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Abstract

Multiple platform coherent location systems operate by computing the time difference

of arrival (TDOA) and frequency difference of arrival (FDOA) among signals received

at geographically separated platforms. The bandwidth of the data link is the major

bottleneck in the processing. Previously developed data compression methods [1, 2]

can not satisfy the compression ratio and the accuracy requirements because they

were designed for the generic signal case and do not fully exploit the characteristics

of the radar signal.

A new compression scheme presented in this thesis is built from the ground up

with the characteristics of the radar signal in mind. It is based on the idea that a

radar pulse train can be modelled as one prototype pulse and a parameter vector for

each pulse to transform the prototype pulse to each specific pulse. A compression

ratio of 10 ∼ 20 : 1 has been achieved with minor, if any, FDOA/TDOA accuracies

degradation in most cases. The two major techniques involved here are the fractional

delay filter and the singular value decomposition (SVD).

This thesis starts with some preliminary technical background used later in this

thesis. Then two chapters are dedicated to the fractional delay filter and the SVD

method, respectively. In addition to presenting and verifying our compression scheme,

a newly developed LMS adaptive FIR fractional delay filter and an alternative to

the cross-ambiguity processing based on the parameterization method are developed.

Extensive simulation results are presented throughout the thesis. In the last chapter,

conclusions and suggestions for future work are given.
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Introduction

This thesis presents an advanced data compression scheme specially developed for

compressing the radar signal collected in a coherent emitter location system. In order

to compress the radar signal, two major techniques are involved: the fractional delay

filter, which is used to align pulses to within a fraction of the sampling interval and

the singular value decomposition, which is used to extract the prototype pulse from

a matrix of aligned pulses.

Chapter 1 discusses some preliminary technical background used later in this the-

sis. Section 1.1, “Multiple Platform Coherent Emitter Location Systems,” presents

the overall image of such a system and describes the cross-ambiguity processing which

is used to estimate the frequency difference of arrival (FDOA) and the time difference

of arrival (TDOA). Section 1.2, “Lossy Data Compression,” provides some back-

ground on lossy data compression. Section 1.3, “The Radar Signal,” analyzes the

characteristics of the signal of interest, specifically the linear-FM radar pulse train,

and gives a rough idea on how to compress it.

Chapter 2 discusses various techniques to design a fractional delay filter. Section

2.1, “Frequency Domain Methods,” describes the brute force Fourier method and the

block Fourier method. Section 2.2, “The Filtering Methods,” describes some time

domain design methods such as the Lagrange filter and the Thiran filter. Section 2.3

1
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“The Adaptive FIR filter,” presents a newly developed variant of the Lagrange filter

whose coefficients are adapting to the signal it deals with. All those methods are

compared in section 2.4.

Chapter 3 describes the data compression scheme developed for use in the coherent

emitter location systems. Section 3.1, “Review of the SVD theory,” briefly reviews

the singular value decomposition (SVD) used later in this chapter. Section 3.2, “Pa-

rameterizing the Pulses,” describes the use of SVD to compress and parameterize the

radar pulse train. Section 3.3, “The Non-coherent Method,” presents a newly de-

veloped alternative to the cross-ambiguity processing based on the parameterization

method that we used to compress the data. Section 3.4, “Parameters Encoding,”

briefly describes the quantization and coding after the parameterization. Simulation

results are presented throughout this chapter.

The techniques developed in this thesis are very useful in this application as well

as some others. In the final chapter, conclusions and suggestions for future work are

presented.



Chapter 1

Background

1.1 Multiple Platform Coherent Emitter Location

Systems

Multiple platform coherent location systems operate by computing the time difference

of arrival (TDOA) and frequency difference of arrival (FDOA) among signals received

at geographically separated platforms. One way to compute the TDOA/FDOA be-

tween two signals is to do cross ambiguity processing[3] on them.

Usually, 3 or more platforms are needed in a emitter location system as illustrated

in Fig. 1.1. Each of them has identical receiving and processing equipment, and is

capable of intercepting the signal of interest and performing the emitter location.

Once those platforms have detected an emitter that is desired to be located, they

start to collect the signal on this emitter simultaneously. Based upon the quality of

the received data [4], some platforms are chosen to transmit the data they collected

to other platforms via the inter-platform data-link. Then the other platforms can

estimate the FDOA/TDOA between the signal they collected themselves and the

signal collected at the other platforms. Since the location and velocity of the platforms

3
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Figure 1.1: Multiple Platform Coherent Emitter Location Systems

are known (possibly by means of GPS,) those sets of FDOA/TDOA can be used to

locate the emitter of interest geographically [4].

The accuracy of the location estimate depends on the accuracies of the underlying

FDOA/TDOA estimations. In [4] it was shown that proper FDOA/TDOA processing

requires at least several tens of radar pulses to be collected, each contains several tens

to a few hundreds of samples. The total amount of data puts a heavy burden onto

the data links, which usually are not dedicated to such a task.
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The two signals received at separated platforms are usually noisy. After being

transformed to complex base-band and quantized, they can be modelled by:

x̃A(k) = xA(k) + n1(k)

x̃B(k) = xB(k) + n2(k)
(1.1.1)

where xA(k) and xB(k) are the desired complex-valued signal samples and n1(k)

and n2(k) are the complex-valued noises added in the two measured signals. For

simplicity’s sake, we regard them as additive, white, Gaussian noise (AWGN). The

symbols SNRA and SNRB are used to denote the signal-to-noise ratios of the two

measured signals x̃A(k) and x̃B(k), respectively.

