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ABSTRACT 
 

This paper first discusses the need for data compression within sensor networks and argues that data compression is 
a fundamental tool for achieving trade-offs in sensor networks among three important sensor network parameters: 
energy-efficiency, accuracy, and latency.  Next, it discusses how to use Fisher information to design data compression 
algorithms that address the trade-offs inherent in accomplishing multiple estimation tasks within sensor networks.  
Results for specific examples demonstrate that such trades can be made using optimization frameworks for the data 
compression algorithms. 
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1. INTRODUCTION 
Advances in sensor technology have focused interest towards using networks of sensors to collect useful information 

from an environment1.  Tasks given to sensor nodes include collecting signal data, sharing the data between themselves, 
making inferences (estimations and decisions) from the data, and communicating the collected data and/or the inference 
results to one or more information sinks.  To be useful, sensor networks must be designed to satisfy constraints on 
metrics assessing energy efficiency, communication latency, and accuracy of the conveyed information and there is a 
fundamental tradeoff over these metrics2; there are also constraints on fault tolerance and scalability2 but we don’t 
address those here.  The challenges facing engineers seeking to satisfy these requirements include: 

� Data volumes within sensor networks can be extremely large 
� Communication capacity within wireless sensor networks can be quite low 
� Reducing the data volume (via compression or other means) often results in excessive degradation of 

accuracy 
� Wireless communication consumes a significant portion of a sensor node’s energy 
� Energy resources on each sensor are severely limited 

Historically, data compression has been used to address the first three of these problems: minimizing the impact on 
accuracy of reducing a data volume that is ill-supported by the communication capacity.  However, as we discuss in 
Section 2, it is also possible to use data compression to attack the energy issues.  A further feature in our approach is to 
design the compression algorithm to address the impact on the achievable accuracy of the multiple estimation tasks the 
sensor network is to perform. 

Some past efforts of other researchers in the area of data compression within sensor networks have focused on the 
data volume vs. communication capacity.  For example, distributed compression methods have been proposed3 that 
remove statistically redundant information between two nodes without sharing any data between them, provided a 
statistical model is available for the cross-correlation between the two nodes’ data.  Other recent results4 establish 
fundamental information-theoretic limits on the rate of information transferal through the network and show that data 
compression combined with routing can be used to achieve a latency constraint.   However, they don’t directly address 
impact on estimation accuracy as we do. 

Although energy efficiency can obviously be addressed through development of more efficient hardware, it is also 
possible to address energy efficiency through processing and communication algorithms that reduce wasted energy.  For 
example, one such approach5 proposes combining routing with data aggregation to reduce energy usage.  The data 



aggregation in this case consists of beamforming together the signals received at a handful of sensors surrounding a 
designated cluster head sensor.  The result of this beamforming is to reduce the amount of data that must be transmitted 
across the network (i.e., a form of data compression), thus providing a significant energy saving.  However, in many 
applications beamforming the data from a handful of sensors is not appropriate, so we explore compression methods. 

Communication of data is one of the most energy-expensive tasks a node undertakes – using data compression to 
reduce the number of bits sent reduces energy expended for communication.  However, compression requires 
computation, which also expends energy.  Fortunately, trading computation for communication can save energy since a 
recent paper1 asserts that typically on the order of 3000 instructions can be executed for the energy cost required to 
communicate one bit over a distance of 100 m by radio.  Using that idea, we have shown6 that general data compression 
can be used (either with or without routing) to enable energy savings. 

In Section 2 we will present an argument for viewing data compression as a tool for achieving trade-offs in sensor 
networks among three important sensor network parameters: energy-efficiency, estimation accuracy, and latency.  In 
Section 3 we will discuss the difficulties that arise when multiple estimation tasks must be performed and propose an 
approach that addresses this issue.  Section 4 will apply the ideas of Section 3 to the specific problem of estimating the 
location of an RF emitter. 

 
2. RATE-ENERGY-ACCURACY (R-E-A) TRADE-OFFS FOR COMPRESSION 

Classical data compression theory relies on trade-offs between rate (R) and distortion (D) in terms of a R-D 
function.  Rate is usually measured in terms of bits/sample and distortion is often measured as a mean-square error 
between the original and reconstructed signal.  In the classical view, rate impacts latency and distortion impacts the 
accuracy of the signal reconstruction.  However, as mentioned above, in sensor networks the rate can also impact energy 
efficiency.  Thus, for sensor networks we propose the use of a 3-D extension of the R-D function: the Rate-Energy-
Accuracy (R-E-A) function. The Energy axis assesses the amount of energy needed to move the collected data to the 
desired destination.  Accuracy is related to distortion but is intended to better capture the effect of the compression error 
on the final use of the data – namely, the making of estimates.  A good accuracy measure is the RMS estimation error. 

