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Abstract

Computing the cross ambiguity function is essential for TDOA/DD emitter location. Many algorithms
for computing the cross ambiguity function have been presented in literature throughout the years. How-
ever, the existing literature is lacking in providing analysis in how these algorithms apply to emitter loca-
tion, in determining which methods are better under certain scenarios. There has also been no attempt to
discuss the similarities and differences of multiple algorithms or provide an outline of the relationships of
some of these algorithms. Some of these algorithms are very similar to each other and include techniques
to reduce the computational load needed to accurately compute the ambiguity function. Four such algo-
rithms, the “Fine-Mode”, “Fine-Mode” Generic Filter, “Fine-Mode” Generic Filter Frequency Domain,
and Two-Dimensional Cross Spectra, using windowing/filtering and decimation to approximate the am-
biguity function that allow for accurate computation, as well as a “brute force” method are discussed and
analyzed to provide similarities and differences in their structures. Relationships among the five methods
are established and results from testing the five algorithms in an emitter location scenario to determine
accuracy and computational complexity with varying sampling rates, decimation, and Doppler shift are
given. The results show that there is no one clear best overall method that gives the best accuracy and best
computational complexity. Given a particular frequency, sampling rate, and amount of decimation the
best method in terms of accuracy and computational complexity varies. The two-dimensional Cross Spec-
tra method does produce the worst TDOA accuracy among all the methods. Though the findings are
promising, further study is needed for all the methods. Analysis of the results indicates that sources of
error deal with curve-fit errors that can be attributed to the simulation software used and aliasing errors
from the amount of decimation. Suggestions for further study are made and may be used to provide a
roadmap for further work in this area. An objective of this thesis to consolidate into one single place the
information on cross ambiguity function algorithms for five algorithms found in literature and their rela-

tionships between each of them was obtained.
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Chapter 1 Introduction

Multiple algorithms have been developed in order to compute the narrow-band cross-ambiguity
function (CAF). These algorithms share many similarities in their structure (decimation, filtering, etc...).
One application where these existing algorithms are applied is in emitter location. Emitter location uses
techniques in the disciplines of estimation theory and signal processing to find transmitters of a tasked
frequency and distance from a reference point of platforms (receivers) that collect data in order to use
time-difference-of-arrival (TDOA or time-delay) and/or frequency-difference-of-arrival (FDOA or Dop-
pler) to locate the precise location to a desired accuracy. In emitter location, the object is to compute the
cross-ambiguity function as quickly as possible and use it to determine the most accurate position of the
emitter. In existing literature, no detailed analysis has ever been performed that combines analysis of
multiple CAF methods that highlights their similarities but at the same time compares and contrasts these
algorithms for emitter location to provide insight on what algorithm to use, under certain conditions.

In order to provide this information, a detailed analysis on five cross-ambiguity algorithms was
performed. The methods used for the analysis were the Filter Bank, “Fine-Mode”, “Fine-Mode” Generic
Filter, “Fine-Mode” Generic Filter Frequency Domain, and the Two-Dimensional Cross Spectra methods.
This analysis included using mathematical derivations from literature for all the methods in order to indi-
cate similarities and differences between the structures of the algorithms. Only existing algorithms were
used for this analysis. No new algorithms were created and used. The analysis of these algorithms in-
cluded highlighting which methods use data reduction (decimation), differences in filtering, any limita-
tions placed upon the algorithms, and in which domain (time versus frequency) these algorithms are cal-
culated.

After the analysis was complete, relationships between each of the algorithms were established
that link these similarities and differences together. These methods were then tested using two simulated
pseudo-voice signal streams for three different frequencies (HF, VHF, and UHF) in Matlab. Under each

frequency the amount of Doppler shift to one of the streams, along with the sampling and decimation
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rates were varied. The time-delay and Doppler values measured off the ambiguity surfaces for each of the
methods were compared to truth to determine the accuracy results, and the number of real computations
(additions and multiplies) were calculated for each method for each test case and then contrasted to de-
termine computational complexity. A lengthy error analysis was conducted that points out sources of er-
rors, limitations from the simulation software, as well as possible future points of study regarding these
methods.

This thesis provides an analysis that (i) discusses similarities among five existing cross-
ambiguity function algorithms and (i7) test these methods in an emitter location scenario. By testing these
methods under a specific emitter location scenario insights were obtained that can be used to (7) under-
stand the trade-offs in computational complexity versus accuracy and to (i7) determine circumstances un-
der which these methods may be preferred for emitter location. A secondary objective to condense into
one document information on these five algorithms was also achieved.

This thesis consists of five chapters. Chapter 2 discusses background information on emitter lo-
cation and cross-ambiguity functions. Chapter 3 provides the mathematical derivations for each of the
five methods remaining as well as the analysis that highlights similarities and differences between each
method. Chapter 4 gives the relationships between each method and explains the test setup used and
derivation of test case parameters, as well as providing the results and error analysis from the tests con-
ducted. Chapter 5 is the conclusion that includes a summary of the positives and negatives of the five
CAF algorithms examined. The References section follows Chapter 5. The Appendices appear after the
References section and include the Matlab simulation code used for the test cases performed. Appendix
A contains the main driver Matlab script code. Appendices B through G contain code for the Matlab
functions used for calculating the TDOA and FDOA and number of computations for each method or for

helper functions used in calculation of the latter.
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Chapter 2 Background on Ambiguity Function

In this chapter, the background on the narrow-band cross ambiguity function (CAF) is presented
from an emitter location perspective. The background information presented includes a definition of the
emitter location problem and why the ambiguity function must be used. Within this presentation an alter-
native view on how the CAF may be thought of as the inner product of two vectors is given. Terms used
in estimation theory and signal processing such as range and low-pass equivalent signal are briefly dis-

cussed.

2.1 Definition and Theoretical Viewpoint
Emitter location can best be defined by examining Figure 1:

Figure 1 Multiple Platform Emitter Location

An emitter transmits a signal denoted by s(¢). The data collectors represented by airplanes, col-
lect signal data. Each collector is at a specific distance or range away from the emitter. Since the exact
location of the emitter is not known, the distance from each collector to the emitter is not known. The

emitter transmits its signal at some time 7. Since there is a distance between each collector and the emit-
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ter, in some instances thousands of meters, the emitter’s signal s(¢) arrives at the collectors at some time
after time ¢. This received signal is a delayed version of the transmitted signal. Assuming the emitter is
stationary, if the collectors are moving, they each have a velocity with respect to the emitter, so the re-
ceived signals also have Doppler shifts applied to them. In the case of Figure 1, the three received signals
from left to right, including the time delays and Doppler shifts are s(t-t,)¢'™, s(t-t,)¢'™, and s(t-t;)e' ™.
Where #,, t,, and #; represent the time delays and v;, 15, and v; represent the frequency offsets or Doppler
shift of the received signals with respect to the transmitted frequency @ at collectors one, two, and three
respectively.

In order to locate the emitter, TDOA and FDOA are applied to the signal data.

e

= constant |

Va3 =@, @3 | 7 A\ RN
= constant

s(t—t)e’"

Data Link

TDOA
Time-
Difference-
Of-
Arrival

T = 3
= constant

Figure 2 TDOA and FDOA Contours

The time of arrivals of the signal data between two collectors are subtracted to produce a differ-
ence?, thus the acronym TDOA. In Figure 2, the TDOA between collectors two (middle plane in the fig-
ure) and one (left-most plane) is denoted by %, and %; denotes the TDOA between collectors two and
three (right-most plane). The math tells us that a TDOA will produce a hyperbola in which the emitter

lies on. This is fine, except where on the hyperbola does the emitter lie? If a second TDOA was com-
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puted, another hyperbola could be computed. Where these two hyperbolas intersect would be the emitter
location, thus the reason for having %, and 73!

Taking the differences between the Doppler shifts between two collectors will produce a FDOA,
v. In Figure 2, the FDOA between collector two and collector one (left-most plane) is denoted by v,;, and
vp3 denotes the FDOA between collector two and collector three. Like the TDOA technique, FDOA will
also produce a hyperbola. So by having three collectors, the emitter could be located using the TDOA
technique only or the FDOA technique only, but what if both techniques were used together. In the case
of Figure 2 there would be four curves intersecting, thus providing a more accurate emitter location!

By knowing the TDOA and FDOA of the collectors and applying estimation theory techniques an
estimate of the emitter’s location can be obtained. This is not as easy as is described. The emitter posi-
tion is what is desired, but some unknowns make this emitter location problem a difficult one to solve.
The emitter is transmitting its signal. It is received at some time offset from when it was transmitted, but
at what time did the emitter begin transmitting? This is one unknown! The other unknown is the re-
ceived signal is received at some frequency, which due to collector velocity has a Doppler shift on it, but
what frequency is the emitter transmitting at? If the time at which the emitter began transmitting was
known, the time delay at each platform could be computed accurately and the TDOAs could easily be
computed, and the same goes for FDOAs if the frequency of the emitter was known, but since the time at
which the emitter began transmitting and the frequency at which it is transmitting is unknown, how is this
emitter going to be located if TDOA and FDOA cannot be computed?

The answer is simple, correlation. By computing the CAF between collectors one and two and
then two and three, 7%, %3, V51, and V53 can be computed. The CAF can be computed by taking the cross-
correlation between the received signals at two platforms. The cross-correlation takes one of the received
signals at one of the collectors and it delays it a certain amount. That delayed signal is then slid a certain
amount in time with respect to another received signal, from a different collector, which is kept fixed in

time. At each of the slide amounts, the samples from the fixed and shifted signal are multiplied and
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summed together, producing a number. The maximum number over the entire duration of the shifted and
the fixed signal is the most the two signals match. If a cross-correlation is performed in two-dimensions,
with the two dimensions being TDOA and FDOA, a peak will be produced. The received signals are the
same signal only with a different time delay, amplitude, and Doppler shift. The point where the maxi-
mum value from the cross-correlation occurs (the peak) will have a corresponding TDOA and FDOA
with it. It is this TDOA and FDOA that is of interest. This TDOA and FDOA are the ones that we are
trying to calculate!

To be able to obtain the received signals in a form to be able to cross correlate them, some ma-
nipulation must be performed. The first manipulation is to generate the complex envelope for the re-
ceived signals. To do this, first examine what types of signals the collectors intercepted. The signals that
were collected by the collectors were only collected for the finite duration of time 7. This makes the sig-
nals time-limited. Recalling properties in signal processing theory, time-limited signals produce signal
replicas of the signal in the frequency domain. The data collected by the collectors was real data. This

will produce spectra pairings at both positive and negative frequencies in the frequency domain

X rr(f)

/) [\

Figure 3 Frequency Domain View of Received Signal

To generate the complex envelope, modulate the positive or negative frequency band to zero by
multiplying by a complex exponential, ¢“in the time domain. This multiplication shifts the spectra in the

frequency domain. The sign of the jo term of the modulating complex exponential is determined on
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whether the positive (sign is negative for a shift of the spectra down in frequency) band or negative (sign

is positive for a shift of the spectra up in frequency).

X (f)

/AN

Figure 4 Frequency Domain View of Received Signal Modulated to DC

For purposes of this paper, the positive band is shifted towards zero. Once the positive band is
shifted to DC or zero, a low pass filter filters out all of the other spectral bands/replicas. This now has

produced a signal that has a bandwidth from —B/2 to B/2 and is centered at frequency equal to zero.

X9 pe()

B/2 B/2 f

Figure 5 Low Pass Equivalent (Complex Envelope) Signal

This is called the low-pass equivalent (LPE) or complex envelope. Generating the complex envelope has
advantages. Using complex models provides insight that working with real signal models would not al-
low. It is this insight that will allow us to exploit the ideas needed to be able to produce the CAF. An-

other advantage of using the complex envelope is that because the signal takes up the frequency band
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from —B/2 to B/2, the signal can be sampled at F; > B Hz. If the real signal model was used the sampling
rate would have to be 2B. Having to sample at a lower rate requires less time and less calculations.
The second manipulation comes in the form of applying the time delay and Doppler imparted to

the collected signal.

T :

L] R(t) 1

Figure 6 Model of Transmitter (Emitter) and Receiver (Collector)

In Figure 6 the emitter from Figure 1 is the transmitter (Tx) and a collector from Figure 1 is represented
as a receiver (Rx). The general time delay, also called propagation time, denoted by #(¢), is a function of
time. This value calculated by taking the distance from the emitter to the collector and dividing it by the

speed of light is given by

t(t) = —, (1)

where ¢ is the speed of light constant. The general range is denoted by R(7). Taking the Taylor series ex-

pansion of the distance expands it into the following form

2
R(t) = R0+vt+%+..., )

Emitter location is done for some specified observation interval. This interval is usually small in time for
a variety of reasons; mainly the emitter does not usually transmit for a continuous period of time but for
short durations. Therefore, since the observation interval is small, it is assumed that the velocity is rela-
tively constant over this observation interval. From this assumption, the third, and higher terms of R(¢)

approximate zero and can be ignored. This leaves R(¢) as a function of R, and v
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R(t) = R, +vt. 3)
Applying the time delay and Doppler to the received signals yields a general form as

[R, +Vit] R,

). @)
C

5, (1) =s(t - )=s([1-—]r-
C

This signal is the received band pass signal; it has not yet been shifted to create the LPE (complex enve-
lope) signal. What is interesting about this signal is the [1 —V/c]¢ term alters the received signal. Based
on the value of Doppler, Vv, the signal is time scaled. In the time domain, the received signal is compressed
if vis negative, or the signal is expanded if vis positive.

Also, by examining the above equation for s,(f), the time delay has been simplified to a constant

(no longer is it dependent on time ¢ as was previously shown). The range, R, can be calculated by

2 2 2
R, = (X=X, +(Y-Y,) ' HZ~Z,)" . )
where X, Y, Z are the coordinates of a collector at a specific time of interest, and X, Y5, Z are the coordi-

nates of the emitter. The problem with the above equation can easily be seen. The emitter location is not

known! Simplification cannot be done. However, letting 7, = R,/c makes the equation for s,(f) become

s, (1) =s([1 —g]t —17,), (6)

where (6) is a simpler form to view than (4).
To understand how the time delay, Doppler, and complex envelope all come together, the analytic

signal must be analyzed

5(t)= E(t)e """, %)
where E(7) equals s(£) and &1%"?®! is the modulation required to produce a LPE (complex envelope) sig-

nal. Applying the Doppler shift and time delay to the analytic signal yields:
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v v
~ ~ { C([]—f]t— )+ ([1_7]1‘_ )}
5.0 =F[1 =LY —v) = E(L-LJ—z e o e T
€ c

®)
Analyzing the [1 — V/c], it can be seen that the term [1 — V/c] = 1. This is because the speed of light con-
stant, ¢ approximates 3x10® m/s. Any velocity substituted for v is always << 3x10° m/s. Performing the
division of V/c will produce a result that = 0. Now if it is assumed that £(f) and ¢(¢) vary slowly enough
for the range of Doppler of interest such that they remain constant over the observation interval, then E(7)

can be approximated as

E([l—%]t)zE(t), )

and ¢(¢) can be approximated as

o1 —E]r) ~ (1) 10)

This is called the narrowband approximation. Note that this approximation can be used if the signal of
interest that the emitter is transmitting is indeed a narrowband signal. For the purposes of this paper, it is
assumed that the transmitted signal is narrowband. If the signal is a wideband signal, this approximation
cannot be performed!

Using the narrowband approximation, the analytic signal model becomes

vt

v
Jlot—o, (;)f —o T, velt-1,))} — E(f _r )ej(p(t_z-d)e— jo T, e— Jo, 7ejwct
d

s@=E(t—-1,)e

b

(11)
where E(t.7;)¢”" % is the received signal’s LPE (complex envelope) signal time-shifted by 7, & is the

carrier term, ¢“% is a constant phase term and 7"

is the Doppler shift term. If the analytic signal is
simplified by letting @=w. 7, , @, = V/c,and 5 (¢ - 1) = E(t - 7,)¢ ™ * then the narrowband LPE signal

model becomes
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5.()=5§(t—1,)e’ """ (12)
To estimate Doppler and time delay, first consider a continuous time view, for simplicity. This paper as-
sumes that the signals mentioned in the next chapters to try and explain the procedure for estimating Dop-
pler and time delay are all LPE signals, but § is not used. Given LPE signals s,(7) = s(f) and s(¢) = s(z-
7,)e %’ for t € [0,T], compute 7 (time delay) and @, (Doppler). One way to view this is to visualize
vectors in two-dimensional vector space. In specific consider two vectors, V; and V; and let them be

separated by some distance, call id 6.

Figure 7 Two-Dimensional Vector View of Cross Correlation

The two vectors are shown above in Figure 7. Let the goal be to measure ;. One way of finding 6, is to
keep ¥, fixed and rotate V;, clockwise by some small increment8. For each value of €, compute an inner

product between the two vectors by
(V.V.() = 4(®). (13)

This will produce a result that will be a function of 8. Notice what value produces the largest inner prod-
uct. The maximum value of 4(6) occurs when V; and V; are directly on top of one another or when 8

equals ;. So if A(6) is plotted over all values of &, the maximum would be at the peak of 4(6)! This
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sounds very familiar to what the CAF does. In fact the inner product just described is mathematically
equivalent to the CAF!