Prior to sampling, the signal xA(t) can be modelled as a time-shifted and Doppler-

shifted version of xB(t):

xA(t) = αxB(t + D)ej(2πfdt+φ) (1.1.2)

where the real numbers of fd and D are the FDOA/TDOA to be estimated, the

attenuation α and the phase offset φ are of less interest. One way to estimate the

FDOA (fd) and the TDOA (D) is to find the peak of the cross-ambiguity function of

the two measured signals [3]:

Asd(τ, ν) =

∫ ∞

−∞
x̃A(t)x̃∗B(t− τ)e−j2πνtdt (1.1.3)

where the superscript asterisk denotes complex conjugation. In practice, only the

lattice points of the cross-ambiguity surface are computed and interpolation is used

to find the location of the peak (τm, νm) of |Asd(τ, ν)|. The accuracy with which the

FDOA/TDOA estimates can be made are characterized by the standard deviations

of the two estimates. It is well known that those standard deviations are bounded by
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the so-called Cramer-Rao bounds [3] as given below:

σ(τm) ≥ 1

2πBrms

√
SNRo

σ(νm) ≥ 1

2πDrms

√
SNRo

(1.1.4)

where Brms is the RMS measure of the signal’s bandwidth in Hz, Drms is the RMS

measure of the signal’s duration in seconds, and SNRo is the non-dB value of the

SNR at the peak of the cross-ambiguity surface, which is given by:

SNRo =
BrmsDrmsSNRASNRB

1 + SNRA + SNRB

(1.1.5)

It should be noticed that SNRo is dominated by the smallest of SNRA and SNRB.

This fact gives us insight to the possibility of data compression because degradation

of one signal will not compromise the SNRo too much while the SNR of the other

signal is low.

In practice, there is a serious drawback of the cross ambiguity processing: the

signal received at one platform must be totally transmitted to the other platform in

order to perform the processing, and usually the rate of the data link is insufficient to

accomplish this in a practical amount of time. To mitigate this problem, various data

compression approaches [1, 2] have been proposed to reduce the amount of data to be

transmitted. However, lossy compression will inevitably introduce distortions to the

already noisy signal; higher compression ratio of each compression scheme will yield

higher distortions and degrade the performance of the FODOA/TDOA estimator

further. Therefore, we must deliberately make the trade-off between the compres-

sion ratio and degradation of the performance of the FODOA/TDOA estimator and

specify our requirement in both terms:

• The degradation of the FDOA/TDOA estimation accuracies should be marginal
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after compression. Specifically, the estimator should remain unbiased; and the

standard deviations of the two estimates should not exceed twice as much as

those from the uncompressed data.

• The higher the compression ratio the more favorable. To make the system

practical, a compression ratio of at least 10:1 [5] should be achieved.

However, those previously developed methods [1, 2] can not match those specifica-

tions. One reason is that they were designed for the generic signal case and do not

fully exploit the characteristics of the radar signal.

1.2 Lossy Data Compression

Data compression techniques fall into two main categories: lossless compression and

lossy compression. Lossless techniques ensure total recovery of the original data by

relying solely on the statistical characteristics of the data. However, in the area

of compressing signal, lossless techniques usually deliver unsatisfactory compression

ratio because of their often too strict nature. Sometimes it is favorable to sacrifice

a little bit of the quality to get better compression in return. In contrary to the

lossless approaches, lossy techniques attempt to apply an appropriate model upon

the underlying signal and reduce the amount of data by simplifying the model in a

proper way. The so called principle of parsimony [6] applies:

• A model should be complicated enough to reproduce the most important prop-

erties of the signal;

• But simple enough to resist the spurious effects that are associated with the use

of the model.
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Many of the lossy compression techniques widely used in today’s audio/video systems

exploit the fact that humans can not perceive all the details in the original signal.

Likewise, a good compression scheme for the coherent emitter location system should

care less about things that do not affect the FDOA/TDOA measurement accuracies

much.

The simplest lossy compression technique is quantization, which is basically a

mapping process from a large—possibly infinite—set of values to a much smaller set

[7]. For every codeword generated by the coder, a reconstruction value is generated by

the decoder to best (in some sense) represent all the possible values corresponding to

this codeword. Some of the information contained in the source data is permanently

loss; that is where the word “lossy” comes from. The subject of quantization is

well-researched; it is widely used in conjunction with other techniques to form more

sophisticated lossy compression schemes.

Signals can be represented in various transformation spaces besides their original

form. Although they are equivalent to each other, it may be more favorable to use

the signal in one of the transformation spaces because:

• In the transformation space the components of the signal could demonstrate

some non-uniform statistical characteristics which can be easily exploited by

various lossless compression techniques;

• More importantly, human’s perception is not uniformly sensitive to all the com-

ponents in the transformation space. Therefore, those components can be quan-

tized differently in a way that the introduced distortion—possibly quite large—is

nearly imperceptible.
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Some of the most widely used transforms are: discrete cosine transform (DCT),

discrete Walsh transform (DWT), and the wavelet transform. It should be noticed

that the transform itself does not reduce the amount of data; it is the subsequent

coding or quantization that does the compression job.

The signals in the real world usually demonstrate some spatial or temporal cor-

relation. In other words, the conditional entropy of the adjacent signal samples are

much less than the entropy of one sample. Therefore, if we make use of the past

history (either in temporal or spatial meaning) of the data to “predict” the current

sample and encode only the prediction error, more efficient compression could be

achieved. Usually, a linear model is used to make the prediction; in its simplest form,

the past sample can be used as the prediction and the resulting compression scheme

is called differential encoding. Like the transformation techniques, this technique is

often used in conjunction with various quantization techniques to compress the data.

1.3 The Radar Signal

Radar is an acronym for “RAdio Detecting And Ranging.” A radar system’s main

purpose is the detection and location of a remote object by transmitting electromag-

netic signals from a transmitter powerful enough so that the signals reflected back

from the target are detectable by the receiver [8]. However, by doing so, a radar

exposes itself to anyone who has a passive receiving device in a far longer range. To

actually locate the radar emitter more effort is required and the coherent emitter

location system that we described in the first section of this chapter is one method.
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1.3.1 Review of the Radar Theory

The received signal power of a radar can be expressed as the following radar equation

[8]:

S =
PT G2λ2σ

(4π)3R4
(1.3.1)

where PT is the transmitting power, λ is the wave length of the radar signal, σ is the

scattering cross section of the target, G and R are the gain of the antenna and the

range respectively, if similar antennas at the same range are used for both transmitting

and receiving. A matched-filter is usually used at the receiver side to detect the

receiving signal because it is the optimum linear processor if the receiving signal

is only corrupted by AWGN. In the frequency domain, the matched-filter transfer

function H(ω) should be the complex conjugate of the spectrum of the transmitting

signal:

H(ω) = cS∗(ω)e−jωtd (1.3.2)

(1.3.1) reveals the fact that the received signal strength is inversely-proportional

to R4. However, if the target has a receiver tuned to the signal, the received signal

strength is only inversely-proportional to R2. This fact means that a platform can

detect the radar signal using a less sensitive receiver at a further range without the

risk of being caught. However, because of the lack of matched-filter at the platform,

some other techniques are needed to locate the radar emitter.