Clearly, decreasing the rate via compression decreases the amount of transmission energy spent, but this comes at 
the expense of additional energy spent to perform the compression.  These energy trade-offs depend on the 
computational efficiency of the compression algorithm, the energy efficiency of the computational architecture, and the 
energy efficiency of the transmission hardware; the goal is to achieve an overall reduction in energy consumption as 
shown in the top box in Figure 1.  Likewise, decreasing the rate through compression decreases the transmission time 
needed to send the data to its destination, but it comes at the expense of additional time spent to perform the 
compression.  These time trade-offs depend on the computational efficiency of the compression algorithm and the speed 
of the processor; the goal is to achieve an overall reduction in time delay as shown in the middle box in Figure 1.  
Finally, an additional cost of reducing the rate is an increase in the estimation error; the goal is to achieve a negligible 
increase in estimation error as shown in the bottom box in Figure 1.   

The scenario shown in Figure 1 is also shown in the R-E-A space view of Figure 2, where the circle symbol shows 
the operating point without compression and the star symbol shows a desired operating point after compression: energy 
and time have been decreased (an improvement) but error has been increased (a degradation).  Thus we can specify a 
desired operating point in R-E-A space and develop compression algorithms (as well as low-power computing & 
transmitting architectures) to attempt to achieve it.  In classical R-D function theory, there are two dual R-D goals: (i) 
minimize distortion while obeying a rate constraint, and (ii) minimize rate while obeying a distortion constraint.  In the 
R-E-A viewpoint the goal of sensor network compression can be specified in many ways; for example: (i) minimize 
energy subject to constraints on rate and accuracy – this would be optimizing along the line marked “(i)” in Figure 2, (ii) 
maximize accuracy subject to constraints on energy and rate – this would be optimizing along the line marked “(ii)” in 
Figure 2, (iii) jointly minimize energy and rate subject to a constraint on accuracy – this would be optimizing on the 
plane defined by the lines marked “(i)” and “(iii)” in Figure 2, etc. 

In order to attack this kind of problem requires developments on many fronts, including (i) realistic energy models 
for transmission/reception, (ii) realistic energy models for computation, (iii) characterization of the computational 
complexity of the compression algorithms, and (iv) characterization of compression algorithms in terms of rate vs. 
accuracy.  Although our research aims to address all of these issues we limit our presentation here to (iv), and in 
particular the case when there are several conflicting estimates to be made.  One of the keys to addressing compression 
for multiple inference tasks is to use distortion measures that accurately reflect the ultimate performance on the tasks.  To 
design compression algorithms suitable for use under conflicting inference goals it is essential to have appropriate, 
useable metrics that measure the impact of reducing the rate on the inference performance.  For estimation tasks, the 
impact of compression should be assessed by its impact on the variance of the estimation error (at least in the unbiased 
estimate case). For decision tasks (e.g., detection, recognition, identification, etc.) the impact of compression should be 



assessed by its impact on the probability of an error in the decision.  In addition, there may be the need for an end-user to 
view image data collected in a sensor network – the distortion measure for high-fidelity reconstruction is often a version 
of the mean-square error (MSE) measure. We have explored7 trade-offs between estimation, detection, and 
reconstruction; here we explore a further issue that arises when multiple estimates are required that have differing levels 
of importance. 
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Figure 1: Gains and Costs in R-E-A viewpoint. 
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Figure 2: Illustration of R-E-A space; “hollow” symbols show  
projections on to subspaces for easier viewing. 

 
3. GENERAL ESTIMATION-CENTRIC DISTORTION MEASURES 

We model the collected sensor data as a deterministic signal plus additive white Gaussian noise having variance of 
2σ . We assume that the estimation processing and compression processing are not jointly designed – this is motivated 

by our belief that sensor networks are likely to be called on to provide data to other systems/sensors that are 



independently designed (e.g., “legacy” systems and other “system of systems” scenarios); we assume that the estimation 
processing uses methods that are optimal in the absence of compression. We seek to compress a block of data collected 
at a sensor S1 so that it can be transmitted to another sensor S2 using no more than a budgeted R bits while making the 
estimate at S2 (using the compressed data and S2-local data) with the lowest possible RMS estimation error.  Our 
approach is to develop a transform-based compression scheme that is operationally optimized with respect to a distortion 
measure that uses Fisher information8 to quantify the degrading effect of compression on estimation accuracy. 