To represent the CAF mathematically, first, let s, A7) = &“s,(t+7). All that has been done is taken
s2(¢) and delayed it in time by 7and shifted it in frequency by some amount @. So the new form of s, (f)

becomes

S, () =s(t—1, +1)elte’ T " (14)
Performing the inner product obtains
A@,1)=(5,0)s,,,(1)). (15)
Using the definition of inner product, 4(@,7) can be rewritten as
T
A(a),T)=IS1(t)Sw,T(t)dt_ (16)
0

Upon substituting the value for s, (#) and taking the complex conjugate, the following equation for 4(®,7)

is given by
_ £ o-w,) jo
A(w,7) = £S1 (t)s(t—7,+71) e’’dt (17)

where o= -w.7,. From the inner product view, |4(®,7)| has a maximum at w= @), and 7= 7, Calculating

the maximum value produces
T - t T 5
(@, 7)|=|[s()s(t—7, +7,)e’“e " d| = [|s(¢t)| e’*dt = BE, = Energy ,
0 0

(18)
where noting that ¢“is a constant and is represented by B (not bandwidth). By finding the peak from the
CAF, the energy of the signal can be calculated! The process for computing the CAF is becoming de-

fined.
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To compute a CAF, take two signals. Each signal will be from a different collector. On the sec-

ond signal, impart a delay and a Doppler Shift. Then take the inner product of the two signals for all the

time delays and Dopplers of interest. What comes out is the CAF

A peak will result, and this peak will be centered on the true time delay and the true Doppler.
What is interesting about the CAF is that not only will it provide the time delay and Doppler

measurements, but it also provides insight into the characteristics of the time delay and Doppler. Start

Figure 9 Example of Output CAF Surface
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with examining the time delay. First begin by considering the case when @ = @, (the CAF has been cen-

tered on the Doppler value, but not time delay).

|A (@,,7)]

width ~ 1/BW

Figure 10 Cross-Section of CAF in Time delay Direction

This CAF is represented mathematically by

T _— .
| 4(@,7)| = |[s(0)s(t — 7, + T)e’"dl|. (19)
0

By examining the right-hand side of (19), the TDOA is nothing more than a correlation between two sig-
nals. The most interesting insight that can be taken from Figure 10 is that the slice of the CAF in the time
delay direction shows that TDOA or time delay peak width is based on inverse of the bandwidth of the
signal the emitter transmits. The CAF provides information on the signal that was transmitted. If the
bandwidth of the signal is small, the CAF peak in the TDOA direction will have a wide lobe, where if the
bandwidth of the transmitted signal was wide, then the peak in the TDOA direction will be a sharp,
skinny peak.

Similar information can be obtained from the Doppler part of the CAF. To look at the Doppler,

let 7= 7, (TDOA portion of CAF peak has been found, but not Doppler). This CAF is as follows:
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IA(0,7,)]

width ~ 1/T

Figure 11 Cross-Section of CAF in Doppler Direction

This CAF is mathematically represented by

[A(w,7)|= 1 |S(t)|zej“ejwdt e d|. (20)

The right hand side of the (20) depicts that the Doppler or FDOA of the CAF is nothing more than the
Fourier Transform of the complex sinusoid ", with |s(7)|*¢/“ being a window function! The most impor-
tant aspect gleamed from the FDOA slice of the CAF is that the width of the FDOA peak is inversely
proportional to the time width or integration period of the signal. The longer the integration period (i.e.
the more data applied to the CAF) the sharper and narrower the peak will be. A very short integration
time will yield a wide lobe in the FDOA direction of the CAF. There is a tradeoff here. The signal of
interest collected is usually on for a short period of time and therefore is collected for that short period or
for even a shorter period of time. So to get the best FDOA resolution, most of the signal has to be applied
to the CAF, so the integration time is as long as possible. This has the possibility to create many calcula-
tions.

The equations given for |4A(®, 7)|, have been for continuous time. Since for continuous time, there
is an infinite number of points to process, the CAF, can only be computed for discrete values of time de-
lay and Doppler. To compute the discrete values of time delay and Doppler, some a priori information is

needed which includes the max/min Doppler (from largest expected velocity difference) and max/min
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time delay (from largest expected range difference). The max/min values allow for computation of a pre-
cise number of Dopplers and time delays that are of interest to use in computation of the CAF. Two other
important values needed are the delay spacing (taken from expected/measured signal bandwidth) and the
Doppler spacing (taken from the observation time interval, 7). These values dictate how fine a grid of
time delays and Dopplers that will be used in conjunction with the number of time delays and Dopplers.
Once the number of delays, Dopplers, and bin spacing for both are calculated, an easy approach to calcu-

lating the CAF is to view it as the Fourier Transform of lag products. Recall that
T - _ . .
A(w,7)=[5,(t)s,(t+7)e’"e"dt 1)
0

This is nothing more than the Fourier transform of the products s(¢) and s,(¢), except s,(¢) has a time de-

lay associated with it, thus the term lag products. If the lag products are defined as

f.@)=s,(t)s,(t+7). (22)
Then for each time delay, 7, of interest, 4(@,7,,) = F{fz(£)}. Where F{f,,(¢)} is the Fourier transform of

the lag products. For the corresponding discrete time signals, f{¢) becomes

Juln]=s\[nls,[n+m], (23)
where 7 is the sample index and m is the delay index, which is synonymous with 7, in the continuous time
world. The delay spacing is set by the sampling interval. The sampling rate is chosen so as to match the
signal bandwidth according to the Nyquist rate. This involves having the signal data sent through an A/D
converter and then performing preprocessing of the output. This is done for both streams that are to be

correlated.
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The pre-processed signal data is then interpolated by a factor of L and then filtered to produce the proper

delay spacing. The two discrete time signal are then used in the computation of the CAF

‘|A((’0d9ﬁc)‘

4

o ,/'%

Figure 13 CAF Computed in Discrete Time

v

As seen in Figure 13, the dots and triangles represent the time delay and Doppler values that the CAF was

computed over in discrete time. The solid line connecting the dots and triangles represent what the CAF

looks like in continuous time.
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Chapter 3 Computationally Efficient Methods

This chapter will develop several computationally efficient methods for computing the CAF. The de-
velopments are structured in such a way to clearly show relationships between methods; readers whose
interest lies mostly in seeing the final resulting methods rather than the interconnected developments can

skip immediately to Chapter 4.3.

3.1 Fourier Transform of Lag Product Viewpoint

The Cross-Ambiguity function can be viewed as a Fourier Transform of lag products. To see this
viewpoint, start with the DTFT version of the ambiguity function. In practice the DFT form would be
used, but here the DTFT form simplifies notation. The ambiguity function to be computed is given by

—j2mvn

N-1 —j2mn
AT v)=) snls[n+7le © (24)
n=0
where 7 is an integer and represents the time delay over the range from 0 <z < T'and v is a real variable
that represents Doppler. The * denotes complex conjugate. Though the equation in (24) is mathemati-
cally correct, the ambiguity function that is computed using this equation is a “brute force” method where
no data reduction is performed. Though this method is a “brute force” method, it may be advantageous in
some applications.
The sl[n]s;[n + 7]term from the summation in (24) is called the lag product, where the lag is the

time delay of amount 7 between s; and s,. The product arises from the fact that s, and s, are multiplied

together. By letting the lag product be equal to
r[n]=s[n]s,[n+7], (25)

and substituting it back into (24), it can be seen that the ambiguity function is nothing more than the

DTFT of the lag product
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—j2nvn

N-1 —j2mn
AT,v)=Y rlnle * (26)
n=0
When computing the DTFT in (26) directly, the DTFT will be over the range from -F/2 to F/2 (standard
range for a DTFT). However, in virtually ever case in practice, the maximum Doppler shift is << than
F/2. So when the DTFT is implemented using the DFT, the majority of the DFT points that are com-
puted are not even in the desired range of Doppler. Therefore, a method is desired to find a more efficient
way to compute (26), which will be shown below. The first step is to simply re-index the sum in (26)
using n =mlL+p, where m=0 ... M-1 and p =0 ... L-1. To ensure that M blocks are created, »[n] must be
made to be a length divisible by L; this is done by zero-padding r[#] to the desired length. The value of L

is a parameter of the algorithm that can be chosen. The result in (26) now becomes

M-11-1 —Jj2mv(mL+p)
Awv)=> > r[mL+ple " 27)
m=0 p=0

Separating the complex exponential in (27) and rearranging terms gives

M1 —j2nvmL -1 —j2rwp
A(T,V) = Ze ks ZF,[mL + p]e % . (28)
m=0 p=0

To simplify this further, note the following. The Doppler model states that

f=r5-, (29)
C

where fis the Doppler shift in Hz, £, is the frequency of the signal of interest in Hz, v is the velocity of the

collection platform, and c is the speed of light constant. Assuming an extreme situation, that v is at most
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1000 m/s (supersonic aircraft) and £, is at most 10 GHz, then the dynamic range of the Doppler shift be-

comes

=10 10° =0.1 MHz
BRPS S , (30)

which is much smaller than the bandwidth of the typical signal centered at 10 GHz. Since the collected
signals are complex envelope, the sampling rate (F;) of either collected signal (s or s,), according to Ny-
quist’s sampling theorem, is 10 GHz. Comparing the maximum Doppler shift to Fy, the F is 10’ times

greater than the Doppler shift, . Then the complex exponential on the inner summation of (28) is

-7 -5
o /2m0L

) 3D
for values of L up to quite large values. Therefore, the approximation can be made that
—j2mp
e =l,p=0,,.L-1, (32)

which says that if L is selected such that L << F/2ntv;,,,, where V,,,, is the maximum expected Doppler
shift, an upper bound can be placed on the block size L based on the sampling rate and the maximum ex-

pected Doppler. This simplifies the ambiguity function in (28) to

M—1 —J2mmL o

Azv)y=Ye " > .r[mL+p] (33)
m=0 p=0

Although not discussed, for a method of determining A( 7, V) without making the approximation in (32) see
Section 5.7.2 on page 153 of [9].
Noticing that the lag product of the inner summation in (33) is multiplied by nothing by ones, this

gives
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M-l @ L-1
Awv)y=Ye © Dlr[mL+pllp], (34)
m=0 p=0
where 1[p] is defined as:
1[n] I, n=0,1,...,L—1
nl=
0, otherwise ’ (33)

where L is the chosen block length. After a change of variable in the inner summation of (34), (34) be-
comes

—Jj2mmL g

A(T,v)= Ze Y nnllin-mL], (36)

n=mL

This is exactly the result proposed in Section V-A of [1] for “fine mode” computation, although the
method of development was quite different (it was based on rough arguments related to filtering and
decimation). The result in (36) can be viewed as a three step process for each delay value z: (i) form the
lag product r[n] given in (25), (i) apply a filter of length L — as in the inner summation of (36), and (iif)
compute the DFT of the filtered sequence — this DFT would play the role of the DTFT in the outer sum in
(36). The length L filter can be viewed as filtering using a rectangular impulse response of length L,
given by (35) and then decimating by a factor of L; note that here the filter length and the decimation fac-
tor are the same. In practice the inner summation in (36) can be defined as:
mL+L—1

D nlnl, (37)

n=mlL
which is the resulting output of filtering »[n] using (35) and then decimating by L. The decimation factor
L is computed as L = F/V,,,,, where, as mentioned previously, F is the sampling rate of the received sig-

nal and v, is the maximum expected Doppler shift expected on the received signal of interest. Thus by

substituting (37) into (36), (36) can be re-written as
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F,

s

A(z,v)= Y Filmle

m=0
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(38)

Note that because the filter length equals the decimation factor, each output of this filter and decimation is

computed by moving the length-L filter ahead by L samples. This results in the non-overlapped blocks of

(36).
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Figure 14. Computation of Ambiguity Function Using '"Fine-Mode"

Used with Permission From [10]
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Procedures:

1. Determine the number of time delays and Doppler shifts of interest.

2. Design an “all-ones” filter 1[n] based on the number of Doppler shifts of interest. Length
of the filter (L) has an upper limit of Fy/2 2v4x, Where vyqy is the max Doppler shift
frequency.

Set the decimation rate D = L.

Zero-pad si[n] and sy[n] to a length that is divisible by the length of 1[n] (L).
Determine the number of blocks M = length(s1[x] )/L.

Compute each Inner Sum and take the DFT

VI

for z=0to T
for m =0 to M-1
/* Get data for this block */

mL+L—-1
r[m]= Zr,[n]l[n —mL] , wherer,[n]=s,[n]s,[n+7]is the lag product

n=mL

Zero-pad 7,[m] to get appropriate Doppler bin spacing
end for on m

K-1 —j27kmL
AT, k)= ) rlmle *  fork=0,1,2,....K

m=0

/* A(T,k) is nothing more than the DFT of the filtered and decimated lag- product */
end foron 7

Figure 15. Procedures for Computing the Ambiguity Function Using "Fine-Mode"

The method in (38) uses an “all-ones” rectangular window. This is not the most optimal filter to
use in certain applications, but can often be used successfully despite its poor qualities as a filter. For

example, assume that for the correct time delay (7), the ambiguity surface looks like the following
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[A(T, V)|

Spectrum of
Rectangular Filter

Ambiguity Surface
Y
—L

/L o

Figure 16 Aliasing from Rectangular Window

Where the ambiguity surface is centered on its true Doppler (), and the Doppler range of interest is from
+/- W/L. The sinc function shown in Figure 16 is the DTFT of the rectangular filter that filters the lag
product. It does not go to zero outside of the Doppler range of interest. Such, there is aliasing as parts
outside the Doppler range of interest get folded back in after decimation. To see this with a more specific
example, assume that the length of the rectangular filter is L = 100, the decimation rate M = 100, the
Doppler range of interest is -5 kHz < v < 5 kHz, and the sampling rate of the signal F's = 1 MHz. The fre-
quency response of this rectangular filter is that of Figure 17. Zooming in to view the passband of the
rectangular filter, it is clear from Figure 18 that the passband covers the Doppler range of interest. Afte.r
decimating by M, frequency shifted replicas of the filter appear at multiples of F/M = 10 kHz. These rep-
licas are aliased back into the passband of the rectangular filter centered at f'= 0 Hz, as is seen in Figure
19. Even though the rectangular filter is not an ideal low-pass filter, it has a nice property that all the
nulls from the aliasing are in the center of the passband or equivalently at the center of each Doppler bin

[10], which minimizes the impact of the aliasing.
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Figure 17 Frequency Response of a Rectangular Filter of Length L = 100.
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Figure 19 Aliasing of Rectangular Filter

Used with Permission from [10]
In most cases, a more generic filter that is specifically designed for the Doppler range of interest
is desired. This design should be carried out in the frequency domain to produce an optimal generic filter

that has a flat pass-band and a more narrow transition band, thus to avoid the effects of aliasing.

|A(T, V)|

Spectrum of

Ambiguity Surface Generic Filter

Figure 20 Improved Lag-Product Filtering Using More Appropriate Filter



35

As can be seen in Figure 20, the filter is specifically designed for the Doppler range of interest, since the
ambiguity surface is zero outside of +/- 77D. This minimizes any aliasing that would occur. The decima-
tion rate, D, is used in this instance instead of L because in the “Fine-Mode” algorithm from [1], D was
equal to the filter length. Since a more generic filter is being applied, this constraint no longer applies.
The decimation rate, D, must satisfy D < L.

The filter from Figure 20 is an “ideal” filter and is impossible to create because it is non-causal.

IA(T, V)|

Spectrum of
Generic Filter

Ambiguity Surface

S

-n/D D
Va o o

Figure 21 Generic Filter Used In Practice

In practice, an approximation to the rectangular filter such as in Figure 21 is used. = As shown in Figure
21, the approximation to the rectangular window has a flat pass-band over the Doppler range of interest
and a transition band that extends outside of the Doppler range of interest. This generic filter can be de-

signed to meet any requirements.
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Figure 22 Generic Filter with Pass-Band Ripple

In fact, the requirements on the filter in Figure 21 can be relaxed to include ripple in the pass-band (see
Figure 22), be longer in length, and/or have a much different transition band than the one shown in Figure
21. In all of these cases, errors are introduced because of pass-band ripple and/or the “decay” in the tran-
sition band. These errors need to be and can be corrected over the specific Doppler range of interest.

To fix these errors, recall from (26) that A(z,V) is the DTFT of rn].

7. [7] A(z,V)
DTFT -

Figure 23 Block Diagram of DTFT of r|n]
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To apply the generic filter, »[n] is convolved with A[n] as shown in Figure 24.

Felel ) 7, [n]*hln)
— I Filter h[#x] DTFT ——
A(r,v)
A(r,v) H(v) A(t,v)
Figure 24 Lag Product Convolution with Generic Filter
After the convolution in the time domain, the result in the frequency domain is
A(z,v)=HWv)A(z,v), (39)

where H(Vv) is the DTFT of 4[n] and A(z, v) is the DTFT of »{n]. Recall from Figure 21 that H(v) is >0
over the Doppler range of interest ([-77D, #/D]). Therefore, over the Doppler range of interest there exists

a 1/H(v) such that

A (7,v)

A(z,)= e

(40)

The result in (40) accounts for and fixes the aliasing error due to the transition band of the filter 4[n] ex-

tending outside the Doppler range of interest and is a result presented in Section III of [2]. The result
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here is no different than the result obtained in (38). The lag product (»{n]) is still filtered using a FIR
filter and is then decimated by a factor D. However, the filter used is a more generic filter that can be any
length, with filters approximating the “ideal” filter being more complex due to the increased number of
taps. With the use of the generic filter /[#n], the decimation factor is no longer limited to being equal to

the filter length; it is now < Fy/ V.