1.3.2 The Linear-FM Radar Pulse Train

The signal that a radar transmits can be either a train of pulses or continuous signal.

In this thesis, we only consider a special case, the so-called linear-FM pulse train,
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which is very commonly used. Nevertheless, the method discussed in this thesis should

be applicable to any pulsed radar. In the linear-FM pulsed radar case, the radar signal

is a train of pulses with a constant pulse repetition interval (PRI). Usually the PRI is

start
time 1

start
time 4

start
time 3

start
time 2

Colleced
signal

Reconstructed
signal

pulse
matrix start times sent as side info

Figure 1.2: Pulse gating and thinning

quite large compared to the width of each pulse. The obvious pre-processing of this

kind of signal is the so-called gating and thinning procedure [5] as shown in Fig. 1.2

which extracts the start time of each pulse and sends the pulses as a matrix with the

start times sent as side info.

Each pulse in the pulse train is a short piece of linear chirp signal and all the pulses

are very similar with the differences mainly in the magnitudes, starting phases, and

starting times. Fig. 1.3 shows a typical pulse converted into base band. Its spectrum

has been centered at approximately DC and the signal has been sampled at a rate

close to the Nyquist rate. Usually, it is complex-valued and has a smoothly changing
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Figure 1.3: A pulse from the pulse train

envelope and its bandwidth is quite wide.

1.3.3 Insights into Compressing the Data

Actually the radar is constantly sending out the same radar pulses. However, because

of, but not limited to, channel fading, jitters at both the transmitter and receiver sides

and noises, they seem quite different at the receiver side. The differences mainly

lie in the magnitudes, starting phases, and starting times. If we can remove those

differences by normalizing the magnitudes, aligning starting times and phases, the

pulses will return to the similar form as illustrated in Fig. 1.4 which shows 10 pulses
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drawn on top of each other. In other words, we want to “undo” the major parts

of the disturbances that the channel imposes to the signals. After that, we can use

one prototype pulse to represent those similar pulses, and only send this prototype

pulse along with side information to “redo” the disturbances. We can reconstruct the

signals base on the prototype pulse and the side information fairly well. When the

number of pulses and the number of samples within one pulse are larger than 10 ∼ 20,

which is usually the case, our goal of compression can be achieved. In chapter 2 we
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Figure 1.4: 10 pulses after processing

will discuss several ways to shift the pulses in a fraction of the sampling interval which

is very important in the time alignment task. In chapter 3 we will discuss how to
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extract the prototype pulse and the magnitude and phase parameters of each pulse.

There are some other facts that are worth to be noted. The possible ranges of the

FDOA/TDOA are very limited in a typical emitter location system:

• The FDOA reflects the relative velocity of the two platforms to the emitter. In

practice, it is normally six orders of magnitude less than the carrier frequency

of that emitter, and 2 ∼ 3 orders of magnitude less than the sampling rate of

the receiver.

• The TDOA reflects the relative displacement of the two platforms to the emitter.

In practice, it is normally 2 ∼ 3 orders of magnitude less than the PRI.

Those facts are to be exploited in the non-coherent method discussed at the end of

chapter 3.



Chapter 2

The Fractional Delay Filters

Delaying a digital signal is easy as long as the desired delay is a multiple of the

sampling interval. However, when a delay of a fraction of the sampling interval is

needed, as in our radar signal compression problem and various other applications

[9, 10, 11], more sophisticated methods must be used. This problem can be viewed

as either:

• bandlimited interpolation between samples,

• or a linear time-invariant system with a transfer function roughly equal to z−D,

D ∈ R.

In this chapter, several well-established approaches for fractional delay (FD) filters

are discussed, and a new approach is proposed. A comparison is given at the end.

15
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2.1 Frequency Domain Methods

Without loss of generality, we can assume that D ∈ (0, 1). By substituting z with

e−jω the ideal frequency response (Fourier transform) of the delaying system is ob-

tained:

Hid(e
jω) = e−jωD ω ∈ [−π, π] (2.1.1)

where ω = 2πfT is the normalized angular frequency, and T is the sample interval.

Thus the desired magnitude and the desire phase response are:

∣∣Hid(e
jω)

∣∣ ≡ 1 ω ∈ [−π, π] (2.1.2)

arg[Hid(e
jω)] = Θid(ω) = −Dω (2.1.3)

2.1.1 The Brute Force Fourier Method

The most intuitive way of doing a fractional delay is to do it in the frequency domain

with the following steps:

1. Do an FFT over the signal (proper zero-padding may be required);

2. Multiply the FFT result by e−jωD;

3. Finally, do a inverse FFT to convert it back to time domain.

We may call it FFD (Fourier Fractional Delay) because it strictly follows (2.1.1).

Although it does the job without introducing noise, this method is only valid when

the signal is very short, and input-to-output delay is not a concern because it requires

gathering all the data before processing. However, a more useful method can be

derived from it and will be discussed below.
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2.1.2 The Block Fourier Method

The brute force FFD has a fatal pitfall because very long FFT is not affordable. To

relieve this barrier, the block Fourier method comes to the rescue. The ideas behind

this method are:

1. breaking the signal into overlapping blocks;

2. processing the blocks individually using the FFD method;

3. catenating the results.