We present first the case of a single estimation task, which we have previously considered9 but include here for 
completeness and for use in the development here.    Let the real data vector x be drawn from a probability density 
function (PDF) p(x;θ) that is parameterized by θ, which is to be estimated; modifications to handle the complex case are 
straightforward8.  The Fisher information of this estimation problem is defined to be 
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where the expected value is taken with respect to p(x;θ) and therefore the Fisher information is not a function of the data 
vector x.  However, the notational dependence on x shown on the left-hand side of  (1) is included merely to keep track 
of the data set or data subset for which the Fisher information is computed.  As indicated on the left-hand side of (1), the 
Fisher information can be a function of the parameter to be estimated, although in many cases it is not.   

Clearly, compression of the data vector x using a lossy algorithm changes the underlying PDF and therefore changes 
the Fisher information.  Roughly, then, our goal here is to seek operational rate-distortion methods to maximize the 
amount of Fisher information remaining in the data set while satisfying a budget R on the rate used to represent the data 
set.  Our approach (see Figure 3) is to transform the original data into some appropriate set of coefficients 

},,2,1|{ Nnn K== χχ , only some of which are then selected (Ω is set of indices for the selected coefficients) and 

quantized to give the set }|ˆ{ˆ Ω∈= nnχχ . The resulting set of transform coefficients χ̂  then has Fisher information 
)()ˆ( 1 xχ JJ ≤ , where the reduction in Fisher information is due to the compression processing of selection and 

quantization.   For notational use let nnn ωξχ +=  where nχ  is a coefficient of the “signal+noise” while nn ωξ   and are 
the signal coefficient and noise coefficient, respectively. 
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Figure 3: Single-estimation-task compression processing, the data  
vectors, and their corresponding Fisher informations. 
 

We have previously shown9 that the Fisher information after selection/quantization can be expressed as 
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n  captures the signal’s sensitivity to a change in the parameter and 2
nq  is the variance of the 

quantization noise in the nth quantized coefficient.  Note that the form of (2) has a nice interpretation: we are compressing 
to maintain a high level of what we call the “signal-sensitivity-to-noise-ratio” (SSNR).  Our goal then is to select 
coefficients and allocate bits {bn} to them so as to maximize the SSNR in (2) subject to a rate constraint R.   To 



implement our method, one must derive the form of )( nξΓ  for the desired estimation task as a function of the signal 

coefficients nξ . However, because we must compute )ˆ(χJ  from our data coefficients nχ , we must instead use a 
noisy version given by 
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where the “hat” is used to indicate that the quantity uses the noisy quantities that are available from the data rather than 
the noise-free values really needed.  Furthermore, we define  
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which combines the selection and quantization by explicitly saying that 0ˆ =nJ when bn = 0; that is, a coefficient that is 
allocated 0 bits is not sent and can’t possibly contribute any information to the estimation. 

Thus our method can be stated as follows.  Given an explicit form for the signal sensitivity function )(⋅Γ  derived for 
the desired estimation problem, find a bit allocation set },,2,1|0{ NnbB n K∈≥=  that solves  

RbJ
N

n
n

N

n
n

B
≤













∑∑
== 11

   osubject  tˆmax ,                                                    (5) 

where nĴ  is as given in (4). 
When there are multiple parameters to be estimated from the data set x obviously it is desirable to maximize each 

Fisher information; Figure 4 shows the case for two estimates, where J1 and J2 are the two Fisher informations.   
However, it is likely that the optimal compression that maximizes )ˆ(1 χJ  will not also maximize )ˆ(2 χJ .  A further 
challenge lies in the fact that the importance of the multiple estimation tasks are not equal.  This motivates the following: 
if we let  )ˆ(χkJ , k = 1, 2, …, K  be the Fisher informations for the K desired estimation tasks and each has an 
importance weight αk  with  
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then we strive to find the bit allocation that maximizes 
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By using (7) we can easily apply our single-estimate results9 to the multi-estimate case. 
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Figure 4: Double-estimation-task compression processing, the data  
vectors, and their corresponding Fisher informations. 
 