D=4,L=6

X, X, X3 Xy X5 X X, Xg o X

Figure 25 Result of Decimation Factor > Filter Length

If the decimation factor is greater than the filter length, this causes problems in that samples are skipped,
as shown in Figure 25 where the filter length is 4 and the decimation factor is 6. Care should be made to

assure that the decimation factor is < than the filter length.
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Figure 26 Computation of Ambiguity Function Using "Fine-Mode" Generic Filter
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Procedures:

1. Determine the number of time delays and Doppler shifts of interest.

2. Design a generic filter 4[n] based on the number of Doppler shifts of interest.
Length of the filter (L) has an upper limit of F/2 2v,ax, Where Vi is the max
Doppler shift frequency.

Set the decimation rate D = L.

Zero-pad si[n] and s;[n] to a length that is divisible by the length of h[#n] (L).
Determine the number of blocks M = length(s1[#] )/L.

Compute each Inner Sum and take the DFT

v W

for tz=0to T
for m = 0 to M-1
/* Get data for this block */

mL+L-1
r.[m]= Z r.[nli[n—mL] , wherer,[n] = s,[n]s,[n+T]is the lag product

n=mL

Zero-pad 7,[m] to get appropriate Doppler bin spacing
end for on m

K-1 —j27kmL
Az, k)y=Y Flmle X  fork=0,1,2,.. K
m=0

/* A(T,k) is nothing more than the DFT of the filtered and decimated lag-
product */
end foron 7

Figure 27 Procedures for Computation of Ambiguity Function Using "Fine-Mode' Generic Filter

After filtering the lag-product, the magnitude and phase of the lag-product will be modified.
Having a modified phase is undesirable because it distorts true time delay and Doppler calculated off of
the ambiguity surface. To correct for the phase delay, the phase delay must be subtracted off from the
phase measured off of the ambiguity surface. Therefore, the phase delay has to be known. This makes
the generic filter be a linear phase filter for the ability to have a constant phase delay, and from properties
of linear phase filters, the generic filter must be symmetric [2]. For a second constraint, recall that the

reason for filtering the lag-product was to narrow the Doppler range down to some range of interest, be-
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cause the original contains unneeded frequencies. Therefore, the generic filter outside of the Doppler

range of interest the filter must be zero [2].

To be able to filter the lag-product (r{#]), a discrete time convolution needs to be performed. How-
ever, recall that convolution in the discrete time domain gives rise to multiplication in the frequency do-
main. Instead of performing the convolution in the discrete time domain, it would be more efficient to
compute it in the frequency domain. To see this, start with (36) but replace the “all-ones” filter 1[n] with

the generic filter 4[n], where A[n] is defined as

arbitrarily, n=0,1,...,L-1
h[n]= : (41)

0, otherwise

where L is the chosen block length. Since a generic filter is being used, the decimation factor applied af-
ter filtering may be <than L. Let the decimation factor be D < L. Applying this decimation factor and
substituting (41) into (36) the following is obtained

—J2mD -]

A(z,v) = ze % er[n]h[n —mD], (42)

n=mD
Substituting (25) into (42), (42) becomes

—j2mmD . pir-

M-
A(T,v) = Z e B Z s,[n]s;[n+T[n—mD]. (43)
m=0 n=mD

Rearranging terms in (43) and arbitrarily grouping the A[n-mD] term with s,[n] gives
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M-1 —J2mmDnipg

A(T,v) = Z e & ZSI [n]h[n—mD]s,[n+17]. (44)

n=mD
Recall the limitation that was placed on (44) where 4(t,v) had to be zero-padded to ensure it was a length

divisible by L. The number of zeros that need to be added to the end of the sequence given the filter

length L, decimation factor D, and the number of signal samples N can be verified to be

number of zeros =z(L,D,N)= L+ D[%—‘ -N (45)

where |_ —| means take the ceiling of the division. The number of blocks needed is simply

number of blocks =b(L,D,N) = [NIS L—‘+ 1 (46)

To efficiently compute the convolution in (44), the computation should be done in the frequency domain,
as is discussed in Section 5.6 on page 148 in [9]. In order to do this, arbitrarily group 4[n] and s,[#] to-

gether to get

Sulnl=s,[n]h[n—mD]. (47)

Substituting (47) into (44) gives
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M1 —J2mmD i1

Azvy=>Ye = > fonlsy[n+7]. 48)

m=0 n=mD

Since it is desired to compute the inner sum of (48), let

mD+L—1
wlml= ) f,[nls;[n+7], (49)
n=mD
where wm] is the inner sum of (48). Instead of viewing 7 as fixed and m as variable as in (49), the roles

can be arbitrarily switched so that m is fixed and 7is variable. This yields a correlation of finite duration

signal streams f,, and s,

mD+L-1

w,[7]1= D f,[nls;[n+7], (50)

n=mD

Note that if the decimation rate D is < the filter length L, there will be overlap between the blocks. Since
it has been established that it is more efficient to compute a convolution in the frequency domain, the

DFT must be used as is explained in Section 5.6 of [9]. This leads to the result
w [7]=IDFT{F, [k]S,[k]},0<7<T,0<k<2L-1,T<2L,

(51)
where k is DFT indices for both F,, and S,, and F,,[k] and S;[k] are the DFTs of f,,[n] and s,[n+1], re-

spectively for the appropriate block. The DFT can be used here even though we have a correlation and not
a convolution because the both convolution and correlation can be computed in the frequency domain.
For correlation in the frequency domain, there is a multiply and a conjugation, whereas for convolution,

there is only a multiplication.
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The equation in (51) states a lower limit on L. It can be viewed as either 7'limiting the length of L
or as the filter length of L limiting 7. The limit is L > 7/2, where T is the maximum number of time de-
lays. This maximum number of time delays works with the maximum number of Doppler shifts to put an
upper (see (32)) and lower bound on the filter L, unlike the “Fine-Mode” algorithm in [1] which did not
have a lower bound. This puts a constriction on the usage of this method in that it may not be the ideal
method for a large number of time delays.

To ensure that the correlation in (50) is linear and is not circular, proper zero-padding must be
applied. Since the correlation is done over a filter length L for all blocks, both streams (f,, and s,) for a
particular block will always be length L, therefore the proper zero-padding for every block is 2L-1, as is
discussed in Section 4.7 of [9]. To complete the computation of the ambiguity function, a DFT over the

Doppler frequencies of interest must be computed for each block of W _[7]computed in (51). The result

m

in (51) is the result form the 72 method from Section III of [2].

Zero Pad DFT

s,[n],mDsnsmD+L-1

=0
=

]
IDFT =

s,ln]
2 DFT & Complex
—  Zer0 Pad Conjugatg

Sylk]




Figure 28 Discrete Time Correlation in Frequency Domain for the m™ block
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Procedures:

1. Determine the number of time delays and Doppler shifts of interest.

2. Design the generic filter 4[n] based on the number of time delays and Doppler shifts of
interest. Length of the filter (L) is bounded by [7,F/2 2Vina], where T is the max number
of time-delays and vy, is the max Doppler shift frequency.

Chose the decimation rate D < Fy/Vyax

Zero-pad si[n] and s»[n] to a length that is divisible by the length of 4[n] (L).
Determine the number of blocks M = length(s;[n] )/L.

Compute each Inner Sum and take the DFT

SRV

for m =0 to M-1
/* Get data for this block */
forn=0to L-1
f.[n]l=s,[n+mD]X h[n—mD]
S2,m[n] = S2[n + mD]
end for on n

Zero-Pad f,,[n] and s ,[n] to 2L-1

/* Take the DFT of f,,[n] and s3 ,,[1] */

2L-1 —j27kn
F,[k1= ) f,[nle **
n=0
2L-1 —j27kn

S2,m[k] = ZSZ,m[n]e 2

/* Multiply F,[k] and S, ,,[k] together */
W, [k]=F, k1%, ,[k]

m

/* Take the IDFT of W,,[k] */
2L-1

w,[7]1= D F,[k]xS,,[k],0<S7<T,0<k<2L-1,T<2L
k=0

Zero pad w,[7]to ensure correct Doppler bin spacing
end for on m

—j27kmD

M -1
A(T,k)=>Y W, [rle "
m=0

Figure 31 Procedures for Computing Ambiguity Function Using "Fine-Mode' Generic Frequency Domain
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Another way to reach the result in (51) is to use Parseval’s theorem. To see this, first start with the result

in (50) and let the proper zero-padding be performed such that linear correlation will be performed. This

yields
mD+2L-1 .
w,r]= D f,[nls;[n+7]. (52)
n=mD

Using Parseval’s theorem, (52) becomes

N mD+2L-1 . 1 2L-1 . j2mct

w,lcl= > fo.lnls;[n+7]= o > F,[k1S;[k]e > (53)

n=mD k=0

The result in (53) is nothing more than the IDFT of F,,[k] S; [k], thus the result in (53) and (51) are

equivalent.

3.2  Filter Bank Viewpoint

Another method for computing the ambiguity function is to start with (24) from Chapter 3 Sec-
tion 3.1. The result in (24) looks like the linear convolution defined in Section 4.7 of [9], except there is a
“+”1n 5, in (24) instead of a “-*“ sign. Recall that convolution and correlation are identical except that
before convolution is performed, there is a “pre-flip”. If the data in (24) is “pre-flipped”, the result in (24)
becomes

—j2nvn

N-1
A(Tv)=) snls;[n-7le (54)
n=0

If s, and s, are convolved, then s, will be flipped about n = 0, thus giving the correlation in (24). Combin-

ing, s; and the complex exponential from (54) gives

N-1
A(T,v)=) h[nls;[n—1] (55)
n=0
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where h,[n] =s[n] e . The result in (55) is nothing more than a convolution between a signal (s;)
and a FIR filter (s;), where s, are the tap values of the FIR filter that are dependent on the frequencies in
v. The s, signal is effectively passed through the filter (s;). This result is same as from Section II of [2].
Although this method is computed by “brute force”, it may be suitable for some situations. However,

there is no decrease in complexity due because no decimation or approximation is performed.

3.3 2-D DTEFT of Cross-Spectra Matrix

Often it is desirable to do frequency domain processing on signals, in order to determine if there
is interference that must be removed [11] [1]. This is very important when it comes to computing the am-
biguity function because if there is any interference, the TDOA/FDOA measurements measured off the
ambiguity surface will not be accurate, thus causing the emitter location to be incorrect. In a precision
emitter location system, this yields undesirable performance. Therefore it is desirable to compute the
Fourier transform of each signal using a window which allows for spectral analysis, as is shown on page
78 of [8] [11].

The “Fine-Mode” Generic Frequency Domain method discussed in Section III in [2] allows for
some spectral analysis, but only for one signal. The filter used for that method can be thought of as a
window applied to signal blocks of one signal stream prior to computing the DFT(see (47) - (51)) [11].
What is desired is to find a balance between requirements placed on the window (spectral analysis) and
the decimation requirements (decimation factor D). The first step in this analysis is to start with (24) and
zero pad s, and s, appropriately such that the sum in (24) can be broken up into M non-overlapping blocks
each of length L as was done in (27). Recall that ML > N and L << N. Substituting (25) into (27) and in-

troducing a change of variable in the inner summation produces

—1 mL+L-1 —J27mpy

A(zT,v)= D silpls;lp+te & (56)

m=0 p=mL
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Now extend the M signal blocks of length L in length N signals as follows

(] s,n], forn=mL,mL+1,...,mL+L-1
s, [n]=
b 0, otherwise

(] {sz[n], forn=mL,mL+1,...,mL+L-1" (7
S2,m =

0, otherwise

where m is the block index from (56) and n goes from 0 to N-1. Using the signal blocks from (57) allows

an approximation for the A(zv) to be made

N M-IN-I —j2my
A(t,v) = A(t,v) = ZZslvm[n]sz,m[n +7le (58)
m=0 n=0

The approximation (58) results from the fact that the non-overlapping signal data blocks have gaps in the
two signal streams after they are multiplied together. This is different from (56), where no gaps in the
signal data streams exist after they are multiplied. Another way to view this is that in (56) a global shift
scheme is used to impart the specific time delay, 7, on the s, signal by zeros into a block and signal sam-
ples from that block to the next block (block-to-block shifting). In (58) a local shift scheme is used based
on the partitioning that was defined in (57) such that no block-to-block shifting is performed to impart the
time delay. To impart the time delay, 7, in (58), 7zeros replace 7signal samples in the block of L signal
samples. Thus as the time delay becomes larger and larger, less and less data is correlated because data is
being lost as zeros are being inserted . To minimize the impact of this “block-shift loss”, the maximum
time delay should satisfy 7= max(|7) << N [11]. A method will be discussed later that will remove this
impact.

As noted above, for each block, m, there will be at most L non-zero signal samples. Therefore the in-

ner sum in (58) can be re-written as
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—j2mvy —]2ﬂva I— —j2mvy

N-1
Stk T ome TS ele
n=0

(59)

where FL,n[n] and Ez,m[n] are obtained from circular shifting s, ,,[n] and s,,,[n] to the left by mL samples.

The complex exponential out in front of the right-hand side of (59) is due to the effect of a circular shift

on the DTFT [9]. Substituting (59) into (58) yields

jZﬂva -1 —Jj2my

Aen)= A= Fe 3 e "

m=0
(60)

Applying the narrowband approximation to (60) as was discussed in (29) - (32) gives

M-l ]27szvL 1

A(T,v) = A(T V) = A(T V)= Ze Zsl Jn+Tl,.

(61)
where the inner sum in (61) is similar to the “Fine-Mode” method in [1], except that (61) has the “block-
shift loss” discussed above. And as discussed in (32) - (33) for the “Fine-Mode” method, because of the
use of the narrowband approximation, an upper bound on L (filter length/decimation rate) is established
such that L << F/21tV,,. [11].

Using Parseval’s Theorem, the inner-sum on the right-hand side of

(61) can be re-written as

L-1 . 1 201 ~ Jj2rtk
2 Sl 4 7]= - 38, KIS, [Kle 2, 0<T<T<2L,
n=0 k=0

(62)
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where §1’m[k] = DFT{s,,[n]} and §2’m[k] = DFT{s, ,[n]} have both been zero-padded to the appro-

priate length to ensure that the correlation on the left-hand side of the equation in (62) is linear and not
circular. As mentioned for the “Fine-Mode Generic Frequency Domain method” a lower bound is placed
on L. The limit is L > 7/2, where T is the maximum number of time delays [11]. Note that the right hand

side of the equation in (62)is nothing more than a 2L-point inverse DFT.

Substituting (62) into (61) gives

—Jj2mnlLv = j2rik

f: M—l ~ ~
Az,yv)=Ye © o D8, [k, [kle - | (63)
m=0 k=0

where the outside sum is a DTFT and the inside sum is an inverse DFT. Since the product
i,m[k]g;,m[k] can be viewed as a cross-spectrum, the approximate ambiguity function in (63) will be

referred to as the “non-windowed cross-spectrum’ (CS) method [11]. Note that the DTFT in (63) can be
computed on a grid using a DFT via the FFT algorithm, making sure the appropriate zero-padding is pro-
duced to get the desired Doppler bin spacing [11].

An approximate CS method has been shown, but the “block-shift loss” is a serious problem. This

problem is now addressed. As was shown in (34) - (38), the inner sum of (63) can be written in the time
domain as a correlation of a decimating filter (4 {n]) and a lag product signal (r{n] = s,[n]s;[n+7]),

which is given by

—j2mmLy 211

~ M-1
A(T,v) = Ze i th[n]rf[n +mlL] (64)
n=0

m=0

where to get the CS method for 7> 0 select

0, forn=0,1,2,..,7—1
h,[n]=<1, fornzT,T—kl,...,L—l’ (65)

0, otherwise
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which depends on the time delay value 7[11]. A similar case can be made for 7< 0. Note that zero-
padding to 2L has been performed to ensure linear correlation. The decimation filter 4 n], suffers from
the “block-shift loss” discussed above. As the time delay becomes larger and larger, gaps are formed as
the more and more zeros replace the ones in the filter. After decimation, the corresponding frequency
response of the filter (H]f]) gets aliased back into the Doppler region of interest. For 7= 0, the nulls of
the aliased versions of H/[f] line up at the origin as shown in Figure 19. When 7 # 0, the length of the
filter 4 [n] decreases, and this causes the nulls of the aliased versions of H/[f] not line up, as is shown in
Figure 32, which is same example used to create Figure 18 - Figure 19 only a time delay of 10 has been

used, which results in a shorter filter in (65) (length of 90 for delay of 10).

Frequency Response of "100 1's" Filter with 1 = 10
10 T T T T

20Iog10(H(9)

|
o]
Frequency (kHz)

H_/

Doppler Range of Interest

Figure 32 Aliasing of Decimation Filter for 7= 10

Used with Permission from [11]
This aliasing error becomes worse as the time delay (| 7)) increases. Thus, the CS method in (63) gets

worse for large time delay values [11]. This is different from the “Fine-Mode” method from [1], such that
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the decimation filter defined in (35) doesn’t depend on 7[11]. As shown in Figure 19, the aliased version
of the frequency response of the filter have nulls at the center of the Doppler range of interest, namely
zero Doppler. This minimizes the impact of the aliasing [11].

