of only 8 sensors to receive the 

RF signal from the implanted emitter. In these simulations, 

we also simulated the massive multipath condition (signal 

reflections from tissue boundaries) using reflector points at 

randomly chosen locations. The standard deviation of the 

unknown noise added to the boundary surfaces was 3mm 

(Std = 3mm). 

               (a) 

 
     (b) 

 

Figure (1): A sample tissue configuration. The top surface is the body 

skin, the middle surface is the boundary between fat and muscle and the 

third surface is the organ surface (such as lung surface) which is the 

boundary between muscle and organ tissue. The red points on the body skin 

are the sensors and the blue line is the line-of-sight from one of the sensors 

to the emitter. (a) perfectly known boundaries (b) approximately known 

boundaries generated by adding unknown noise to the boundary surfaces.  

 

 

The simulation results show the accurate localization and 

high performance of this method. The localization error is 

less than 2mm when the tissue configuration is perfectly 

known and less than 2.7mm (in the worst case) for 

underdetermined tissue boundaries.  It is significant that a 

boundary error level of 3mm only increased the localization 

error by 0.7mm. It is worth mentioning that in these 

simulations we used only 16 signal samples for the purpose 

of reducing the computational load. The localization 

performance and accuracy can be further improved by 

increasing the number of samples. 

 

 
             (a) 

 

 
             (b) 

 
Figure (2): (a) A simple pattern for tumor (or implant) movement in X 

direction, (b) RMS Error for implant location estimation for the movement 

pattern in (a) in two cases: when the tissue boundary surfaces are perfectly 

known (red curve) and when there is some uncertainty about the boundary 

surfaces (blue curve). 

 

 

In another simulation, we ran Monte-Carlo algorithms for 

various numbers of sensors (4, 8, 12 and 16 sensors with 100 

runs each time), under the multipath and shadowing 

conditions for the two cases. In this simulation, the position 

of the implant was randomly chosen. Figure 3 shows the 

RMS errors versus the number of sensors for estimating the 

location of the target in a 2D (x,y) plane. Not surprisingly, 

the accuracy is better when we know the exact configuration 

of the body tissues. However, even considering a more 

practical case that the exact tissue configuration information 

is not available and there is certain level of uncertainty in the 

determined tissue boundaries, we can still achieve very 

accurate location estimation (less than 2 mm error in the 

worst case). We can also see that in both cases, the accuracy 

gets better by increasing the number of sensors. 

 



  

 

 

 

 
(a) 

 
                           (b) 

 

Figure (3): RMS Error for X and Y versus Number of sensors for the two 

cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

[1] C. M. Washington and D. T. Leaver, Principles and Practice of 
Radiation Therapy, 2nd ed. St. Louis, MO: Mosby, 2003. 

[2] Wing-Fai Loke,  Tae-Young Choi,  Maleki, T.,  Papiez, L.,  Ziaie, B.,  

Byunghoo Jung, “Magnetic‎Tracking‎System‎for‎Radiation‎Therapy,”‎
IEEE Trans. on Biomedical Circuits and Systems, Vol. 4, No. 4, 2010. 

[3] D.‎ I.‎ Lewin,‎ “Intensity-modulated‎ radiation‎ therapy,”‎ Computer 

Science Eng., vol. 4, no. 5, pp. 8–9, Sep./Oct. 2002. 
[4] Andreas‎ W.‎ Rau,‎ et‎ al.,‎ “Real-time tumor localization with 

electromagnetic transponders for image-guided radiotherapy 

applications,”‎PhD Dissertation, 2009.  
[5] S. Dieterich and Y. Suh, Treating Tumors That Move With 

Respiration. New York: Springer, 2007, pp. 3–13. 

[6] A. P. Shah, et al., “Expanding the Use of Real-Time Electromagnetic 
Tracking‎in‎Radiation‎Oncology,”‎Journal‎of Applied clinical Medical 

Physics, Vol. 12, No. 4, 2011. 

[7] P. Kupelian, et al. Clinical experience with the Calypso 4D 
localization system in prostate cancer patients: implantation, 

tolerance, migration, localization and real time tracking. Int J Radiat 

Oncol Biol Phys. 2005;63(Suppl 1):S197. 
[8] W. Loke, et al., “A‎ 0.5-V Sub-mW Wireless Magnetic Tracking 

Transponder for Radiation‎ Therapy,”‎ VLSI Circuits (VLSIC) 

Symposium, 2011.  
[9] Tae-young Choi,‎ et‎ al.,‎ “Wireless‎ Magnetic‎ Tracking‎ System‎ for‎

Radiation‎ Therapy,”‎ Life Science Systems and Applications 
Workshop, 2009. 

[10] Kindblom J, et al. High precision transponder localization using a 

novel electromagnetic positioning system in patients with localized 
prostate cancer. Radiother Oncol. 2009. 

[11] A.‎ Plotkin‎ and‎ E.‎ Paperno,‎ “3-D magnetic tracking of a single 

subminiature coil with a large 2-D‎ array‎ of‎ uniaxial‎ transmitters,”‎
IEEE Trans. Magn., vol. 39, no. 5, pp. 3295–3297, Sep. 2003.  

[12] E.‎ Paperno‎ and‎ P.‎ Keisar,‎ “Three-dimensional magnetic tracking of 

biaxial‎sensors,”‎IEEE Trans. Magn., vol. 40, no. 3, May 2004. 
[13] M. Pourhomayoun, M. L. Fowler and Zhanpeng Jin,‎ “A‎ Novel‎

Method for Tumor Localization and Tracking in Radiation Therapy,” 

Asilomar Conference on Signals, Systems and Computers, 2012. 
[14] R.‎ G.‎ Baraniuk.‎ “Compressive‎ Sensing”.‎ IEEE Signal Processing 

Magazine, 118–120, July 2007. 

[15] M. Pourhomayoun and M. Fowler, “Spatial Sparsity Based Emitter 
Localization,”‎Conf. on Information Sciences and Sys., CISS, 2012. 

[16] K. Sayrafian-Pour,‎ et‎ al.,‎ “A‎ statistical‎ path‎ loss‎model‎ for‎medical‎

implant‎ communication‎ channels,”‎ in‎ Personal, Indoor and Mobile 
Radio Communications,IEEE 20th International Symposium on, 2009. 

[17] M.‎Kawasaki‎ ,‎R.‎Kohno,‎ “A‎TOA‎Based‎Positioning‎Technique‎ of‎

Medical‎ Implanted‎ Devices,”‎ international Symposium on Medical 
information & communication technology, 2009.  

[18] M.‎ F.‎ Duarte,‎ Y.‎ C.‎ Eldar,‎ “Structured‎ Compressed‎ Sensing:‎ From‎

Theory‎to‎Applications”,‎IEEE Transactions on Signal Process., 2011. 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wing-Fai%20Loke.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wing-Fai%20Loke.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wing-Fai%20Loke.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wing-Fai%20Loke.QT.&newsearch=partialPref