Fig. 2.1 illustrates the process of the BFFD (Block Fourier Fractional Delay). A fixed

FFT size is used to make it suitable for online processing of very long signals and

the maximum processing delay equals the FFT block size minus half of the overlap

length.
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Figure 2.1: The diagram of the BFFD
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However, since we truncate the signal prior to doing the FFT, some level of distor-

tion is introduced. Fig. 2.2 demonstrates the distortion while using BFFD to process

a sinusoidal signal. A fixed FFT block size (64) is used, while different overlapping

length are compared. A blocky pattern of distortion is observed:

• The distortion has a “U” shape pattern; the closer a sample to the border of

the processing blocks, the higher the resulting noise.

• Overlapping the processing blocks helps to reduce the blocky effect, the more

the overlapping, the better the result.
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However, increasing the overlapping has a side-effect to reduce the efficiency of the

algorithm. Also, the accuracy gain of using an overlapping length larger than 1/4 of

the block size is marginal.

Using a sinusoidal input may not be a very good idea to evaluate the real-world

performance of a fractional delay algorithm. In Fig. 2.3, a band-limited white noise

sampled at a rate close to the Nyquist rate is used as the input signal. BFFDs of

different sets of parameters are compared across the fractional delays. It can be

noticed that the worst case happens when half sample delay is used.
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2.2 The Filtering Methods

The implementation of a constant delay can be considered as a time domain ap-

proximation of the ideal fractional delay filter described in (2.1.1) which has unity

magnitude response and a constant group delay of the given delay D. By doing an

inverse DTFT over (2.1.1) we get:

hid(n) =
1

2π

∫ π

−π

Hid(e
jω)ejωndω

=
sin[π(n−D)]

π(n−D)
= sinc(n−D) ∀ n ∈ I

(2.2.1)

When D is not an integer value, the impulse response (2.2.1) is a shifted and sampled

version of the sinc function, which is infinitely long on both sides. Therefore, a finite-

order causal FIR or IIR filter can only approximate the impulse response of the ideal

filter.

2.2.1 The Lagrange FIR Filter

FIR filters have been widely used because they are simple, stable, and have short

processing delay. To design a FIR filter to approximate ideal fractional delay filter,

c
3

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �
� � � � � � �� � � � � � �

c
4c

5

c2 c1 c0

� � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �	 	 	 	 	 	 	 		 	 	 	 	 	 	 	
 
 
 
 
 
 

 
 
 
 
 
 


D

......

... ...

Input s ignal

Delayed s ignal

xn-3 xn-2 xn-1 xn xn+1 xn+2

d n-2 d n-1 d n d n+1 d n+1

Figure 2.4: Weighted sum of N samples

several methods have been used, such as: least square [12], window-based design [9],
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maximally flat design [13] and minimax design [14]. In [12], it was shown that the

smallest error for a given filter order N is obtained when the integer part of D equals

N/2, i.e., each fractionally delayed sample is computed by a weighted sum of N/2

samples before this time and N/2 samples after this time. Fig. 2.4 shows a 6-tap FIR

FD filter.
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Lagrange interpolation is probably the easiest way to design a FIR FD filter. The

coefficients are [15]:

c(n) =
N−1∏

k=0
k 6=n

D − k

n− k
n = 0, 1, . . . N − 1 (2.2.2)
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Fig. 2.5 shows the magnitude and group delay of several Lagrange FIR FD filters of

different length. The expected delay is set to 0.3.The Lagrange filter is a maximally

flat filter at ω = 0 [13]. Therefore, it has very good response at low frequencies,

and a smooth magnitude response. However, those advantages come at the cost of

the performance at higher frequencies. Increasing the filter order will help, but the

approximation bandwidth grows very slowly when the order is above 4 or 6. It is also

possible to develop a maximally flat filter that favors an arbitrary frequency ω0 [16],

but performance at other frequencies will suffer.
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Figure 2.6: The Lagrange filter under band-limited white noise

Fig. 2.6 shows the performance of Lagrange FIR FD filters of different size with
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a band-limited white noise as the input signal. It can be noticed that the worst case

happens when half sample delay is used. Also, the performance is 9dB lower at a

delay of 0.5 compared to when delay is 0.1 independent of the order of the filter.

2.2.2 The All-pass Thiran Filter

Generally, an IIR filter can meet the same frequency-domain specifications with lower

order than a FIR filter. However, to design an IIR filter usually is much more com-

plicated. The only solution known to us where the coefficients can be obtained in

closed form is the all-pass Thiran filter [13]. Its coefficients are specified by (2.2.3):

A(z) =
aN−1 + aN−2z

−1 + . . . + a1z
−(N−2) + z−(N−1)

1 + a1z−1 + . . . + aN−2z−(N−2) + aN−1z−(N−1)

an = (−1)n(N−1
n )

N∏

k=1

D −N + k

D −N + k + n
n = 0, 1, . . . N − 1

(2.2.3)

Since it is an all-pass filter, its magnitude response is perfect. Its group-delay response

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

Normalized frequency

Gro
up 

del
ay

2−tap
3−tap
4−tap
5−tap

Figure 2.7: The Thiran filters’ group-delay responses

is shown in Fig. 2.7. The expected delay is 0.5. The Thiran method can be viewed as

a recursive counterpart of Lagrange interpolation. And it also produces maximally
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flat filters at ω = 0 [13]. Although it tends to perform better than a Lagrange FIR

FD filter of similar complexity, it inherited the same drawback: small approximation

bandwidth except here the limit is only due to the group delay not the magnitude.

Fig. 2.8 shows the performance of All-pass Thiran filters of different size with a

band-limited white noise as the input signal. A 6-tap Lagrange filter is also shown

as a reference. Keep in mind that an all-pass filter requires about twice as much
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computation power as a FIR filter of the same size. For the Thiran all-pass filters,

the worst case no longer happens at half sample delay. However, the worst case is

still quite bad.
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2.3 The Adaptive FIR Filter

The Lagrange and Thiran filters are very simple to implement because their coeffi-

cients can be obtained in closed form. However, they both have two serious problems:

• They are both frequency specific. For signals out of their approximation band-

width, they do not perform well.

• Their accuracies are both sensitive to the actual fractional delay. In the worst

case, the accuracies drop sharply.

The minimax design can address those problems. However, the fractional delay ap-

proximation is quite hard since it requires approximating a complex-valued function.