The aliasing problem due to the “block-shift loss” in the CS method can be removed by appropriately

choosing window functions for both signal streams and a decimation rate [11]. Start with (63) and re-

~y

place the non-window DFTs ki,m[k] and § ;m [k]with windowed versions ‘Swl,m’w[k] and S,  [k]usinga

2,m,w
common window w[r] [11]. This makes the time-domain form of (61) become

_1 —J2mnlv oy

i(m)=ze © Y O [+ 7R [+ 7)

=Y e Y h[nls,, [0S, [n+7],

m=0 n=0
(66)
where A [n]=w{n]w[n + 7]is a decimation filter. Note that the inner-sum in (66) has appropriate zero-

padding to ensure linear correlation. As was true for the non-windowed case, the decimation filter is dif-

ferent for each value of 7[11]. Re-writing (66) as a correlation of the decimation filter (4/n]) and a lag
product signal (»{n] = Sl[l’l]S;[l’l +7]) yields

M—1 /2Ly ;4

Z(T,V) = Ze s Zhr[n]rf[n+mL] [11]. (67)
m=0 n=0

Note that the inner-sum in (67) shows appropriate zero-padding to ensure linear correlation. From (67) it
can be seen that there are two requirements for choosing the window w[n]: (i) w[n] should be chosen such

that the resulting decimation filter (4,[n]) provides the necessary suppression of aliasing in the Doppler

~ ~y

range of interest and (i7) it should be chosen such that spectra (S, ,  [k]and S,  [k]) can have appro-

1,m,w 2,m,w

priate spectral analysis pre-processing (e.g. removal of interferers, selection between co-channel signals,

etc...) as is displayed in [8][11]. If the first part is dealt with, it is clear that a non-rectangular window
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would not work because of the fact the non-rectangular window has a frequency response with a wider
main lobe as is shown in [8][11]. This would cause aliased nulls to be even further from zero Doppler.
To solve this aliasing problem the time delay dependence must be removed from the filter so that the ali-
ased nulls align at 0 Doppler as is shown in Figure 19. This is not enough, however, because the window
must be chosen such that the impact of aliasing due to the “block-shift loss” is minimized [11]. To do this

the assumption made above that the two window functions can be the same must be modified to allow for

the two window functions to be different. Define/_[n]= w,[n]w,[n+7]. The goal is to choose the two

windows such that their product is not dependent on the time delay (7) [11]. This can be accomplished, as
is shown in Figure 34, by having the w, window be chosen to be longer than the w; window and have a
constant value over a range such that the w; window can fit inside the w, window and can be slid along
this constant range. This allows the w; window to have any arbitrary shape, but it must be short enough
such that it fits inside the w, window [11]. Letting the w, window be the Tukey window defined in [8]
allows for the product of the w, and w1 windows (Figure 34) to be independent of the time delay, 7. This

also allows the decimating filter to be equal to the w; window (shorter window) [11].

~

Taking the DFTs of wy[n]s; ,[n]and w,[n]s, , [n]we get §1,m,wl [n]and S [n], and if we substi-

2,m,w,
tute them into (63) the equivalent time-domain form becomes

1 —jZﬂmLV 2Lw2 -1

A(r,v) = MZe BN il [nlwy[n+ 715 [0+ 7]

m=0 n=0
M-1 —J2mLy oy,

F. ~ ~
=>e " Y wlnls,,[n]s,,[n+17]
m=0 n=0

(68)
Note that the inner-sums of (68) have appropriate zero-padding to ensure linear correlation. The shorter
window now defines the performance of the decimation filter. The aliasing error is independent of the

time delay, 7 However the nulls of the aliased versions of the filter still do not line up at zero Doppler
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[11]. To reduce the aliasing error, the decimation rate, D, must be changed to be D < L. This results in

computing the various spectra using overlapping data s, , [n]and s, , [#]which are defined as

Simolnl=s,[mD+n] forn=0,1,2,...,L, —1

: (69)
Symol]=s,[mD+n] forn=0,1,2,...,L, —1

W
where m is the block index [11]. Substituting (69) into (63) and replacing the decimation rate in the com-
plex exponential outside the “[ ] with the new decimation rate D gives the windowed CS method

]2ﬂmDv 1 201 2

A(T V) Z_e o 2_ 1m0wl[ ]S2m0w[ ]e 2

m=0 LkO

(70)
Note that the inner summation reflects that zero-padding has been performed such that linear correlation
is performed from the inverse DFTs in the “[ ]”. It can be found that the value of D = 0.88L gives the best
alignment of nulls at zero Doppler, thus reducing the impact of aliasing [11]. The result in (70) is imple-

mented by forming a matrix as follows

CS[m,k]= Slmow [k]szmow [k], (71)

where m is the block index and k is the DFT index from (70). Next zero-pad the columns of the CS ma-
trix to the correct Doppler bin spacing and take the DFT across the columns of the CS matrix to produce

the following

—j2mvmD

M-1
ADoppler (k’ V) = Z CS[ka m]e g . (72)

m=0

Next zero-pad the rows of the A p,,(k,v) matrix to get the correct Doppler bin spacing and take the DFT

across the rows of the 4 pgpe(k,v) matrix to get
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J2mkt

~ 1 K-1
A(Tﬂ V) = E Z ADoppler (k7 V)e K . (73)
k=0

The result in (73) is the result described in [5].
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Procedures:

1. Determine the number of time delays and Doppler range of interest
2. Design window wy[n]. The shape of the window can be arbitrarily chosen. The window length LW1 =L

with an appropriately number of zeros preceding and trailing the window to give it a total length of L , .
3. The window w,[n] is a P percent Tukey window (e.g. P =75 % specifies that the center 75% of the

window’s samples are ones) of length L ,= 100(L + 27)/P, where T=max{|7}. Set the decimation rate D

=0.88L.
4. Zero-pad s,[n] and s,[n] to be divisible by a length L ,.

N-L
5. Determine the number of blocks M = [Twz—‘ .

6. Compute each Inner Sum and take the DFT

for m =0 to M-1
/* Form the m™ signal blocks */

forn=0to L, ,-1
S1mol] = 8[n+mD]

Sy.mol 1= 8y[n+mD]

end for on n

Zero-Pad wi[n] 5, [n] and wy[n] s, , [n] to2L,,-1

/* Take the DFT of wi[n] s, ,[1n] and w[n] 5, ,, ,[n] */

2L,,-1 —j2mkn
S ~ 2L,
Sl,m,o,wl [k] = Z Wl [n]sl,m,o[n]e :
n=0
2L,,-1 —J27kn
i _ ~ 2L,
S2,m,0,w2 [k] - Z W2 [n]SZ,m,o[n]e
n=0
/* Multiply El,m’mw] [k] and §2*’m’0% [k] together to create the

/* cross-spectra matrix CS[m,k] whose columns are the spectra of the blocks

~

CS[m,k]=S, K1XS, 1 0, K]

end for on m

,m,0,W; [

Zero pad the columns of CS[m,k] to ensure correct Doppler bin spacing

/* Computing the DTFT of the columns of CS[m,k] at the desired Doppler values

—j2nvm

M-1
ADoppler(kﬁ V) = Z CS[k, m]e £

m=0

Zero pad the rows of A, .,

/* Compute the IDFT of the rows of A Doppler

~ 1 & Jj2nkt
A(T,v)=E Apoppier (ksv)e ©

k=0

[k, Vv]to ensure correct Tau bin spacing

(k,Vv) at the desired Tau bin values

*/
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Figure 33 Procedures for Computing 2-D Windowed Cross-Spectrum Method

Used with Permisson from [11]

The frequency domain approach outlined in Figure 33 provides a way to remove interfering sig-
nals, including ones that are not resolved in time delay or Doppler [5]. Interference removal is designed
into the approach using (72). When no noise or interference is present, there is part of the spectrum that
runs parallel to the frequency axis and is located at the Doppler shift value between the signals (sy, 55). If
the phase values along this part of the spectrum are extracted, unwrapped, and plotted, a straight line with
a slope equal to the delay between the two signals is the result [S][11]. The key is to take the difference
between adjacent Doppler bins for this particular Doppler frequency. This yields a constant value propor-
tional to the time delay [11]. If interfering signals are present, then there will be discontinuities in the
phase plot. Given some a priori knowledge about the desired signal’s characteristics (bandwidth, fre-
quency, etc...), it is possible to devise an algorithm to remove the frequencies belonging to the interfering

signals and retain the desired signal of interest [S][11].
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Chapter 4 Summary of Methods & Computational Complexity

The preceding chapter developed several methods in detail. This chapter provides a summary of the
resulting methods in a way that clearly outlines the various practical methods worthy of consideration for

practical use. In addition, computation counts are determined for each of the methods.

4.1 Comparison of Methods

The methods discussed in Chapter 3 are all related. Starting with the DTFT form of the ambiguity
function as is in (24) one can move directly to using the filter bank method as shown in (55). This
method is a “brute-force” direct computation method. This method may be the one of the easiest to com-
pute, but in some applications it may be the more computationally inefficient because no decimation is
performed and the FIR filter in this method becomes very large for a large number of Doppler frequen-
cies.

Taking the DTFT form of the ambiguity function in (24), forming the lag-product, and breaking the
large sum into smaller non-overlapping sums (with the lengths of the smaller sums equal to the decima-
tion rate) gives the result in (28). Making the approximation in (32) that the speed of light constant is
much larger in respect to the velocity of the entity collecting the emitter signal data produces the result in
(34). The result in (34) is Seymour Stein’s “Fine-Mode” Method and is less computationally complex
than the filter band method because there is decimation included in the algorithm [1]. The decimation is
equal to the length of the smaller non-overlapping sums. Generally, the use of data reduction methods
(decimation) results in a more computational efficiency.

Replacing the “all-ones” filter from Stein’s “Fine-Mode” method with a more generic filter gains the
advantage that the more generic filter can be designed to achieve better Doppler aliasing suppression. The
“all-ones” filter allows for aliasing as shown in Figure 19. The argument made by Stein in [1] is that for
most applications, this aliasing is acceptable. For some applications, suppression of Doppler aliasing may

lead to better TDOA/FDOA accuracy.
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The tradeoff in using the generic filter over the “all-ones” filter is that the decimation factor is lower
than in Stein’s method. Also because of the use of a more generic filter, the simplicity of the “all-ones”
filter is lost. Using the “all-ones” filter did not require any additional multiplies. Using the more generic
filter does. This method, therefore, does not have as much complexity reduction as Stein’s method. The
“Fine-Mode” Generic method allows for non-overlapping smaller sums, and is a method proposed by To-
limieri and Winograd in [2] and is shown in (40). This method is essentially Stein’s “Fine-Mode” method
but with a more generic filter. It also contains corrections for the generic filter used (transition band,
pass-band ripple, etc...).

As noticed by Tolimieri and Winograd in [2], it is computationally efficient in many applications to
compute the ambiguity function via the frequency domain. This is easily accomplished by breaking up
the lag product from Stein’s “Fine-Mode” method [1] or Tolimieri and Winograd’s “Fine-Mode” Generic
method [2] into their respective separate signal streams. These signal streams are then broken up further
into an integer multiple of overlapping blocks. For the first signal stream, take the DTFT and then apply
a window for each block, whereas for the second stream, just take the DTFT for each block. These two
streams of block DTFTs are multiplied together on a block by block basis followed by applying an
IDTFT on a block by block basis. This method is the “Fine-Mode” Generic Frequency Domain method
and is similar to the 2-D Cross Spectra method discussed in [5]and [11]. In the 2-D Cross Spectra
method, the second signal stream is windowed in addition to the first. The window on the second signal
stream is a special window called the Tukey window. It allows for the first windowed stream to be slid
back and forth inside the length of the second windowed stream without changing the lag-product struc-
ture. Both frequency domain methods (“Fine-Mode” Generic Frequency Domain and 2-D Cross Spectra),
but the 2-D Cross Spectra method in [5] may be preferable because it provides windowed spectral analy-
sis on both signal streams to further aid in excision of interferers.

Figure 35 depicts the relationships between each of the methods presented in Chapter 3.
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Figure 35 Relationship of Each Method

4.2 Test Setup

In order to compare the pros and cons of each of the various methods a set of tests that would
stress the algorithms needed to be developed. This was not an easy task, and the test set that was devel-
oped is not designed to test every scenario, but it does provide representative cases to help determine
which methods are best suited for certain conditions.

In order to develop the test set, the different items affecting the algorithms namely, frequency,

bandwidth, sampling rate, number of Dopplers and time-delays, and decimation factor were examined.
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When examining the frequency, the assumption was made that the emitter was stationary and the collec-
tion platforms were airborne and would always be traveling at a constant velocity. The value of 250 m/s
was chosen for the velocity because a collection platform traveling at 250 m/s is representative of the ve-
locity of many airplanes. Using this assumption that the velocity is always constant (250 m/s) makes the

Doppler shift frequency equation in (29) become

f=1£83391x1077, (74)

where the speed of light constant used was ¢ = 299792458 m/s. It is clear from (74) that as the frequency
of the signal of interest (f,) increases, the expected Doppler shift on the signal also increases. If the ex-
pected Doppler shift on the signal of interest increases, the Doppler range of interest also increases, thus
requiring more Doppler frequencies to be used in the calculation of the ambiguity surface. Therefore in
order to have tests where there is variation in the number of Dopplers, three unique frequencies, one from
the HF band (5 MHz), one from the VHF band (50 MHz) and one from the UHF band (500 MHz) were
chosen. The frequencies in these bands were chosen arbitrarily. Using these three frequencies gives
maximum expected Doppler shifts of +4.169551 Hz, £41.69551 Hz, and +416.9551 Hz for the HF band,
VHF band, and UHF band respectively. The Doppler shift values that were applied for each different fre-
quency were chosen to be 3 Hz for the 5 MHz frequency, 16 Hz for the 50 MHz frequency, and -322 Hz
for the 500 MHz frequency. For simplicity of simulation, the time-delay was set to be 0 nanoseconds for
all the test cases.

The next item examined was the bandwidth. As the bandwidth of a signal increases, the rate that
the collected signal is sampled must increase in order to avoid the effects of aliasing, as according to Ny-
quist. The assumption was made for the purpose of simplifying the test set that each of the three frequen-
cies would each have a constant time-bandwidth product (BT) that would produce an approximate 40 dB

gain (BT = 10000) in processing. A value of 10000 was chosen because a 40 dB processing gain is a rea-
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sonable amount of gain to have for narrow-band correlation processing. Having a constant BT provides
for a more realistic simulation where signals at wider bandwidths are collected for shorter times than nar-
rower bandwidths in order to achieve the desired processing gain. Again for simplicity no noise was
added to the test signals.

Three different bandwidths were used for the three different frequencies. These bandwidths were
chosen based on values shown to be appropriate given the frequencies used as stated at the United States
Federal Communications Commission’s website [12]. The narrow, medium, and wide bandwidths se-
lected for the 5 MHz, 50 MHz, and 500 MHz frequencies were 5 kHz, 10 kHz, and 20 kHz, respectively.
The corresponding sampling rates for the bandwidths were chosen based on the assumption that the data
to be correlated would be in complex envelope form. This would allow critical sampling at the actual
bandwidth, as per Nyquist. However, each sampling rate was arbitrarily increased by 10 % in order to
reduce the inclusion of aliasing errors when critically sampling and using decimation. This gave sam-
pling rates of 5.5 kHz, 11 kHz, and 22 kHz for each of the frequency bands. The sampling rates for the
three frequencies and corresponding bandwidths are listed in Table 1.

The next items examined were the number of time-delays and Dopplers. As mentioned in Chap-
ter 3 Section 3.1, the “Fine-Mode” Generic Frequency Domain method has a limit on the number of time-
delays. From Figure 35, it can be inferred that the 2-D Cross Spectra method also has this limitation. To
compare the performance of these two methods to the others, the number of time-delays or Taus must
vary across some range. Because the purpose of this test simulation is to see the accuracy vs. the compu-
tational complexity for particular, there is no need to tie an algorithm to a particular geometry, so the Taus
may be arbitrarily chosen and reasonably show what happens to accuracy and complex complexity. How-
ever, during preliminary testing, and after reviewing the algorithms, it became apparent that certain algo-
rithms provide an inefficient number of Taus that cannot be chosen. Only the “Fine-Mode” and “Fine-
Mode” Generic methods use a desired number of Taus as an input. For all cases where a value for the

number of Taus was needed, the value of eleven was used.
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After some analysis and pre-testing, it was determined that all of the methods provided a variable
number of Dopplers based DFT size used for a particular method. The only method that used a direct
computation for the number of Dopplers in its processing was the Filter Bank method. Therefore, no pre-
determined values for the number of Dopplers were selected. The number of Dopplers was calculated
only for the Filter Bank method. The number of Dopplers is determined based on the Doppler spacing.

The Doppler spacing is calculated as

4
Doppler Spacing = ——
pp P g 107 (75)
where T'is calculated as
N
T = = —
F (76)

where N is the number of samples (constant 11000) and Fj is the sampling rate (5.5, 11, and 22 kHz). The
value of 4 in the numerator of (75) appears because this gives the null-to-null value of the main lobe of
the rectangular filter/window as described in Section 6.3.1 in [9]. Each method is filtered/windowed.
The rectangular filter/window is used because it provides a worse case scenario (most narrow peak) for
computing the Doppler spacing. This guarantees that the Doppler spacing computed will be sufficient for
all the methods. The value of 10 in the denominator of (75) appears because to compute the Doppler
from the ambiguity surface, a curve fit has to be applied in the Doppler direction. The curve fit requires
five points (the peak and two points on each side). This requires that there be ten points from null-to-null.
Dividing 4/T by 10 guarantees that there will be enough points in the Doppler direction for the curve fit.
For the purposes of testing the Doppler spacing values computed for the 5.5 kHz, 11 kHz, and 22 kHz
sampling rates were 0.2, 0.4, and 0.8 respectively. After preliminary testing, the 0.8 value was not small
enough because the curve fit for the 22 kHz cases were not accurate and succumbing to errors. Analysis
showed that a value of 0.5 was sufficient to provide accurate curve fits for the 22 kHz cases.