To apply this approach to a particular estimation problem the parameter sensitivity function )( nξΓ  must be derived 
for each estimation task and appropriate weights αk  are specified; then (7) is maximized using an efficient Lagrange 
multiplier approach10.  This will be illustrated for a specific application in the next section.   

 
4. APPLICATION TO TDOA/FDOA EMITTER LOCATION 

In this section we apply these results for the specific sensor network task of locating an RF or acoustic emitter.  Such 
processing is commonly done using time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) 
methods11,12. The accuracy in X-Y location of the emitter depends on the accuracies of TDOA and FDOA estimates – 
thus the network has a two-parameter estimation task. However, the exact dependence on the X-Y location accuracy of 
these two intermediate estimation tasks depends highly on the geometry of the sensors11.   Figure 5 illustrates three cases 
for two pairs of sensors.  Each of the top plots shows sensor positions with hexagons and target position with an “X’d” 
circle (velocity of the target is not shown); sensor pairs (shown connected by a line) share data to estimate TDOA/FDOA 
and the TDOA/FDOA estimates from the two pairs of sensors are used to locate the emitter. Each of the bottom plots 
shows the resulting error ellipses from a theoretical covariance analysis for the cases of computing the location estimate 
(i) using TDOA measurements only, (ii) using FDOA measurements only, and using both TDOA and FDOA. In the left-
hand pair of plots we see that TDOA and FDOA are both important since the corresponding error ellipse is much smaller 
than the ellipse for either TDOA alone or for FDOA alone.  Likewise, in the other two cases we need only one of the two 
types of estimates.  Thus, in some cases TDOA accuracy would be more important than FDOA, and vice versa in other 
scenarios.  This is a clear example of the trade-offs that must be made in compression methods for multiple estimation 
tasks sensor networks.  In this section we develop a compression algorithm to address this scenario.   
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Figure 5: Effect of geometry on the relative importance of  TDOA and FDOA accuracy.   

 
 
 
 



The signal model for two passively-received signals having an unknown TDOA of ∆ is given by 
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where n0 is an unknown nuisance parameter that can not be estimated, and wi[n] is complex Gaussian noise with variance 
of 2

iσ , with 2
1σ assumed known.  The most-natural transform for compressing in TDOA applications is the 

symmetrically-indexed DFT9, which is given by  
12/,,12/,2/][)]2/(2exp[][][ 101 −+−−=+∆+−= NNNkkWnkjkSkX Kπ ,                         (9) 

 
where the S[k] are the DFT coefficients (for negative and positive frequencies) of the non-delayed signal and W1[k] are 
the DFT coefficients of the noise. The resulting Fisher information form to use in (4) is given by9  
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Likewise, the signal model for two passively-received signals having an unknown FDOA of ∆ is given by 
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where v0 is an unknown nuisance parameter that can not be estimated, and wi[n] is complex Gaussian noise with variance 
of 2

iσ , with 2
1σ assumed known.   Here the natural choice of transform is the identity transform and the resulting Fisher 

information form to use in (4) is given by9 
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From this we see that TDOA estimation depends more strongly on high frequencies (both positive and negative) 

while FDOA estimation depends more strongly on early and late times.  To jointly attack this will require using a joint 
time-frequency orthogonal representation – the wavelet packet13 is one of the most flexible such transforms and is 
selected for use here.  For our results here we use a filter bank using fully-cascaded two-channel stages where each 
channel of each stage gets decomposed into two sub-channels (see Fig. 12.28 of Porat14).  To reduce the complexity of 
the algorithm we group the resulting wavelet coefficients into sub-blocks within which all coefficients are allocated the 
same number of bits.  The frequency and time location of each coefficient is taken as the center of the sub-block in the 
time-frequency plane, which is easily calculated using standard results in wavelet packet theory13.  For our simulations 
we used a 4096-sample record of a simulated radar pulse train signal, which after applying the 3-level full-cascade 
wavelet packet transform results in 8 channels with 512 time samples in each channel.  Each channel’s 512 samples are 
grouped into 8 sub-blocks of 64 samples each.  For this scenario we find that the Fisher information measure in (7) 
becomes 
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Figure 6: Results for SNR = 10 dB & DNR = 20 dB; symbol + denotes “without compression”, symbol x denotes 
“standard MSE,” and symbol * denotes “our method”; dashed curve helps visualize the trade-off. 
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Figure 7: Results for SNR = 10 dB & DNR = 40 dB; symbol + denotes “without compression”, symbol x denotes 
“standard MSE compression,” and symbol * denotes “our method”; dashed curve helps visualize the trade-off. 
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Figure 8: Results for SNR = 20 dB & DNR = 20 dB; symbol + denotes “without compression”, symbol x denotes 
“standard MSE compression,” and symbol * denotes “our method”; dashed curve helps visualize the trade-off. 
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Figure 9: Results for SNR = 20 dB  &  DNR = 40 dB; symbol + denotes “without compression”, symbol x denotes 
“standard MSE compression,” and symbol * denotes “our method”; dashed curve helps visualize the trade-off. 