Furthermore, the signal may not be stationary at all; then solely relying on ap-

proximating the impulse response of the ideal fractional delay filter would not be

appropriate.

The adaptive filter shown in Fig. 2.9 is a filter that can evolve its coefficients

according to the changing of the input signal. Since the coefficients are not constant,

Fn(z)

Adaptive
Algori thm

fn

Verification
Algori thm

Error

Input

Output

Figure 2.9: The adaptive filter

the adaptive filter is not an LTI system. It has the following properties [17] that are
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highly favored in a fractional delay filter design:

• In a stationary environment, the coefficients will converge to steady state values

close to the optimal coefficients.

• It does not rely on any a priori information of the signal statistics.

• For nonstationary signals, the filter is able to adapt to the changing statistics.

2.3.1 The LMS FIR Adaptive FD Filter

In this section, we begin our study by looking at the simplest form of adaptive filters.

A shift-varying version of the filter shown in Fig. 2.4 is used:

d̂n =
k=l−1∑

k=−l

wk,n · xn+k (2.3.1)

The validity of the coefficients can be verified by a linear model, and an error vector

can be computed as:

~en = ~yn − ~wn ∗ H̄n (2.3.2)

~wn should be updated in a fashion that the mean square error ‖~en‖2 should be min-

imized. The definition of ~yn and H̄n are application specific. We could use the

steepest-descent method, the update equation is:

~wn+1 = ~wn − µ∇‖~en‖2

= ~wn + µ ~en ∗ H̄H
n

(2.3.3)

where the µ > 0 is the step size. This algorithm is known as the LMS algorithm

[17]. However, unlike the well known Wiener filtering problem, there is no obvious

verification method to use.
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The difficulty of validating the coefficients of a fractional delay FIR filter rests in

the fact that the only information we have available is the signal itself. However, a

FIR FD filter of delay D has a close relation with the FIR FD filter of delay 1 −D,

which is just a reversal of the coefficients sequence. If there is a perfect FIR FD filter

of delay D, then we can restore the original signal xn by applying the reverse filter

upon the delayed output dn. This fact gives us the insight of validating the forward

filter by reversal filtering of the delay output as in Fig. 2.10. We can rewrite (2.3.2)

w
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and (2.3.3) as:

en = xn−l − ~wn ∗ [dn−2l+1 . . . dn]T (2.3.4)

~wn+1 = ~wn + µ en ∗ [d∗n−2l+1 . . . d∗n] (2.3.5)

which produce a 2l-tap adaptive FIR filter.

There are two parameters that need to be carefully selected: the initial coefficients

~w0 and the step size µ. Since this algorithm is based on the static FIR FD filter, using

the Lagrange coefficients specified in (2.2.2) as a starting point is natural. The selec-

tion of µ is much more difficult: A too large µ can make the LMS algorithm unstable;

while a too small µ will make the convergence too slow and limit the performance of
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the adaptive algorithm. In [17] an upper bound of µ is given as:

µmax =
2

2l · E{|x(n)|2} (2.3.6)

However, our algorithm breaks the independence assumption because the verification

data dn and the weight vector wn are not statistically independent, the actual selection

of µ should be more conservative. Experiments show a µ = 0.1µmax ∼ 0.2µmax is

generally acceptable.

Fig. 2.11 shows a snapshot of an adaptive filter’s (6-tap, delay is 0.6) response

under band-limited white noise input. A 6-tap Lagrange filter is also shown for
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Figure 2.11: The snapshot of the adaptive filter’s response

comparison. Note that the adaptive filter is also a low pass filter like the Lagrange
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filter but is more like an equiripple filter and has broader approximation bandwidth.

Fig. 2.12 shows the adaptive nature of an adaptive filter’s (6-tap, delay is 0.5).

The input signal is a sinusoid with unity magnitude and a frequency of 1/4 of the

sampling rate. A 6-tap Lagrange filter is also shown for comparison. While the static
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Figure 2.12: The adaptive filter under sinusoid input

filter yields a constant level of distortion, the adaptive filter’s distortion drops quickly.

Fig. 2.13 compares an adaptive filter with the Lagrange filter of the same size in

band-limited white noise input. It is obvious that the adaptive filter outperforms the

Lagrange filter over the entire range of delays and the worst case performance of the

adaptive filter is much better than of the Lagrange filter.
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2.4 Comparisons

Having investigated several different methods to do the fractional delay, we can put

together a summary in Table. 2.9. Four methods (the Block FFD, the Lagrange

filter, the Thiran filter and the LMS filter) are compared on accuracy, latency, and

computational complexity. Although the LMS filter seems to be superior, choosing

the right method depends on the actual application. In our radar signal compression

task, since the processing is done in a batch mode and it is unlikely to have more

than a few hundred samples in each pulse, the best method may simply be the brute

force FFD. All these methods can find their applications in different situations.
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Table 2.1: Comparisons of four fractional delay methods



Chapter 3

The SVD Method

The Singular Value Decomposition (SVD) is a powerful tool in linear algebra. In

particular, we are interested in its reduced-rank approximation property [6] because

of the compression potential of this model. In this chapter, we first give a brief review

of the SVD theory focusing on subspace estimation and noise suppression. Then

we investigate the application of the SVD method in the radar signal scenario, the

data compression property and its impact on the performance of the cross ambiguity

processing. At the end, a non-coherent method specially developed to take advantage

of the SVD method is proposed and studied.

3.1 Review of the SVD Theory

The singular value decomposition (SVD) of data-generated matrices plays an increas-

ingly important role in contemporary signal processing applications. For a generally

complex valued M ×N matrix X of rank p, its associated SVD representation takes

32
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the following form:

X = UΣVH

=

p∑

k=1

σk~uk~v
H
k

(3.1.1)

where U is an orthogonal matrix consisting M left singular vectors (~uk) as its columns,

V is a orthogonal matrix consisting of N right singular vectors (~vk) as its columns,

and Σ is a pseudo-diagonal M×N matrix whose main diagonal consists of the positive

singular values (σk) and all other elements are zeros. Normally, the singular values

are arranged in a non-decreasing manner, ie., σk ≥ σk+1. The SVD is widely used in

various signal processing applications because it can:

• approximate a matrix by a low-rank matrix [18];

• split a space into dominant and subdominant subspaces [19];

• aid the computation of the pseudo-inverse, the Grammian, and the projection

operator [6].