The final item examined was data reduction. Data reduction techniques (e.g. decimation) allow

for reducing the amount of data used in computation, but at the cost of accuracy. Decimation is incorpo-
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rated into the “Fine-Mode”, “Fine-Mode” Generic, “Fine-Mode” Generic Frequency Domain”, and the 2-
D Cross Spectra methods. Varying the amount of decimation in each of these techniques would give a
measure as to how the performance in calculating the true Doppler and time-delay degrades. Since the BT
=10000, a constant amount of samples is collected for each frequency given the sample rates in Table 1
(11000 samples). Therefore, three values of decimation were chosen for each bandwidth for each band
(HF, VHF, and UHF) for 27 total values. The decimation applied for each sampling rate for a particular
band was chosen such that the F/2 frequency after decimation would be the same. The highest decima-
tion values for each sampling rate were limited by the fact that the decimation could not exceed the
maximum filter/window length (L). The maximum filter/window length as stated in Chapter 3 Section

3.1 is computed as

F,

2nv_ (7

max
where Fj is the sampling rate of the signal, and v,,,x is the maximum expected Doppler shift.

The low decimation rate was selected based on the fact that the “Fine-Mode” Generic Window
Frequency Domain and 2-D Cross Spectra methods have a lower bound on the filter length (L). This
lower bound is 7/2 where T is the number of time-delays. Since L must always be > this lower bound, it
was deemed appropriate for this testing that the minimum decimation could be set to this value for all the
methods. The medium decimation rate was chosen such that it would provide an F/2 frequency after
decimation somewhere in the middle of the low decimation and high decimation. To get a feel for how
close the F/2 frequency after decimation is to the maximum Doppler frequency, see Figure 36 which de-
picts the frequency representation for the narrow band HF test case. The values of decimation for each of

the frequencies and sampling rates are shown in Table 1.
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Figure 36 Frequency Representation After Decimation for Narrow Band HF Test Case
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Fre- Band- Sampling BT T(sec) | Number | Desired Decimation
quency width Rate (Ksps) of Sam- | Doppler Rate
(MHz) (kH7z) ples Spacing

(Hz)
5 5 5.5 10000 2 11000 0.2 6 (L)
12 (M)
700 (H)
5 10 11 10000 1 11000 0.4 12 (L)
24 (M)
1400 (H)
5 20 22 10000 0.5 11000 0.5 24 (L)
48 (M)
2801 (H)
50 5 5.5 10000 2 11000 0.2 6 (L)
12 (M)
83 (H)
50 10 11 10000 1 11000 0.4 12 (L)
24 (M)
166 (H)
50 20 22 10000 0.5 11000 0.5 24 (L)
48 (M)
333 (H)
500 5 5.5 10000 2 11000 0.2 6 (L)
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Fre- Band- Sampling BT T(sec) | Number | Desired Decimation
quency width Rate (Ksps) of Sam- | Doppler Rate
(MHz) (kH7z) ples Spacing

(H)

7 (M)

8 (H)

500 10 11 10000 1 11000 0.4 12 (L)
14 (M)

18 (H)

500 20 22 10000 0.5 11000 0.5 24 (L)
28 (M)

33 (H)

Table 1. Test Case Specifics

Thus the testing performed was in a tiered level structure as is shown in Figure 37. Note that this

tiered level structure is computed for each unique frequency. Also note that the Filter Bank method does

not have any decimation built into it, so from each of the bandwidths the decimation level is skipped. For

testing, a tiered level structure was executed for each frequency (5§ MHz, 50 MHz, and 500 MHz).
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Figure 37 Testing Structure

The tool used to create and execute the simulations was Matlab Student Edition version
6.5.0.1924 Release 13. The signal processing toolbox (purchased separately from the Student Edition)
was also included in the Matlab software used to execute the simulations. To create the simulations, an
m-file was created that would act as a script. Flags were created in the m-file that when set with particu-
lar values, would allow for a particular case to be simulated. A pseudo-voice sequence was used to create
the 9 different signals (3 signals at 3 unique frequencies and bandwidths). This sequence was complex
and was first created by taking a random normally distributed noise sequence for the largest number of
signal samples needed (11000) and filtering each one with a different filter (9 in total). The state of the
random sequence used was set to be a constant (state 2 [arbitrarily chosen]) such that for each time the
script was started, the same random sequence would be used. This was done to reduce any errors that
could be introduced by using a different random sequence for each test case.

The next step taken was to design a filter for each sampling rate (9 in total). Since BT was a con-
stant 10000, each filter designed would have the same form only a different frequency range when view-

ing the spectrum. This simplified the filter design to one filter. Recall that to avoid critically sampling
the signal, each sampling rate used was 10% greater than the Nyquist sampling rate (F, ) or
1.1XF, = F, . Converting from physical frequency in Hz to digital frequency n radians/sample, it is

clear that the one filter will always be in the same proportion since the same cut-off frequency is used for

all 9 signals, as is shown in
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Figure 38 Filter Analysis Using Digital Frequency

Figure 38.

The Matlab firl command was used to design the filter. The filter had 25 taps and a cut-off fre-
quency of 0.9091r radians/sample. The filter was applied to the pseudo-voice sequence by using the
Matlab filter command, thus creating the signal s;. Depending upon frequency and bandwidth, the s, sig-
nal was then frequency shifted to give the signal desired the Doppler shift. The Doppler shifted s, signal
was the s, signal. A function called freq_shift was created and used to apply the Doppler shift to the s,
signal. For simplicity of simulation, it was assumed that both signal streams produced would be at the
same signal-to-noise ratio (SNR). Therefore, no manipulation of the data was performed to adjust the
SNR of the second stream. Both signal streams were both upsampled by a factor of 4 to guarantee that
the desired spacing in the Tau dimensions would provide for an adequate curve fit in determining the Tau
measurements from the CAF peak. At this point, depending upon the flags used, different functions were
executed for the different methods. The Filter Band method was coded in the fb function. The “Fine-

Mode” and “Fine-Mode” Generic methods were coded in the fmg function. For simplicity of implemen-
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tation, when coding the “Fine-Mode” Generic method, the corrections in the algorithm for ripple and edge
effects were not implemented. The “Fine-Mode” Generic Frequency Domain method was coded in the
fmgfd function, and the 2-D Cross-Spectra method was coded in the twodcs function. All the test cases,
except for the Filter Bank method, for all the frequencies (HF, VHF, and UHF) were run with L=D. This
was done to make the attempt to be able to compare the accuracy back to the “Fine-Mode” method, where
L always is equal to D. Since all the methods, except the Filter Bank method, support L=D, all the date
reduction methods could be compared on the same level. By forcing the “Fine-Mode” Generic, “Fine-
Mode” Generic Frequency Domain, and 2-D Cross Spectra methods to have L=D accuracy was sacrificed
to produce better computational complexity. To determine the impact of having L>D, the “Fine-Mode”
Generic, “Fine-Mode” Generic Window Frequency Domain, and 2-D Cross Spectra methods were re-run
with L>D for the HF Frequency. Recall that it was stated in Chapter 3 Section 3.3 that the optimal accu-
racy for the 2-D Cross Spectra method is obtained with L = D/0.88. The decision was made to run with L
> D such that L > D/0.88 in order to provide a comparison between the “Fine-Mode” Generic, “Fine-
Mode” Generic Frequency Domain, and 2-D Cross Spectra methods and show how accuracy and compu-
tational complexity is affected with L >> D.

For the “Fine-Mode” Generic method, the filter used was designed using the Matlab firl com-
mand. The cut-off frequency used was the maximum expected Doppler frequency. The “Fine-Mode”
Generic Frequency Domain method also was run with this same firl filter, in order to provide a compari-
son to the “Fine-Mode” Generic method, that ruled out the filter/window being used and instead focused
on the method (time-domain vs. Frequency domain).

The windows used on the 2-D Cross Spectra method were chosen to be the same type of windows
(Tukey). Having the same type of windows provided simplification in having to design fewer windows,
since the window on the second signal stream is always a Tukey window. Using a Tukey window on the
first signal stream also made sense because the Tukey window has amplitude of 1 and the less the signal
stream is modified, the better. The Tukey window is similar to a rectangular window, providing a narrow

peak (more desirable for curve-fitting). To be able to provide a decent comparison with the 2-D Cross
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Spectra method, the “Fine-Mode” Generic Frequency Domain also was computed for all the test cases
using a Tukey window on the first signal stream. This would provide the opportunity to observe the accu-
racy between the two methods when a second Tukey window is introduced in the 2-D Cross Spectra
method.

Since the accuracy of the “Fine-Mode” Generic method is based on the filter used, the HF test
cases using the “Fine-Mode” Generic method were re-run using “better” filters designed using the Matlab
Filter Design tool, in order to demonstrate this. Before using the filters designed using the Matlab tool, an
attempt was made to create the filters using the remez algorithm, but given that the filter lengths were
much shorter than the order that remez desired for high accuracy, the remez algorithm produced poor fil-
ters. The “better” filters were designed in an ad-hoc manner, where parameters in the tool were modified
until the filter looked better visually in the frequency domain than the firl filter (flatter stop band and
more attenuation in the stop band) better results in at least one dimension (Tau or Doppler) were obtained,
or results close to the firl filter were obtained. The purpose of this research is not to develop the “ideal”
filters to use for the given test cases, but to show that accuracy is dependent upon the filter used and that
by using a “better” filter should produce better accuracy. Note that some filters created could not yield
better performance to the firl filter. This was most likely due to the stop-band attenuation not being
lower than the firl filter or other limitations placed on these “better” filters that could not allow them to
exceed or equal the performance of the firl filters. See Table 2 for the parameters entered into the Matlab
Filter Design tool to create the “better” filters. See Table 3 in Chapter 4 Section 4.3 for a list of results

from executing the test cases.

Filter Design Filter | Density F Fous | Foop | Wpass | Weop | Usage
Type Method Order | Factor | (KHz) | (Hz) | (Hz)
Lowpass FIR 5 50 22 5 10000 | 1 1 HF Narrow
(Equiripple) BW, L=D,
D=6




Filter Design Filter | Density F Fouss | Foop | Wpass | Weop | Usage
Type Method Order | Factor | (KHz) | (Hz) | (Hz)
Lowpass FIR 11 50 22 5 1500 |1 0.2 HF Narrow
(Equiripple) BW L=D,
D=12
Lowpass FIR 699 16 22 5 50 1 1 HF Narrow
(Equiripple) BW L=D,
D=700 and
L=700,D=
100
Lowpass FIR 99 16 22 5 500 1 1 HF Narrow
(Equiripple) BW
L=100,
D=6,12
Lowpass FIR 11 50 44 5 3000 |1 0.2 HF Me-
(Equiripple) dium BW
L=D, D=12
Lowpass FIR 23 50 44 5 3000 |1 0.2 HF Me-
(Equiripple) dium BW
L=D,D=
24
Lowpass FIR 1399 50 44 5 37 1 0.2 HF Me-
(Equiripple) dium BW
L=D,
D=1400
Lowpass FIR 199 16 44 5 1000 |1 1 HF Me-
(Equiripple) dium BW
L=200,
D=12,24
Lowpass FIR 23 50 88 5 8160 |1 0.2 | HF Wide
(Equiripple) BW L=D,
D=24
Lowpass FIR 47 50 88 5 2800 |1 0.2 | HF Wide
(Equiripple) BW L=D,
D=48
Lowpass FIR 2800 50 88 5 98 1 0.2 HF Wide
(Equiripple) BW L=D,
D=2801
Lowpass FIR 399 16 88 5 380 1 1 HF Wide
(Equiripple) BW
L=400,
D=24,48
Lowpass FIR 2800 16 88 5 98 1 1 HF Wide
(Equiripple) BW
L=2801,
D=400

Table 2. "Better" Filter Parameters for Matlab Filter Design Tool
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The “Fine-Mode” Generic Frequency Domain method HF test cases were also executed with these “bet-
ter” filters in order to better compare the two methods.

For the Filter Bank method, a queuing method for passing the number of Dopplers into the calcu-
lation was adopted because calculating all the Dopplers for UHF cases caused Matlab to run out of mem-
ory. The queuing method adopted made use of apriori knowledge of the expected Doppler frequency and
allowed for a range of Dopplers to be entered and calculating them for this method. This queuing method
applied is not unlike what may be used by actual emitter location systems.

In order to provide a metric for the accuracy produced for all the methods, the numbers of compu-
tations for each method were calculated for each test case. The number of computations were separated
out into number of real adds and number of real multiplies. Real computations were calculated because
processors used in emitter location systems work with real computations not complex. The equations
used to compute the number of real multiplies and real adds for each complex multiply can be verified to

be

# Real Multiplies =4N

4Real Adds=2N (78)

where N is the number of complex multiplies. In the case where complex DFT operations were per-
formed, a radix-2 DFT was assumed because it is the DFT via the FFT algorithm most widely used. The
equations used to convert the complex DFT to real multiplies and adds are equations 5.24a and 5.24b
from Section 5.3 from [2].

In order to compute the number of real computations (multiplications and adds) for the Filter
Bank method, equation 2.3 from [2] which contains the number of complex multiplications was used as a

starting point. This equation was converted to real multiplications and adds and thus became
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# Real Multiplies= (K +1)[4N +4(N +T)+4(N +T)[log, (N +T)—2]+8]+
2(N +T)[log,(N+T)-2]+4

#Real Adds=(K +D[2N+2(N+T)+6(N+T)log,(N+T)—4(N+T)+4]+
3(N+T)log,(N+T)

(79)
where K is the number of Dopplers, N is the number of signal samples, and 7 is the number of time-
delays.

To compute the number of real computations for the “Fine-Mode” and “Fine-Mode” Generic
methods, equation 3.3 from [2] which contains the number of complex multiplications was used as base

number of computations. Thus the number of real multiplications and adds can be proven to be

# Real Multiplies = (T +1)[AN +2(DFT _Size)[log,(DFT _Size)—2]+4]

#Real Adds =(T +1)(2N +4ML+3(DFT _Size)log,(DFT _Size)— ’
2(DFT _Size)+?2)
(80)

for the “Fine-Mode” method and

# Real Multiplies = (T +1)(4N +4M (2L +1)+
2(DFT _Size)|log,(DFT _Size)—2]+4)

#Real Adds = (T +1)(2N +4ML+3(DFT _Size)log,(DFT _Size)—
2(DFT _Size)+2)
81
for the “Fine-Mode” Generic method, where 7T is the number of time-delays, M is the number of inner
sums (number of blocks), L is the filter length, and DFT Size is the size of the DFT for each inner sum.

Note that there are more multiplications performed for the “Fine-Mode” Generic method. The “Fine-
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Mode” method requires fewer multiplications because it makes use of the “all-ones” filter and those mul-
tiplies come for free because of the multiplication by one.

The number of computations for the “Fine-Mode” Generic Frequency Domain made use of equa-
tion 3.6 from [2] for the base number of complex computations. The number of real multiplications and

adds can be proven to be

# Real Multiplies= M (4L +6(DFT _Sizel)|log,(DFT _Sizel)—2]+12+
4(DFT _Sizel))+ DFT _Sizel[2(DFT _Size2)[log,(DFT _Size2)—2]+ 4]

#Real Adds=M(4L+9(DFT _Sizel)log,(DFT _Sizel)—6(DFT _Sizel)+6+-
2DFT _Sizel))+ DFT _Sizel3(DFT _Size2)log,(DFT _Size2)—
2(DFT _Size2)+2)

(82)
where M is the number of blocks, L is the window/filter length, DFT Sizel is the size of the DFT of both
signal streams (f;, and s,) and DFT Size? is the size of the IDFT of the multiplication of F, and S ; (see
Figure 31).

The 2-D Cross Spectra method also made use of equation 3.6 from [2] for its original base num-
ber of complex computations. This equation was slightly modified to account for the 2™ stream being

windowed. The number of real multiplications and adds are
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# Real Multiplies= M (8L, +4(DFT _Size)[log,(DFT _Size)—2]+8+
A4(DFT _Size))+ DFT _Size(2(DFT _Size _ Dopp)[log2 (DFT _Size _Dopp)— 2]
+4)+ DFT _Size_Dopp(2(DFT _Size _Tau)[log,(DFT _Size_Dopp)—2]+4)

#Real Adds=M (4L, +6(DFT _Size)log,(DFT _Size)—2(DFT _Size)+4+
2(DFT _Size))+ DFT _Size(3(DFT _Size Dopp)log,(DFT _Size Dopp)—
2(DFT _Size Dopp)+2)+

DFT Size  Dopp(3(DFT _Size Tau)log,(DFT _Size Tau)-—

2(DFT _Size Tau)+?2)

(83)

where M is the number of blocks, L, is the window of for s,, DFT_Size is the size of the DFT of both

windowed signal streams (s; and s,), DFT _Size_Dopp is the size of the DFT of the columns of the CS ma-
trix (see Figure 33), and DFT _Size_Tau is the size of the IDFT of the rows of the Apoppier Matrix (see
Figure 33).