where the ci are the wavelet packet coefficients, jb
jjjq 2222 2−= σε with 2

jε  is chosen to be 9/2 (which gives us the best 

performance) with 2
jσ  being the estimated variance of the coefficients in the sub-block, the sub-block size is 

64,,1,64 K== jW j , and the frequency weights for sub-blocks can be assigned as 8/]8,7,6,5,4,3,2,1[=jf  from the 
bottom to top in the frequency axis, and the time weights for sub-blocks can be assigned as 

4/]4,3,2,1,1,2,3,4[ −−−−=jt .  The trade-off control parameter α∈[0,1] allows the user to set the relative importance 
between TDOA accuracy and FDOA accuracy; setting α closer to 1 favors TDOA while setting α closer to 0 favors 
FDOA.  For a given value α the quantity in (13) is maximized under the constraint of a total number of bits by using a 
Lagrange approach to constrained optimization10.  The results for four different signal-to-noise-ratio (SNR) scenarios are 
given in Figure 6 - Figure 9, where SNR is the SNR for the signal being compressed and DNR is the SNR for the signal 
not compressed.  All results are for the case of compressing to 2.5 bits per sample. 

The axes in these figures show the relative increase in the estimation error.  Note that in each case as we vary α over 
the range [0,1] we get a roughly convex trade-off between the impact of the compression on TDOA accuracy and FDOA 
accuracy that is shown by the * symbols in the figures.  Note the significance improvement our algorithm provides 
relative to the standard MSE approach.   

If the relative importance between TDOA and FDOA is known in advance then the user can specify an appropriate 
α value.  As discussed via Figure 5, the relative importance of between TDOA and FDOA can not be known until the 
geometry is established – in the geometry for the left-hand side of Figure 5 we would want to use α ≈ 0.5, for the case 
shown in the middle of Figure 5 we would want α = 0, and for the case shown on the right-hand side of Figure 5 we 
would want α = 1.  However, because our job is to locate the emitter there is no a priori knowledge of the geometry, so 
how does one deal with this.  A simple approach is to send a very small amount of initial data (compressed with equal 
priority between TDOA and FDOA) to allow rough determination of the geometry through coarse location processing 
and then feed this back to determine the proper α value. 
 

5. CONCLUSIONS 
As demonstrated in the example applications, the use of a distortion measure designed specifically for a specific 

estimation problem can lead to compression methods that far outperform those using MSE-based distortion measures.  
While MSE distortion accurately captures the effect of the compression on the compressed signal’s SNR, it fails to 
capture the true impact of compression on the estimation accuracy.  This is similar to the scenario in image and audio 
compression, where MSE distortion fails to capture the impact of compression perceptual quality of the compressed data.  
In those areas researchers have proposed effective distortion measures based on the psychology of perception.  Thus, by 
comparison we have, in a sense, captured the “psychology of estimation” through the use the Fisher information.  By 
using the Fisher information we provide a measure that captures what statisticians view as the essence of the data that is 
useful for the estimation problem.  

 
Benefits of our approach include:  

� Effectively captures the impact of compression on estimation accuracy 
� Formulation lends itself to the operational rate-distortion viewpoint 
� Efficient means of optimizing the compression within an specified operational compression framework 
� Provides insight into the choice of the proper operational compression framework (e.g., choice of 

transform) 
� Applicable to a wide variety of estimation problems. 
� Extendable to the case of multiple estimates as we have shown here 

 
Despite these accomplishments, there are some directions for which further work is needed: 

� Examination of the computational and implementation aspects. 
 
Furthermore, an interesting issue is illuminated by the TDOA/FDOA application considered here – it may not be 
possible to set the a priori priority for multiple inferences.  However, a promising approach was proposed here that 
involves sending a small amount of initial data – enough to simply determine the proper trade-offs – and then send the 
rest using compression with proper weighting factors. 
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