3.1.1 Matrix Manipulation by SVD

In various signal processing applications such as complex exponentials identification

[?] and ARMA impulse responses we may encounter an M×N signal matrix X which

is rank deficient, ie., ∃~a 6= ~0, X~a = 0. However, the signal matrix is often replaced by

a noisy measurement matrix Y = X + N, the resulting measurement matrix will be

full-rank with probability one for any reasonable probability distribution of N. An

approximation (Ỹr) of an arbitrary rank r < min(M,N) can be produced by setting

all but the r largest singular values of Y to 0.

Ỹr =
r∑

k=1

σk~uk~v
H
k (3.1.2)



34

Notice the only difference between (3.1.2) and (3.1.1) is the usage of the predetermined

r over the actual rank p. The rth approximation is the rank r matrix that best

approximates Y in the Frobenius (least square) sense [20]. In [21] it has also been

pointed out that the reduced rank matrix Ỹr approximates the signal matrix X

better than the noisy measurement matrix Y when the signal-to-noise ratio (SNR) is

high. Low-rank approximations with specific patterns (eg. Toeplitz or Hankel) can

be obtained by successive approximations using the same technique [19].

The SVD of a matrix X can be used to split the signal space into subspaces. That

is, in decomposition

X = UΣVH

=
(
Ur Up−r

) (
Σr 0

0 Σp−r

)(
VH

r

VH
p−r

)
(3.1.3)

the orthogonal subspaces 〈Ur〉 and 〈Up−r〉 can be used to produce the signal space

〈X〉:
〈X〉 = 〈Ur〉 ⊕ 〈Up−r〉

〈Ur〉 ⊥ 〈Up−r〉
(3.1.4)

Similarly, the orthogonal subspaces 〈Vr〉 and 〈Vp−r〉 span the signal space 〈XT 〉. The

orthogonality of the subspaces is a consequence of the orthogonality principle for least

squares solutions [6].

There are some useful miscellaneous equations when matrix X is replaced by its

SVD X = UΣVH . In this case, the pseudo-inverse X], the Grammian G(X), and

the projection P(X) can be orthogonally decomposed as follows:

X] = (XHX)−1XH = VΣ−1UH

G(X) = XHX = VΣ2VH

P(X) = XX] = UUH

(3.1.5)
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3.1.2 SVD Denoising

Let the signal vector ~x be a vector of p elements, ie, ~x = [x1, x2, · · ·xp]
T . The signal

subspace 〈S〉 can be defined by the span of [−→v1 ,
−→v2 , · · · −→vr ] which are the r eigenvectors

corresponding to the r non-zero eigenvalues of the auto-covariance matrix

Rxx = E(~x~xH) (3.1.6)

However, neither the signal ~x nor the auto-covariance matrix Rxx is accessible. In-

stead, we only have the noisy measurement ~y = ~x + ~n, where ~n is an additive, white,

Gaussian noise (AWGN) with an auto-covariance matrix of σ2I. Since the AWGN ~n

and the signal ~x are statistically independent, the auto-covariance matrix of ~y is:

Ryy = E(~y~yH) = Rxx + σ2I (3.1.7)

It is trivial to prove that Ryy inherited all the eigenvectors of Rxx while the eigenvalues

are increased by σ2. Therefore, the signal subspace 〈S〉 can be constructed by finding

the eigenvectors corresponding to the largest eigenvalues of Ryy if:

• the size of the signal subspace (the rank of Rxx) is known, or,

• the signal-to-noise ratio is large so that there is a clear difference between the

signal eigenvalues and σ2.

Once the signal subspace S is known, a better measurement ~y′ can be constructed by

simply projecting ~y on to 〈S〉:
~y′ = P(S) · ~y (3.1.8)

where P(S) is the projection of signal subspace S as defined in (3.1.5). By doing so,

the SNR is improved by p/r because the energy of the AWGN is spread equally over

all the p eigenvalues and we throw away p− r of them.
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This kind of projection is equivalent to the reduced rank approximation we de-

scribed in (3.1.2) when we do the SVD over the signal matrix Y instead of doing the

eigenvalue decomposition over the auto-covariance matrix Ryy because Ryy can only

be estimated in most applications. In this way, the estimation of the signal subspace

is likely to be imperfect because of the limited number of signal realizations. Never-

theless, an SNR gain, though less than the ideal situation (p/r), can still be achieved.

Fig. 3.1 shows the noise suppression effect of the rank reduction approximation using
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Figure 3.1: Denoising using SVD

SVD. In those cases, the signal subspace is rank one and has 10 elements. Therefore,

a theoretical 10dB SNR gain could have been achieved if the signal subspace can
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be perfectly identified. In reality, some levels of graceful degradation is observed if

a limited number of the signal realizations (the cases of 2, 10, 100 realizations are

shown) are used to identify the signal subspace.

3.2 Parameterizing the Pulses

In Chapter 1 we demonstrate that after proper thinning and gating, the radar signal

can be organized into a matrix whose each row represents a single radar pulse. If we

do not consider frequency hopping, those pulses are essentially the same except:

• Their starting time may be different;

• Their magnitude may be different;

• Their starting phase may be different.

Therefore, if we can extract a prototype radar pulse and a parameter vector (starting

time d, magnitude A, starting phase θ) for each pulse, the original signal can be

restored from those values. When the number of pulses is large, which is usually the

case, very good compression ratio can be achieved.

3.2.1 Pulse Extraction using SVD

Since a typical radar is constantly sending out the same radar pulse, the signal sub-

space should be rank-one. However the signal matrix collected at the receiver side is

usually quite far from rank-one because of, but not limited to, the following reasons

[5]:

• Incommensurate PRI and sampling interval T ;
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• Transmitter jitter;

• Imperfect pulse gating.