In order to compute the time-delay and Doppler for all the test cases, two curve-fits were applied
to the ambiguity function computed, one in the time-delay direction and the other in the Doppler direc-
tion. To apply the curve-fits, five points around the peak (the peak and two points on either side of the
peak) were selected and then put through the Matlab polyfit command to fit a quadratic to the data. Dur-
ing preliminary testing, the polyfit was producing poorly conditioned output polynomials. Therefore, the
curve-fit was modified to use the polyfit command with command option of centering and scaling the
curve-fit on the data. According to the Matlab help files provides better precision to the curve-fit. Since

the data was centered on the true Doppler, the Doppler error calculation simplified from

Doppler Error = \/ (Calculated Doppler—True Doppler F. requency)2

(84)

to



Doppler Error = \/ (Calculated Dopplery)2

b

The Matlab code for the all the functions as well as the main script, without the “better filter”

logic which was kludged to produce results, can be viewed in the Appendices.

4.3

Summary of Results
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(85)

The results of all the tests executed are summarized in Table 3. The time-delay error and Doppler

error columns have been color-coded to rate the results. The color code is green is good, yellow is de-

graded, and red is bad. The color codes are meant to be used on a column-by-column basis and should

not be read across the rows. The color codes are applied as follows: any time-delay error < 1 us or Dop-

pler error < 1 Hz is deemed good. Any time-delay error > 1 us but < 20 us or Doppler error > 1 Hz but <

20 Hz is deemed degraded. Any time-delay error > 20 us or Doppler error > 20 Hz is deemed bad. The

ideal level of error for the time-delay and Doppler is 0 us and 0 Hz, respectively. However because of

errors introduced by decimation, the desired values of error and time-delay were < 1 us and < 1 Hz re-

spectively.
Frequenc Method | F (H7 D L TError Dop- # Real # Real
q y /4
(MH?z) (us) pler Adds Multiplies
Error
5 FB 22000 | NA N/A 697,861,722 | 452,686,903
5 FB 44000 | NA N/A 365,462,807 | 236,954,093
5 FB 88000 | NA N/A 298,983,025 | 193,807,531
5 FM 22000 L6 6 0.203434 | 0.113341 20,076,504 12,335,664
12 12 0.403557 | 0.113305 11,032,536 6,830,640
700 700 | 0.264644 | 3,240,408 2,148,912
5 FM 44000 | 12 12 0.438876 = 0.245003 11,032,536 6,830,640
24 24 0.902120 | 0.245004 6,806,040 4274,736
1400 1400 0.125448 3,235,608 2,127,408
5 FM 88000 |24 24 0.314139 | 0.178531 6,806,040 4,274,736
48 48 0.620008 = 0.178579 4,839,960 3,095,088
2801 2801 0.061644 3,219,480 2,118,192
5 FMG' 22000 L6 6 0.028005 = 0.113360 20,252,520 16,912,080
12 12 12.655625 [EBBEEZN) 11,120,544 11,231,040
700 700 0.262709 3,241,920 6,385,536

! Filter used for test case was designed using Matlab firl command




Frequency Method | F; (Hz) D L t Error
(MHz) (us)
5 FMG' 44000 |12 2 5.969105
24 24 1.468118
1400 1400
5 FMG' 88000 |24 24 0.181176
48 T 0910054
2801 2801
5 FMG' 22000 |6 100 0.188807
2 T 0290949
100 700 1.463614
5 FMG' 44000 |12 200 0.433369
0094
24 200 0.859447
200 1400 0.500552
5 FMG' 88000 |24 IO 0301804
43 400 0.613012
400 2801 0212516
5 FMG* 22000 L6 6 0.040020
12 12 0.446975
700 700 11.643097
5 FMG* 44000 |12 12 0.434742
24 24 0.706200
1400 1400 1.450071
5 FMG? 88000 | 24 24 0.067634
43 43 0.523144
2801 2801 2.527392
5 FMG? 22000 |6 100 0.199295
12 100 0.371750
100 700 0.901442
5 FMG? 44000 |12 200 0.436841
24 PO 0.873686
200 1400 1.273246
5 FMG? 88000 |24 400 0.256963
43 400 0.503396
400 2801 0.293661
5 FMGFD’ | 22000 [ 6 1.961396
12 12 12.587743
700 700 |G
5 FMGFD® | 44000 [ 12 2 5772418
24 24 0.421330
1400 1400
5 FMGFD® | 88000 |24 24 1.259093
43 48 0.852090
2801 2801
5 FMGFD® | 22000 |6 O~ 0203715
12 100 0.398849
100 700 0.504922
5 FMGFD® | 44000 |2 200 0.428097
24 200 0.869259
200 1400 0.081991
5 FMGFD® | 88000 |24 400 0.208732
43 400 0.435327
400 SR ~ 0.980649
5 FMGFD* | 22000 [ 6 1.877667
12 12 10.892650
700 700
5 FMGFD* | 44000 |12 12 4.937427
24 24 1.635516

? Filter used for test case was designed using Matlab Filter Design Tool

* Window used for test case was a Tukey window

4 Same firl filter used as for FMG

0.245018
0.244926
0.125538
0.178517
0.178509
0.061644
0.113383
0.113380
0.045306
0.244906
0.244909
0.025317
0.178684
0.018019
0.113359
0.113305
0.263071
0.244995
0.244941
0.125611
0.178515
0.178527
0.065953
0.113379
0.113378

0.045704 |
0.244948
0.244948
0.022203
0.178709
0.178697
0.012058

| 0.113341 |
0.113326
0.262602
0.245024
0.244913
0.125223
0.178523

0.178508_|
0.061878
0.113371
0.113367
0.043591
0.245093
0.245084
0.021598
0.178702
0.178676
0.010554

| 0.113341 |
0.113327
0.262675
0.245023
0.244922

# Real # Real
Adds Multiplies
11,120,544 11,231,040
6,850,056 3,588,304
3,236,376 6,429,744
6,850,056 3,588,304
4,861,968 7,364,640
3,219,864 6,421,296
53,266,344 82,939,728
26,576,184 42,142,320
16,410,696 31,740,048
44,057,568 77,105,088
22,266,696 39,421,584
15,786,024 31,080,528
39,642,504 74,173,200
20,221,032 38,082,768
15,194,712 30,168,240
20,252,520 16,912,080
11,120,544 11,231,040
3,241,920 6,385,536
11,120,544 11,231,040
6,850,056 3,588,304
3,236,376 6,429,744
6,850,056 3,588,304
4,861,968 7,364,640
3,219,864 6,421,296
53,266,344 82,939,728
26,576,184 42,142,320
16,410,696 31,740,048
44,057,568 77,105,088
22,266,696 39,421,584
15,786,024 31,080,528
39,642,504 74,173,200
20,221,032 38,082,768
15,194,712 30,168,240
26,431,436 15,773,080
25,892,698 15,384,628
23,884,290 13,960,196
25,892,698 15,384,628
25,366,620 15,019,192
23,690,944 13,827,456
25,366,620 15,019,192
24,844,766 14,664,124
23,305,856 13,581,568
489,609,908 | 296,056,168
232239912 | 139,650,640
215,076,764 | 128278328
480,964,674 | 290,281,604
227,919,852 | 136,765,400
209,209,764 | 124,425,032
471,946,204 | 284,288,952
223,480,084 | 133,812,776
201,729,600 | 119,557,248
26,431,436 15,773,080
25,892,698 15,384,628
23,884,290 13,960,196
25,892,698 15,384,628
25,366,620 15,019,192

80



Frequency Method | F; (Hz) D L 7 Error

(MHz) (us)
1400 1400

5 FMGFD* | 88000 ig 42;; 8;34382
2801 2801 373

5 FMGFD* | 22000 ?2 188 %
100 700 0:7297 >

5 FMGFD* | 44000 |12 200 0.429230
24 200 0.877294
200 1400 0.126728

5 FMGFD* | 88000 |[24 400 0.209519
48 400 0.445662
400 2801 1.103619

5 FMGFD’ | 22000 ?2 ?2 ,
700 [ 700

5 FMGFD® | 44000 [ 12 12 0.624674
24 24 0.828785
1400 1400

5 FMGFED’ | 88000 ig ig 8';;1?3
2801 | 2801

5 FMGFD® | 22000 L6 100 0.198511
12 100 0.419154
100 700 3.462016

5 FMGED® | 44000 |2 200 0.441033
24 200 0.893065
200 1400 0.335380

5 FMGFD5 88000 24 400 0.213101
48 400 0.386859
400 2801 0.762588
6 6

5 2DCS 22000 5 "
700 700

5 2DCS 44000 12 12
24 24
1400 1400

5 2DCS 88000 24 24
48 48
2801 2801

5 2DCS 22000 ?2 }88 | 19.820280 |
100 700

5 2DCS 44000 |12 200 9.521413
24 200 19.060423
200 1400 19.085851

5 2DCS 88000 24 400 4.075161
48 400 8.137236
400 2801 9.867400

50 FB 22000 N/A N/A

50 FB 44000 | WA N/A

50 FB 88000 N/A N/A

50 FM 22000 6 6 0.013189
12 12 0.000647
83 83

50 FM 44000 |12 12 0.546796
24 24 1.232829

> Filter designed using Matlab Filter Design Tool, same as for FMG

Dop-
pler
Error

0.125516
0.178514

0.178512

0.061655

0.113372
0.113367

0.043614

0.245094

0.245086
0.021616

0.178701

0.178679

0.010625

0.113301
0.262803
0.245005
0.244940

0.126409

0.178512
0.178529

0.065900

0.113371

0.113367

0.043476
0.245082

0.245073

0.021781
0.178698

0.178674

0.010871

0.119615

0.114210
0.262251

0.244162

0.244917
0.126381

0.178514

0.178476
0.061972
0.113386
0.113382
0.043617
0.245123
0.245110
0.021597

0.178760

0.178749
0.010686

0.007319
0.007128
0.220343
0.301155
0.301164

# Real # Real
Adds Multiplies
23,690,944 13,827,456
25,366,620 15,019,192
24,844,766 14,664,124
23,305,856 13,581,568
489,609,908 | 296,056,168
232239912 | 139,650,640
215,076,764 | 128278328
480,964,674 | 290,281,604
227,919,852 | 136,765,400
209,209,764 | 124,425,032
471,946,204 | 284,288,952
223,480,084 | 133,812,776
201,729,600 | 119,557,248
26,431,436 15,773,080
25,892,698 15,384,628
23,884,290 13,960,196
25,892,698 15,384,628
25,366,620 15,019,192
23,690,944 13,827,456
25,366,620 15,019,192
24,844,766 14,664,124
23,305,856 13,581,568
489,609,908 | 296,056,168
232239912 | 139,650,640
215,076,764 | 128,278,328
480,964,674 | 290,281,604
227,919,852 | 136,765,400
209,209,764 | 124,425,032
471,946,204 | 284,288,952
223,480,084 | 133,812,776
201,729,600 | 119,557,248
141,304,060 82,049,784
67,624,872 39,163,216
36,531,484 21,346,872
67,624,872 39163216
68,913,712 398,63,904
37,458,688 21,964,288
68,913,712 39,863,904
70,268,488 40,687,760
38,252,352 22,503,040
1,347,144,896 | 799,152,512
648435340 | 382,817,560
320,122,532 | 189,562,184
1,368,745,920 | 8,132,647,68
659,270,656 | 389,896,192
324376272 | 192,408,992
1,389,658,280 | 827,105,616
669,733,976 | 396,822,704
327,326,964 | 194427368
1,362,659,551 | 884,152,522
697,861,722 | 452,686,903
564,902,156 | 366,393,779
20,076,504 12,335,664
11,032,536 6,830,640
3,933,384 2,554,416
11,032,536 6,830,640
6,806,040 4,274,736
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Frequency | Method | F(Hg) D L 7 Error
(MHz) (us)
166 166 14.029722
50 FM 88000 24 24 0.242958
48 I 0444009
333 333
50 FMG' 22000 L6 6 0166738
12 12 12.430606
83 83 8.083229
50 FMG' 44000 |12 12 5.907726
24 24 1.772533
166 166 7.230216
50 FMG! 88000 | 24 24 0.109891
48 48 0.720542
333 333 5.585045
50 FMGFD® | 22000 |© 6 1.896360
12 12 12.262696
83 83 7.169745
50 FMGFD® | 44000 |2 12 5.685575
24 24 0.127705
166 166 8.201645
50 FMGFD’ | 88000 |24 24 1.190068
48 48 0.612315
333 333 7.218809
50 FMGFD* | 22000 [© 6 1.809923
12 12 10.579849
83 83 7.854864
50 FMGFD* | 44000 |12 12 4.853693
24 24 1.920431
166 166 7.291491
50 FMGFD* | 88000 |24 24 0.126921
48 48 0.653187
333 333
50 2DCS 22000 6 6
12 12
83 83
50 2DCS 44000 |12 12
24 24
166 166
50 2DCS 88000 | 24 24
48 48
333 333
500 FB 22000 | NA [ NA
500 FB 44000 | NA N/A 0
500 FB 88000 N/A N/A )
500 FM 22000 |6 6 0.419396
7 7 0.635383
8 8 0.150217
500 FM 44000 12 12 0.052927
14 14 0.822300
18 18
500 FM 88000 | 24 24 0.983472
28 28 0.355426
33 33 0.958216
500 FMG!' 22000 |6 6 0.671609
7 7 3.563571
8 8 2.172152
500 FMG' 44000 |12 12 6.235831
14 14 2.857153
18 18 1.586039
500 FMG' 88000 |24 24 0.681083
28 28 0.957560

| 0.151592

- 0.007169

0.108862

0.151487

0151745 |

0.001778

0.007340

0.221603

0.300911

0.109366

0151560 |

0.151645

0.000779

0.007161

0.221698

0.301164

0.300841

0.109351

0.151666

0.000776

0.007331

0.221589

0.301159

0.300903

0.109390

0.151559

0.151652

- 0.000857 |

0.013532

0.008140

0.221732

0.300257

0300885 |

0.109118

0.151565

0.000459

5x10°

2x10°°

3x10°°

0.209007

0.240312

0.109282

0.163491

0.064482

0.247195

0.183001

0.112369

0.208471

0.239282

0.110565

0.163854

0.063606

0.245018

0.185293

# Real # Real
Adds Multiplies
3,519,576 2,308,656
6,806,040 4,274,736
4,839,960 3,095,088
3,525,960 2,308,656
20,252,520 16,912,080
11,120,544 11,231,040
3,946,128 6,810,912
11,120,544 11,231,040
6,850,056 3,588,304
3,525,960 6,560,400
6,850,056 3,588,304
4,861,968 7,364,640
3,529,152 6,566,784
26,431,436 15,773,080
25,892,698 153,834,628
25,588,420 15,058,312
25,892,698 15,384,628
25,366,620 15,019,192
25,257,780 14,835,304
25,366,620 15,019,192
24,844,766 14,664,124
41,164,064 24,042,048
26,431,436 15,773,080
25,892,698 15,384,628
25,588,420 15,058,312
25,892,698 15,384,628
25,366,620 15,019,192
25,257,780 14,835,304
25,366,620 15,019,192
24,844,766 14,664,124
41,164,064 24,042,048
141,304,060 82,049,784
67,624,872 39,163,216
34,554,672 20,037,216
67,624,872 39,163,216
68,913,712 39,863,904
35,351,316 20,545,064
68,913,712 39,863,904
70,268,488 40,687,760
67,061,472 38,882,752
1,362,659,551 | 884,152,522
697,861,722 | 452,686,903
564,902,156 | 366,393,779
20,076,504 12,335,664
11,032,440 6,830,640
11,032,344 6,830,640
11,032,536 6,830,640
6,805,368 4,274,736
6,805,752 4,274,736
6,806,040 4,274,736
6,806,040 4,274,736
6,806,328 4,274,736
20,252,520 16,912,080
11,183,304 11,356,560
11,164,344 11,318,640
11,120,544 11,231,040
6,880,300 3,649,792
6,864,432 3,617,056
6,850,056 3,588,304
6,843,768 3,575,728
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Frequency | Method | F,(Hz) D L T Error # Real # Real
(MHz) (us) Adds Multiplies
33 33 1.142923 [ORRRRAY 6,838,344 8,564,880
500 FMGFD® | 22000 [¢ 6 1313849 [RRQRERYAL 26,431,436 15,773,080
7 7 2.165415 [RURAELRL) 13,829,944 8,152,176
8 8 1.258024 [UBXIEYLS 13,422,792 7,941,520
500 FMGFD® | 44000 |12 12 5.895590 |ORNIEEI 25,892,698 15,384,628
14 14 2.098840 |INONLEYAZ! 13,929,870 8,193,692
18 18 0.175996 | 0.062676 27,325,474 16,121,412
500 FMGED? | 88000 |24 24 1500222 [EUREYEYY] 25,366,620 15,019,192
28 28 1.033181 [INONERE] 24,526,648 14,546,544
33 33 1258652 [RURRNEAES 48,967,984 29,066,848
500 FMGED* | 22000 L6 6 IWERIREE  0.224350 26,431,436 15,773,080
7 7 2.065287 [OPIEIT] 13,829,944 8,152,176
8 8 0.403180 | 0.240375 13,422,792 7,941,520
500 FMGED* | 44000 [12 12 5.189911 |ORTEENE] 25,892,698 15,384,628
14 14 2.222264 IREERRE] 13,929,870 8,193,692
18 18 0.853834 | 0.062767 27,325,474 16,121,412
500 FMGFED* | 88000 |24 24 0.450447 | 0.244974 25,366,620 15,019,192
28 28 0.185607 24,526,648 14,546,544
33 33 0.670270 | 0.111178 48,967,984 29,066,848
500 2DCS 22000 L6 6 OB 141,304,060 82,049,784
7 7 0.206698 73,809,616 42,820,000
8 8 0.243241 71,950,752 41,714,752
500 2DCS 44000 |12 12 0.109960 67,624,872 39,163,216
14 14 0.167318 35,432,552 20,562,640
18 18 0.065335 72,227,776 41,799,552
500 2DCS ]8000 |24 24 0.244812 68,913,712 39,863,904
28 28 0.185861 67,490,508 390,29,656
33 33 0.112195 66,196,364 38,269,208

Table 3. Test Results

Notes:

FB = Filter Bank

FM = Fine Mode

FMG = Fine Mode Generic

FMGEFD = Fine Mode Generic Frequency Domain

2DCS = 2-D Cross Spectra

! Filter used for test case was designed using Matlab firl command
? Filter used for test case was designed using Matlab Filter Design Tool
> Window used for test case was a Tukey window

* Filter used for test case was same one as for FMG

> Filter designed using Matlab Filter Design Tool, same as for FMG
B Good accuracy

[] Degraded accuracy
[l Bad accuracy

All of the methods with the exception of the Filter Bank method were executed for three decima-
tion rates (low, medium, and high), for each bandwidth (narrow, medium, and wide) for each frequency

(HF, VHF, and UHF). There were a total of 216 tests. When executing the “Fine-Mode”, “Fine-Mode”
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Generic, and “Fine-Mode” Generic Frequency Domain methods the filter/window lengths (L) were set
equal to decimation rate (D). For the 2-D Cross Spectra method the window length for s; was set equal to
the decimation rate. The purpose of doing this was to provide a common link between all the methods
(same decimation). Though this was inefficient in terms of accuracy for some of the methods (“Fine-
Mode” Generic, “Fine-Mode” Generic Frequency Domain, and 2-D Cross Spectra have their worst accu-
racy when L = D), it was made up in terms of computational complexity.

The “Fine-Mode” Generic, “Fine-Mode” Generic Frequency Domain, and 2-D Cross Spectra
methods were all re-run for the HF frequency test cases with decimation rates such that L > D and better
filters for the “Fine-Mode” Generic and “Fine-Mode” Generic Frequency Domain methods. This was
executed in order to observe the effects of having a better filter and thus trying to observe better accuracy
(trading computational complexity vs. accuracy). As mentioned in Chapter 3 Section 3.3, the optimum
value of L for the 2-D Cross Spectra method is L = D/0.88 was chosen because this reduces the aliasing
caused by decimation and windowing (allows for all the nulls from the spectral replicas to line up at one
point when the true time-delay (z) # 0). The value of L for the 2-D Cross Spectra method was run at L=D
and then at L >D, so that it could be better compared to the “Fine-Mode” Generic and “Fine-Mode” Ge-
neric Frequency Domain methods (common link between all the methods was the decimation and fil-
ter/window lengths). Doing this for the 2-D Cross Spectra test set was intuitive because since there was
no time-delay imparted to the signal data, all the nulls from the decimation and windowing would line up.
As can be seen in Table 3, for the 2-D Cross Spectra method, when L > D accuracy did improve, but not
to the desired amount (< 1 us of error).

As can be seen from Table 3, the Filter Bank method produced the best accuracy among all the
methods at the cost that it was the most computationally complex overall when L=D for all the other
methods. This makes sense because the Filter Bank method is a “brute-force” method that does not have
any decimation. Without decimation, very good accuracy is expected.

Overall, when L=D, the “Fine-Mode” method was the least computationally complex followed

closely by the “Fine-Mode” Generic. The “Fine-Mode” Generic Frequency Domain and then the 2-D
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Cross Spectra methods were the next best computationally complex methods, respectively, with the 2-D
Cross Spectra method being the 2™ worst to the Filter Bank Method in terms of computational complex-
ity. When viewing all the methods for L > D, the 2-D Cross Spectra method became the most computa-
tionally complex with the “Fine-Mode” Generic Frequency Domain and Filter Bank methods being the
next closest (toss-up between the two) with the “Fine-Mode™ Generic and “Fine-Mode” being the 2" and
1* least computationally complex methods. For all cases (L=D and L > D), the “Fine-Mode” method was
the least computationally complex.

After the Filter Bank method, in terms of accuracy, depending upon the test case, the results var-
ied as to which method was best. Table 4 through Table 30 are the results of extracted the data from
Table 3 and examining them on a case-by-case basis to determine the best method overall. For each test
case, the best method for TDOA and FDOA were selected when L=D. The selection was based on the
lowest errors with some small range. These methods have their errors highlighted in yellow. For the HF
test cases, those test cases for L>D were also examined and the best methods when considering both L>D
and L=D where selected. These methods have their errors highlighted in light green. In the special case
that the L=D error or the L=D and L>D examinations yielded the same number, the errors are highlighted

in teal. The notes for Table 4 through Table 30 as well as the color codes are listed after Table 30.

Frequency | Bandwidth | Method L D TDhoA FDOA Real Adds Real Mul-
(Hz) error (us) error tiplies
(Hz)
HF 5,000 FM 6 6 0.203434 | 0.113341 20,076,504 12,335,664
HF 5,000 FMG' 6 6 0.028005 | 0.113360 20,252,520 16,912,080
HF 5,000 FMG' 100 6 0.188807 | 0.113383 53,266,344 | 82,939,728
HF 5,000 FMG? 6 6 0.040020 | 0.113359 20,252,520 16,912,080
HF 5,000 FMG? 100 6 0.199295 | 0.113379 53,266,344 | 82,939,728
HF 5,000 FMGFD* 6 6 1.877667 | 0.113341 26,431,436 15,773,080
HF 5,000 FMGFD* 100 6 0.202034 | 0.113372 489,609,908 | 296,056,168
HF 5,000 FMGFD’ 6 6 1.670361 | 0.113342 26,431,436 15,773,080
HF 5,000 FMGFD’ 100 6 0.198511 | 0.113371 489,609,908 | 296,056,168
HF 5,000 FMGFD? 6 6 1.961396 | 0.113341 26,431,436 15,773,080
HF 5,000 FMGFD? 100 6 0.203715 | 0.113371 489,609,908 | 296,056,168
HF 5,000 2DCS 6 6| 471.928694 | 0.119615 141,304,060 | 82,049,784
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Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
HF 5,000 2DCS 100 6 19.82028 | 0.113386 | 1,347,144,896 | 799,152,512
Table 4 HF Narrow Band Low Decimation Test Case Results
Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) Error (us) error tiplies
(Hz)
HF 5,000 FM 12| 12 0.403557 | 0.113305 11,032,536 12
HF 5,000 FMG' 12 | 12 | 12.655625 | 0.113340 11,120,544 12
HF 5,000 FMG' 100 | 12 0.290949 | 0.113380 26,576,184 100
HF 5,000 FMG’ 12| 12 0.446975 | 0.113305 11,120,544 12
HF 5,000 FMG’ 100 | 12 0.371750 | 0.113378 26,576,184 100
HF 5,000 FMGFD' 12| 12| 10.892650 | 0.113327 25,892,698 12
HF 5,000 FMGFD' 100 | 12 0.408525 | 0.113367 | 232,239,912 100
HF 5,000 FMGFD’ 12| 12 0.522479 | 0.113301 25,892,698 12
HF 5,000 FMGFD’ 100 | 12 0.419154 | 0.113367 | 232,239,912 100
HF 5,000 FMGFD’ 12| 12 0.398849 | 0.113367 | 232,239,912 12
HF 5,000 FMGFD’ 100 | 12 | 12.587743 | 0.113326 25,892,698 100
HF 5,000 2DCS 12 | 12 | 536.071746 | 0.114210 67,624,872 12
HF 5,000 2DCS 100 | 12| 39.655814 | 0.113382 | 648,435,340 100
Table S HF Narrow Band Medium Decimation Test Case Results
Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) Error (us) error tiplies
(Hz)
HF 5,000 FM 700 | 700 | 73.750255 | 0.264644 3,240,408 2,148,912
HF 5,000 FMG' 700 | 700 | 52.517265 | 0.262709 3,241,920 6,385,536
HF 5,000 FMG' 700 | 100 1.463614 | 0.045306 16,410,696 | 31,740,048
HF 5,000 FMG’ 700 | 700 11.643097 | 0.263071 3,241,920 6,385,536
HF 5,000 FMG’ 700 | 100 0.901442 | 0.045704 16,410,696 | 31,740,048
HF 5,000 FMGFD* 700 | 700 | 53.583883 | 0.262675 23,884,290 | 13,960,196
HF 5,000 FMGFD* 700 | 100 0.729742 | 0.043614 | 215,076,764 | 128,278,328
HF 5,000 FMGFD’ 700 | 700 6.320595 | 0.262803 23,884,290 | 13,960,196
HF 5,000 FMGFD’ 700 | 100 3.462016 | 0.043476 | 215,076,764 | 128,278,328
HF 5,000 FMGFD’ 700 | 700 | 28.659983 | 0.262602 23,884,290 | 13,960,196
HF 5,000 FMGFD’ 700 | 100 0.504922 | 0.043591 | 215,076,764 | 128,278,328
HF 5,000 2DCS 700 | 700 | 271.531861 | 0.262251 36,531,484 | 21,346,872
HF 5,000 2DCS 700 | 100 | 38.572067 | 0.043617 | 320,122,532 | 189,562,184
Table 6 HF Narrow Band High Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) Error (us) error tiplies
(Hz)
HF 10,000 FM 12 ] 12 0.438876 | 0.245003 11,032,536 6,830,640
HF 10,000 FMG' 12 12 5.969105 | 0.245018 11,120,544 11,231,040
HF 10,000 FMG' 200 | 12 0.433369 | 0.244906 44,057,568 | 77,105,088
HF 10,000 FMG’ 12 12 0.434742 | 0.244995 11,120,544 11,231,040
HF 10,000 FMG” 200 | 12 0.436841 | 0.244948 44,057,568 | 77,105,088
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HF 10,000 FMGFD* 12| 12 4.937427 | 0.245023 25,892,698 | 15,384,628
HF 10,000 FMGFD* 200 | 12 0.429230 | 0.245094 | 480,964,674 | 290,281,604
HF 10,000 FMGFD’ 12| 12 0.624674 | 0.245005 25,892,698 | 15,384,628
HF 10,000 FMGFD’ 200 | 12 0.441033 | 0.245082 | 480,964,674 | 290,281,604
HF 10,000 FMGFD’ 12 ] 12 5.772418 | 0.245024 25,892,698 | 15,384,628
HF 10,000 FMGFD’ 200 | 12 0.428097 | 0.245093 | 480,964,674 | 290,281,604
HF 10,000 2DCS 12 | 12| 267.974226 | 0.244162 67,624,872 39163216
HF 10,000 2DCS 200 | 12 9.521413 | 0.245123 | 1,368,745,920 | 8,132,647,68
Table 7 HF Medium Band Low Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) Error (us) error tiplies
(Hz)
HF 10,000 FM 24 | 24 0.902120 | 0.245004 6,806,040 4,274,736
HF 10,000 FMG' 24 | 24 1.468118 | 0.244926 6,850,056 8,588,304
HF 10,000 FMG' 200 | 24 0.859447 | 0.244909 22,266,696 | 39,421,584
HF 10,000 FMG” 24| 24 0.706200 | 0.244941 6,850,056 8,588,304
HF 10,000 FMG” 200 | 24 0.873686 | 0.244948 22,266,696 | 39,421,584
HF 10,000 FMGFD" 24 | 24 1.635516 | 0.244922 25,366,620 15,019,192
HF 10,000 FMGFD* 200 | 24 0.877294 | 0.245086 | 227,919,852 | 136,765,400
HF 10,000 FMGFD’ 24 | 24 0.828785 | 0.244940 25,366,620 | 15,019,192
HF 10,000 FMGFD’ 200 | 24 0.893065 | 0.245073 | 227,919,852 | 136,765,400
HF 10,000 FMGFD’ 24| 24 0.421330 | 0.244913 25,366,620 | 15,019,192
HF 10,000 FMGFD’ 200 | 24 0.869259 | 0.245084 | 227,919,852 | 136,765,400
HF 10,000 2DCS 24 | 24| 233.660125 | 0.244917 68,913,712 | 398,63,904
HF 10,000 2DCS 200 | 24 19.060423 | 0.245110 | 659,270,656 | 389,896,192
Table 8 HF Medium Band Medium Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) Error (us) error tiplies
(Hz)
HF 10,000 FM 1400 | 1400 | 279.987817 | 0.125448 3,235,608 2,127,408
HF 10,000 FMG' 1400 | 1400 | 201.766702 | 0.125538 3,236,376 6,429,744
HF 10,000 FMG' 1400 | 200 0.500552 | 0.025317 15,786,024 | 31,080,528
HF 10,000 FMG’ 1400 | 1400 1.450071 | 0.125611 3,236,376 6,429,744
HF 10,000 FMG’ 1400 | 200 1.273246 | 0.022203 15,786,024 | 31,080,528
HF 10,000 FMGFD" | 1400 | 1400 [ 200.623807 | 0.125516 23,690,944 | 13,827,456
HF 10,000 FMGFD" | 1400 | 200 0.126728 | 0.021616 | 209,209,764 | 124,425,032
HF 10,000 FMGFD® | 1400 | 1400 | 341.533573 | 0.126409 23,690,944 | 13,827,456
HF 10,000 FMGFD® | 1400 | 200 0.335380 | 0.021781 | 209,209,764 | 124,425,032
HF 10,000 FMGFD’ | 1400 | 1400 | 193.979748 | 0.125223 23,690,944 | 13,827,456
HF 10,000 FMGFD’ | 1400 | 200 0.081991 | 0.021598 | 209,209,764 | 124,425,032
HF 10,000 2DCS 1400 | 1400 | 348.710958 | 0.126381 37,458,688 | 21,964,288
HF 10,000 2DCS 1400 | 200 19.085851 | 0.021597 | 324,376,272 | 192,408,992
Table 9 HF Medium Band High Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) Error (us) error tiplies
(Hz)
HF 20,000 FM 24 24 0.314139 | 0.178531 6,806,040 4,274,736
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HF 20,000 FMG' 24 24 0.181176 | 0.178517 6,850,056 8,588,304
HF 20,000 FMG' 400 24 0.301804 | 0.178684 39,642,504 | 74,173,200
HF 20,000 FMG” 24 24 0.067634 | 0.178515 6,850,056 8,588,304
HF 20,000 FMG” 400 24 0.256963 | 0.178709 39,642,504 | 74,173,200
HF 20,000 FMGFD* 24 24 0.194307 | 0.178514 25,366,620 15,019,192
HF 20,000 FMGFD* 400 24 0.209519 | 0.178701 471,946,204 | 284,288,952
HF 20,000 FMGFD’ 24 24 0.117422 | 0.178512 25,366,620 15,019,192
HF 20,000 FMGFD’ 400 24 0.213101 | 0.178698 | 471,946,204 | 284,288,952
HF 20,000 FMGFD’ 24 24 1.259093 | 0.178523 25,366,620 15,019,192
HF 20,000 FMGFD’ 400 24 0.208732 | 0.178702 | 471,946,204 | 284,288,952
HF 20,000 2DCS 24 24 | 116.021828 | 0.178514 68,913,712 | 39,863,904
HF 20,000 2DCS 400 24 4.075161 | 0.178760 | 1,389,658,280 | 827,105,616
Table 10 HF Wide Band Low Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) Error (us) error tiplies
(Hz)
HF 20,000 FM 48 48 0.620008 | 0.178579 4,839,960 3,095,088
HF 20,000 FMG' 48 48 0.910654 | 0.178509 4,861,968 7,364,640
HF 20,000 FMG' 400 48 0.613012 | 0.178686 20,221,032 | 38,082,768
HF 20,000 FMG” 48 48 0.523144 | 0.178527 4,861,968 7,364,640
HF 20,000 FMG” 400 48 0.503396 | 0.178697 20,221,032 | 38,082,768
HF 20,000 FMGFD" 48 48 0.872296 | 0.178512 24,844,766 14,664,124
HF 20,000 FMGFD* 400 48 0.445662 | 0.178679 | 223,480,084 | 133,812,776
HF 20,000 FMGFD’ 48 48 0.577472 | 0.178529 24,844,766 14,664,124
HF 20,000 FMGFD’ 400 48 0.386859 | 0.178674 | 223,480,084 | 133,812,776
HF 20,000 FMGFD’ 48 48 0.852090 | 0.178508 24,844,766 14,664,124
HF 20,000 FMGFD’ 400 48 0.435327 | 0.178676 | 223,480,084 | 133,812,776
HF 20,000 2DCS 48 48 95.916826 | 0.178476 70,268,488 | 40,687,760
HF 20,000 2DCS 400 48 8.137236 | 0.178749 | 669,733,976 | 396,822,704
Table 11 HF Wide Band Medium Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA | Real Adds | Real Mul-
(Hz) Error (us) error tiplies
(Hz)
HF 20,000 FM 2801 | 2801 | 333.138259 | 0.061644 3,219,480 2,118,192
HF 20,000 FMG' 2801 | 2801 | 171.796572 | 0.061644 3,219,864 6,421,296
HF 20,000 FMG' 2801 | 400 0.212516 | 0.018019 15,194,712 | 30,168,240
HF 20,000 FMG’ 2801 | 2801 2.527392 | 0.065953 3,219,864 6,421,296
HF 20,000 FMG’ 2801 | 400 0.293661 | 0.012058 15,194,712 | 30,168,240
HF 20,000 FMGFD* | 2801 | 2801 | 171.373295 | 0.061655 | 23,305,856 | 13,581,568
HF 20,000 FMGFD* | 2801 | 400 1.103619 | 0.010625 | 201,729,600 | 119,557,248
HF 20,000 FMGFD" | 2801 | 2801 | 11.362605 | 0.065900 | 23,305,856 | 13,581,568
HF 20,000 FMGFD" | 2801 | 400 0.762588 | 0.010871 | 201,729,600 | 119,557,248
HF 20,000 FMGFD’ | 2801 | 2801 | 174.374113 | 0.061878 | 23,305,856 | 13,581,568
HF 20,000 FMGFD’ | 2801 | 400 0.980649 | 0.010554 | 201,729,600 | 119,557,248
HF 20,000 2DCS 2801 | 2801 | 186.022185 | 0.061972 | 38,252,352 | 22,503,040
HF 20,000 2DCS 2801 | 400 9.867400 | 0.010686 | 327,326,964 | 194,427,368