These effects can be handled through proper pre-processing to align the pulses in the

signal matrix. The correct value of time shift can be found by cross-correlating the
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Figure 3.2: Singular values before and after alignment

pulses, interpolating the correlation function and finding the peak. In practice, the

pulse that has the biggest magnitude is chosen as a reference to cross-correlate with

others because it tends to have the biggest signal-to-noise ratio. Since the amount of

time alignment needed is usually not an integer multiple of the sampling interval, one

of the methods from the discussion of Chapter 2 can be chosen to do the fractional
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delay. For simplicity’s sake, the brute force Fourier method is used. Fig. 3.2 compares

the 10 biggest singular value of a signal matrix before alignment and after alignment.

Alignment not only makes the signal matrix much closer to rank-one but also extracts

the starting time of each pulse, which is the first element in the pulse parameter vector

we need for each pulse.

Once the alignment is done, we compute the reduced-rank approximation of the

signal matrix described in (3.1.2). In particular, we only keep the one biggest singular

value, so the equation turns out to be:

X̃ = σ1~u1~v
H
1 (3.2.1)

where σ1 represents the square root of the total energy in this signal, the magnitude

and phase of ~u1 represents the magnitude and starting phase of each pulse, and ~vH
1 is

the better choice of the prototype pulse than any other single pulse due to the noise

suppression property of the SVD method that we discuss in 3.1.2. Since the total

energy is meaningless in the subsequent ambiguity processing, we can safely discard

the σ1.

How much compression can we get from this scheme? Suppose the original signal

matrix is m × n, ie., it has m pulses and n complex elements in each pulse, so the

total matrix requires 2mn real values. After the compression, we have the 3 element

parameter vector (d, A, θ) for each pulse, which requires 3m real values, and the

prototype pulse which requires 2n real values. Therefore the compresion ratio is:

CR =
2mn

3m + 2n
(3.2.2)

In a typical setup, m and n range from several tens to a few hundreds, then the

compression ratio CR is likely to be larger than 10.
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3.2.2 Simulation Results

By keeping only a small amount of the parameters of the signal matrix instead of

the whole matrix we have achieved a very good compression ratio. However, this

is only part of our goals, which are high compression ratio and low degradation.

Low degradation does not mean that we want to restore the original signal matrix

as accurately as possible; instead, it means good FDOA/TDOA estimation accuracy

in the emitter location system. Therefore, simulations are designed to measure the

performance of our compression algorithm. The procedure of the simulations are:

1. Generate a set of radar pulses and a time-shifted and Doppler-shifted version

of the same pulses to emulate the signals received on two different platforms;

2. Add AWGN to both signals; varying the noise level of one signal (signal B)

while keeping the noise level of the other signal (signal A) fixed;

3. Compress and decompress signal B;

4. Compute the FDOA/TDOA pair of the original signal A and the decompressed

signal B.

For simplicity’s sake, the brute force Fourier method is used in every simulation.

The simulation is repeated many times so that we can compute the variances of the

FDOA/TDOA estimations. Then we plot the FDOA/TDOA variances versus the

SNR of signal B. In the first simulation we use a noise-free signal A. A total of 100

Monte-carlo runs are used. The tested signal is a linear-FM pulse train consisting 50

pulses, each has 43 samples. The maximum frequency deviation of FM is set to the

sampling rate to make the sampling closed to critical. The time-shift and Doppler-

shift are 3.25 sampling intervals and 0.001 sampling rate, respectively. It can be
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Figure 3.3: FDOA/TDOA accuracy (coherent, A noise free)
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Figure 3.4: FDOA/TDOA accuracy (coherent, A 20dB)
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noticed from Fig. 3.3 that:

• The FDOA/TDOA variances of the uncompressed data are inversely-proportional

to the square root of the input SNR (a straight line in the figure with a slope

of 20dB per decibel). This fact conforms to the Cramer-Rao Bound theory

mentioned in (1.1.4).

• The performance of the compressed data and the uncompressed data are almost

identical when the input SNR is below 25dB. after that, the performance of the

compressed data begins to saturate. It makes sense because the compression

we used inevitably introduce additional distortion to the signal B.

In reality, the SNR of the received radar signal can not be arbitrarily high. A more

realistic simulation that we demonstrate in Fig. 3.4 set the SNR of signal A to 20dB.

Other parameters are not changed. In this case, the performance of the compressed

data stays close to that of the uncompressed data.

From the above simulations we can conclude that: in all realistic situations, the

degradation of the system performance introduced by our data compression is almost

negligible.

3.3 Non-coherent Method

In the previous discussion the SVD method is only used as a data compression method;

the signal is reconstructed from those pulses’ parameters and then the traditional cross

ambiguity processing is used to estimate the FDOA/TDOA. This method may have

not fully exploited the advantage of the parameterized pulse train. In this section,

we develop a non-coherent method based on the idea of parameterizing the signals
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received on both platforms and estimating the FDOA/TDOA directly from those

parameters without restoration of signals.

3.3.1 Direct Estimation of the FDOA/TDOA

Let’s restate the two signals received at two platforms in the parameterized form:

xa(t) =
N∑

n=1

pa(t− dn)Anejθn

xb(t) =
N∑

n=1

p′b(t− d′n)A′
ne

jθ′n

(3.3.1)

where N is the total number of pulses; p(t) is the prototype pulse of signal A;

(dn, An, θn) is the parameter vector describing the individual pulses in signal A; and

p′(t), (d′n, A
′
n, θ

′
n) are the counterparts in signal B. Since the two platforms are re-

ceiving the signal emitted from the same radar, there must be a one-to-one mapping

relation between the pulses in the two signals as illustrated in Fig. 3.5. If the following

(d1,  A1, θ1)

(d'1, A'1, θ'1)

(dN-1,  AN-1, θN-1)(d3,  A3, θ3)(d2,  A2, θ2) (dN,  AN, θN)

(d'N-1, A'N-1, θ'N-1)(d'3, A'3, θ'3)(d'2, A'2, θ'2) (d'N, A'N, θ'N)

TD1=d'1-d1
PD 1=θ'1-θ1

TDN=d'N-dN
PD N=θ'N-θN

...

...

...

xa(t)

xb(t)

Figure 3.5: Pulse-to-pulse mapping

separation assumptions are valid:
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• TD ¿ PRI, where TD is the TDOA of the two signals, and PRI is the pulse

repetition interval;

• FD ¿ Fs, where FD is the FDOA of the two signals, and Fs is the sampling

rate.

we can compare those pulses on a pulse-to-pulse basis. In 1.3.3 we have shown the

validity of the two assumption in a typical emitter location system. Therefore, we

can define the time difference and phase difference of each pair of pulses as follow:

TDn = d′n − dn

PDn = θ′n − θn

(3.3.2)

If the separation assumptions hold, we claim that:

• TDn should remain constant for every n and its average can be used as an

estimation of the overall TD;

• PDn should be linear to dn and its slope can be used as an estimation of the

overall FD.

Therefore, the FDOA/TDOA estimation becomes simple calculation of averaging

and linear regression. However, there are still some implementation issues that need

attention:

• Because the prototype pulses of the two signals are unlikely to be perfectly

aligned, a correcting term should be added to the TD. This correcting term

can be produced by cross-correlating the prototype pulses, interpolating the

correlation function and finding the peak.
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• Because pulses that have bigger magnitudes tend to have higher SNR, the ac-

curacy of the estimation can be improved by using
√

AnA′
n as the weights in

the averaging and linear regression.

Now we can write out the equations for the estimation of FDOA/TDOA:

T̂D =
W ∗TD

tr(W)
+ c

(
F̂D

d

)
= (MHWM)−1MHW ∗PD

(3.3.3)

where:

TD = (TD1, TD1, · · · , TDN)T

PD = (PD1, PD1, · · · , PDN)T

W = diag(
√

A1A′
1,

√
A2A′

2, · · · ,
√

ANA′
N)

M =




d1 1

d2 1
...

...

dN 1




(3.3.4)

c is the correct term produced by cross-correlating pa(t) and pb(t) and d can be viewed

as an initial phase shift and is of less interest.

3.3.2 Simulation Results

We use the same simulation procedure as in the previous section except that the pa-

rameterization is done on both signals and no signal restoration is needed. We inves-

tigate two different scenarios: In the first one the signal A is set to be noise-free while

the in the second one its SNR is 20dB. Once again we plot the FDOA/TDOA vari-

ances versus the SNR of signal B. The results of uncompressed data and compressed

data with coherent method (ambiguity processing) are also included as references.

It can be noticed from both Fig. 3.6 and Fig. 3.7 that:
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Figure 3.6: FDOA/TDOA accuracy (non-coherent, A noise free)
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Figure 3.7: FDOA/TDOA accuracy (non-coherent, A 20dB)
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• The performance of the non-coherent method matches that of the coherent

method for most SNRs.

• A threshold effect is observed at about 3dB; when the input SNR is too low,

the performance of the non-coherent method degrades severely.

In terms of accuracy, the non-coherent method is on par with, if not better than,

the coherent method above the observed threshold, while the computation is much

simpler. However, if the input SNR is below the threshold, we can fall back to the

coherent method.

3.4 Parameters Encoding

So far we have not done any aggressive encoding to the parameters. Intelligent bit-

allocation can improve the compression ratio because both the coherent method and

the non-coherent method are not equally sensitive to the error in all parameters.

Specifically, both algorithms are more sensitive to phase error than magnitude error in

those parameters. Therefore, we should allocate more bits to phases than magnitudes.

in the following quantization scheme we actually use:

• Both θn and the phases of the prototype pulses are quantized to 8bits;

• dn are quantized to 8bits;

• An are quantized to 4bits;

• The magnitudes of the prototype pulses are quantized to 1bit ∆M .

In Fig. 3.8 and Fig. 3.9 the performance of quantized parameters and unquantized

data (infinite precision) are compared. The SNR of signal A is set to 20dB. It can
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be noticed that performance degradation introduced by our quantization scheme is

almost negligible.
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Figure 3.8: FDOA/TDOA accuracy (coherent, A 20dB)
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Figure 3.9: FDOA/TDOA accuracy (non-coherent, A 20dB)



Chapter 4

Conclusions and Suggestions for
Future Work

4.1 Conclusions

The original goal of this research project was to develop an efficient data compres-

sion scheme to compress the signal collected in the coherent emitter location system

without compromising the FDOA/TDOA estimation accuracy too much. Through-

out the research this goal has been achieved and some other interesting results have

been found beyond the original scope. We can summarize our finding as follows:

• The idea of compressing the radar pulse train by parameterizing the pulses has

been proven to be viable. Nevertheless, a whole set of algorithms are proposed

and tested via computer simulation. High compression ratio (> 10 : 1 in most

cases) has been achieved with minor, if any, degradation to the FDOA/TDOA

estimation accuracy. The added computational complexity to the system is

within practical limit.

• The non-coherent method proposed in 3.3 has been proved to be a good alter-

native to the original cross-ambiguity processing based method. In most cases

53
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it yields similar or better FDOA/TDOA estimation accuracy with much less

computational complexity. The limitation of this method is that it can not

work below an observed SNR threshold (∼ 3dB).

• Several methods to shift a signal with fractional delay are thoroughly investi-

gated and a new method—the LMS adaptive FD filter—is proposed and tested.

While it may not be very useful in this application, it could be very useful in

some other applications.

4.2 Suggestions for Future Work

However, this research project is by no means completed. There are some fine-tuning

tasks left unfinished as well as some new research opportunities discovered from our

research:

• Our algorithm is batch based, which means that the whole data set has to be

collected prior to the processing. It would be nice if some on-line processing

schemes can be derived from it because on-line processing is more favorable in

the emitter location system.

• The quantization and coding of the parameter vector has not been thoroughly

investigated. Better quantization and coding can be found and the trade-off

between compression ratio and the FDOA/TDOA estimation accuracy is worth

further investigation.

• We only studied one specific adaptive fractional delay filter: the LMS FIR

adaptive FD filter. The idea of adapting the filter coefficients can be used in
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other kinds of FD filter as well.
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