Table 12 HF Wide Band High Decimation Test Case Results
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Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 5,000 FM 6 6 0.013189 | 0.007319 20,076,504 | 12,335,664
VHF 5,000 FMG' 6 6 0.166738 | 0.007340 20,252,520 | 16,912,080
VHF 5,000 FMGFD* 6 6 1.809923 | 0.007331 26,431,436 | 15,773,080
VHF 5,000 FMGEFD’ 6 6 1.896360 | 0.007329 26,431,436 | 15,773,080
VHF 5,000 2DCS 6 6 | 472.101980 | 0.013532 141,304,060 | 82,049,784
Table 13 VHF Narrow Band Low Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 5,000 FM 12| 12 0.000647 | 0.007128 11,032,536 6,830,640
VHF 5,000 FMG! 12| 12 12.430606 | 0.007234 11,120,544 11,231,040
VHF 5,000 FMGFD* 12| 12| 10.579849 | 0.007169 25,892,698 | 15,384,628
VHF 5,000 FMGEFD’ 12 | 12| 12.262696 | 0.007161 25,892,698 | 153,84,628
VHF 5,000 2DCS 12 | 12| 536.056858 | 0.008140 67,624,872 | 39,163,216
Table 14 VHF Narrow Band Medium Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 5,000 FM 83 | 83 1.806011 | 0.220343 3,933,384 2,554,416
VHF 5,000 FMG' 83 | 83 8.083229 | 0.221603 3,946,128 6,810,912
VHF 5,000 FMGFD* 83 | 83 7.854864 | 0.221589 25,588,420 | 15,058,312
VHF 5,000 FMGEFD’ 83 | 83 7.169745 | 0.221698 25,588,420 | 15,058,312
VHF 5,000 2DCS 83 | 83 | 349.286349 | 0.221732 34,554,672 | 20,037,216
Table 15 VHF Narrow Band High Decimation Test Case Results
Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 10,000 FM 12| 12 0.546796 | 0.301155 11,032,536 6,830,640
VHF 10,000 FMG' 12| 12 5.907726 | 0.301125 11,120,544 | 11,231,040
VHF 10,000 FMGFD* 12| 12 4.853693 | 0.301159 25,892,698 | 15,384,628
VHF 10,000 FMGFD’ 12| 12 5.685575 | 0.301164 25,892,698 | 15,384,628
VHF 10,000 2DCS 12 | 12| 267.971858 | 0.300257 67,624,872 | 39,163,216
Table 16 VHF Medium Band Low Decimation Test Case Results
Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 10,000 FM 24 | 24 1.232829 | 0.301164 6,806,040 4,274,736
VHF 10,000 FMG' 24 | 24 1.772533 | 0.300911 6,850,056 8,588,304
VHF 10,000 FMGFD* 24 | 24 1.920431 | 0.300903 25,366,620 | 15,019,192
VHF 10,000 FMGFD’ 24 | 24 0.127705 | 0.300841 25,366,620 | 15,019,192
VHF 10,000 2DCS 24 | 24| 233.948641 | 0.300885 68,913,712 | 39,863,904
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Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 10,000 FM 166 | 166 | 14.029722 | 0.108862 3,519,576 2,308,656
VHF 10,000 FMG' 166 | 166 7.230216 | 0.109366 3,525,960 6,560,400
VHF 10,000 FMGFD* 166 | 166 7.291491 | 0.109390 25,257,780 | 14,835,304
VHF 10,000 FMGFD’ 166 | 166 8.201645 | 0.109351 25,257,780 | 14,835,304
VHF 10,000 2DCS 166 | 166 | 158.616845 | 0.109118 35,351,316 | 20,545,064
Table 18 VHF Medium Band High Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 20,000 FM 24 | 24 0.242958 | 0.151487 6,806,040 4,274,736
VHF 20,000 FMG' 24 | 24 0.109891 | 0.151560 6,850,056 8,588,304
VHF 20,000 FMGFD* 24 | 24 0.126921 | 0.151559 25,366,620 | 15,019,192
VHF 20,000 FMGFD’ 24 | 24 1.190068 | 0.151592 25,366,620 | 15,019,192
VHF 20,000 2DCS 24 | 24 ] 116.091211 | 0.151565 68,913,712 | 39,863,904
Table 19 VHF Wide Band Low Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 20,000 FM 48 | 48 0.444009 | 0.151745 4,839,960 3,095,088
VHF 20,000 FMG' 48 | 48 0.720542 | 0.151645 4,861,968 7,364,640
VHF 20,000 FMGFD* 48 | 48 0.653187 | 0.151652 24,844,766 | 14,664,124
VHF 20,000 FMGFD’ 48 | 48 0.612315 | 0.151666 24,844,766 | 14,664,124
VHF 20,000 2DCS 48 | 48| 96.019831 | 0.151576 70,268,488 | 40,687,760
Table 20 VHF Wide Band Medium Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
VHF 20,000 FM 333 ] 333 3.936305 | 0.001778 3,525,960 2,308,656
VHF 20,000 FMG' 333 ] 333 5.585045 | 0.000779 3,529,152 6,566,784
VHF 20,000 FMGFD* 333 ] 333 5.569979 | 0.000857 41,164,064 | 24,042,048
VHF 20,000 FMGFD’ 333 ] 333 7.218809 | 0.000776 41,164,064 | 24,042,048
VHF 20,000 2DCS 333 1333 | 64.265958 | 0.000459 67,061,472 | 38,882,752
Table 21 VHF Wide Band High Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
UHF 5,000 FM 6 6 0.419396 | 0.224765 20,076,504 | 12,335,664
UHF 5,000 FMG' 6 6 0.671609 | 0.224621 20,252,520 | 16,912,080
UHF 5,000 FMGFD* 6 6 1.245058 | 0.224350 26,431,436 | 15,773,080
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UHF 5,000 FMGFD’ 6 6 1.313849 | 0.224241 26,431,436 | 15,773,080
UHF 5,000 2DCS 6 6 | 477.922349 | 0.218929 | 141,304,060 | 82,049,784
Table 22 UHF Narrow Band Low Decimation Test Case Results
Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-

(Hz) error (us) error tiplies
(Hz)
UHF 5,000 FM 7 7 0.635383 | 0.209007 11,032,440 6,830,640
UHF 5,000 FMG' 7 7 3.563571 | 0.208471 11,183,304 | 11,356,560
UHF 5,000 FMGFD* 7 7 2.065287 | 0.208663 13,829,944 8,152,176
UHF 5,000 FMGFD’ 7 7 2.165415 | 0.208630 13,829,944 8,152,176
UHF 5,000 2DCS 7 7 1522.907829 | 0.206698 73,809,616 | 42,820,000
Table 23 UHF Narrow Band Medium Decimation Test Case Results
Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
UHF 5,000 FM 8 8 0.150217 | 0.240312 11,032,344 6,830,640
UHF 5,000 FMG' 8 8 2.172152 | 0.239282 11,164,344 | 11,318,640
UHF 5,000 FMGFD* 8 8 0.403180 | 0.240375 13,422,792 7,941,520
UHF 5,000 FMGFD’ 8 8 1.258024 | 0.240476 13,422,792 7,941,520
UHF 5,000 2DCS 8 8 | 543.668976 | 0.243241 71,950,752 | 41,714,752
Table 24 UHF Narrow Band High Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
UHF 10,000 FM 2] 12 0.052927 | 0.109282 11,032,536 6,830,640
UHF 10,000 FMG' 12| 12 6.235831 | 0.110565 11,120,544 | 11,231,040
UHF 10,000 FMGFD* 2] 12 5.189911 | 0.109908 25,892,698 | 15,384,628
UHF 10,000 FMGFD’ 12 ] 12 5.895590 | 0.109808 25,892,698 | 15,384,628
UHF 10,000 2DCS 12 | 12 | 268.733374 | 0.109960 67,624,872 | 39,163,216
Table 25 UHF Medium Band Low Decimation Test Case Results
Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
UHF 10,000 FM 14| 14 0.822300 | 0.163491 6,805,368 4,274,736
UHF 10,000 FMG' 14| 14 2.857153 | 0.163854 6,880,800 8,649,792
UHF 10,000 FMGFD* 4] 14 2.222264 | 0.163833 13,929,870 8,193,692
UHF 10,000 FMGFD’ 14| 14 2.098840 | 0.163774 13,929,870 8,193,692
UHF 10,000 2DCS 14| 14| 269.279843 | 0.167318 35,432,552 | 20,562,640
Table 26 UHF Medium Band Medium Decimation Test Case Results
Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
UHF 10,000 FM 18| 18 1.157910 | 0.064482 6,805,752 4,274,736
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UHF 10,000 FMG' 18| 18 1.586039 | 0.063606 6,864,432 8,617,056
UHF 10,000 FMGFD* 18| 18 0.853834 | 0.062767 27,325,474 | 16,121,412
UHF 10,000 FMGFD? 18| 18 0.175996 | 0.062676 27,325,474 | 16,121,412
UHF 10,000 2DCS 18 | 18 | 266.148526 | 0.065335 72,227,776 | 41,799,552
Table 27 UHF Medium Band High Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
UHF 20,000 FM 24 | 24 0.983472 | 0.247195 6,806,040 4,274,736
UHF 20,000 FMG' 24 | 24 0.681083 | 0.245018 6,850,056 8,588,304
UHF 20,000 FMGFD* 24 | 24 0.450447 | 0.244974 25,366,620 | 15,019,192
UHF 20,000 FMGFD’ 24 | 24 1.500222 | 0.244327 25,366,620 | 15,019,192
UHF 20,000 2DCS 24 | 24| 115251124 | 0.244812 68,913,712 | 39,863,904
Table 28 UHF Wide Band Low Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
UHF 20,000 FM 28 | 28 0.355426 | 0.183001 6,806,040 4,274,736
UHF 20,000 FMG! 28 | 28 0.957560 | 0.185293 6,843,768 8,575,728
UHF 20,000 FMGFD* 28 | 28 1.059172 | 0.185607 24,526,648 | 14,546,544
UHF 20,000 FMGFD’ 28 | 28 1.033181 | 0.185804 24,526,648 | 14,546,544
UHF 20,000 2DCS 28 | 28| 112.199927 | 0.185861 67,490,508 | 390,29,656
Table 29 UHF Wide Band Medium Decimation Test Case Results
Frequency | Bandwidth | Method | L D TDOA FDOA Real Adds | Real Mul-
(Hz) error (us) error tiplies
(Hz)
UHF 20,000 FM 33| 33 0.958216 | 0.112369 6,806,328 4,274,736
UHF 20,000 FMG' 33| 33 1.142923 | 0.111754 6,838,344 8,564,880
UHF 20,000 FMGFD* 33| 33 0.670270 | 0.111178 48,967,984 | 29,066,348
UHF 20,000 FMGFD? 33| 33 1.258652 | 0.111416 48,967,984 | 29,066,348
UHF 20,000 2DCS 33| 33| 106.784758 | 0.112195 66,196,364 | 38,269,208
Table 30 UHF Wide Band High Decimation Test Case Results
Notes:

FB = Filter Bank
FM = Fine Mode
FMG = Fine Mode Generic
FMGFD = Fine Mode Generic Frequency Domain
2DCS = 2-D Cross Spectra
! Filter used for test case was designed using Matlab firl command

? Filter used for test case was designed using Matlab Filter Design Tool
* Window used for test case was a Tukey window

* Filter used for test case was same one as for FMG
> Filter designed using Matlab Filter Design Tool, same as for FMG
[] Best accuracy for L=D only



93

[ Best accuracy for both L=D and L > D

] When Best accuracy when L=D is the same as for both L=D and L > D

As noted in Chapter 3 and from the results displayed in Table 4 through Table 12, accuracy
tends to improve for methods when L>D as opposed to when L=D. However from the results obtained
from the test cases, it is clear that filter/window used plays an important role in determining the accuracy
of the correlation. An observation made from the results shows that what were considered “better” fil-
ters/windows from Chapter 4 Section 4.2 in some of the HF test cases were not the “better” fil-
ters/windows after all. Some of the other filters/windows performed significantly better, in some of the
test cases.

In terms of accuracy regarding the methods with data reduction (e.g. decimation) there was no
clear-cut best method. However, the 2-D Cross Spectra method performed the poorest in TDOA accu-
racy. TDOA accuracy improved for this method when L>D, but it was still the worst method in TDOA
accuracy. It is unclear as to why. An analysis was performed on select cases using this method to verify
the correctness of the coding of the algorithm. A visual examination of the TDOA dimension of the CAF
surface showed that in all the cases, the surface looks fine, but upon zooming in around the peak, the peak
is not close to the expected value of 0 ns. From this information, it was believed that the Matlab fftshift
applied to the DFT in order to center the DFT at zero frequency was re-ordering the data incorrectly and
thus creating an incorrect surface. This hypothesis was tested by examining the code and running a test
where DFTs followed by the fftshifts were taken on the individual columns of the CS and rows of the
Apoppler matrices instead of the matrices themselves, the same results were produced as when DFTs fol-
lowed by fftshifts were taken on the entire matrices. Further study is suggested to determine why the
TDOA accuracy is grossly different from the other methods. It is believed that the method has been
coded correctly in Matlab.

It is clear from Table 4 - Table 30 that the results are dependent upon the bandwidth over the

sampling rate. In order to put the results from Table 4 - Table 30 into perspective, the Cramer-Rao lower



bounds (CRLB) were computed for TDOA and FDOA for each of the test frequencies (HF, VHF, and

UHF). The plots for the CRLB for TDOA and FDOA are shown in Figure 39 and Figure 40, respec-

tively.
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Figure 40 Cramer-Rao Lower Bounds for FDOA
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. TDOA CRLB
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Figure 41 Cramer-Rao Lower Bounds for TDOA with Best Test Result Values from Tables 4 -30
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Figure 42 Cramer-Rao Lower Bound for FDOA with Best Test Result Values from Tables 4 - 30

The equations used to compute the CRLB were 7 and 8 from [1]. When calculating the CRLB the noise
bandwidth was assumed to be flat (rectangular) and was set equal to the signal bandwidth and the as-
sumptions made in equations 11b and 12b from [1] were also applied. Equation 13 from [1] was used to
calculate the effective signal-to-noise-ratio (SNR). As mentioned in Chapter 4 Section 4.2, the SNR on
each stream was assumed to be the same since no fading effects were simulated on the data. Therefore,
when calculating the CRLBs, only cases where y,=y, were considered. Since the CRLB is a measure of
the best possible accuracy, from comparing the results obtained from Table 4 - Table 30 and the CRLB
from Figure 39 and Figure 40, it is clear that the results obtained best match the effective SNR range from
<15 dB. Given that there was no noise added to the test signals and that there was ~40 dB of processing

gain, the results obtained for the data reduction methods are not as expected. The highlighted best values
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obtained from the test results for TDOA and FDOA from Table 4 - Table 30 are superimposed on the
CRLB plots in Figure 41- Figure 42. Some values are below the CRLB. Given that there was no noise
present, this is expected. However, these are just the best values. All of the test result values should be at
or below the CRLBs. The effective SNR calculated from the data was approximately 1.33 dB. The effec-
tive SNR was calculated by taking the average power of both signal streams and then applying them to
equation 13 from [1].

The results obtained from the Filter Bank method are better than the CRLB results, as expected.
The majority of the results obtained from the data reduction methods are not. For the data reduction meth-
ods, with the exception of the 2-D Cross Spectra method, visual confirmation of the CAF surfaces look
reasonable and upon zooming in around the peak of the CAF surfaces, many cases look are good, but not
as good as is expected with no noise! After the analysis, no errors were determined in relation to what
was expected. As with the 2-D Cross Spectra method, it is believed that the methods were coded cor-
rectly in Matlab. Further analysis is suggested to determine why the results are not better than what was
obtained.

Another observation made for all the cases with data reduction is that when D is particularly large
(> 100), TDOA accuracy for all the methods becomes poorer than when D is < 100. This is more evident
in the HF cases when the decimation, D goes above 100. However for the VHF test cases, the TDOA
error is on the order of 5-10 times worse for the high decimation levels, compared to the medium decima-
tion rates. This is not so evident in the UHF cases, most likely because of the decimation rates do not go
above 100 because they are restricted to be < the filter length, L. To examine this phenomenon the HF
medium bandwidth test case with L=D was examined. The case for the “Fine-Mode” was selected be-
cause since all the other methods are based off of the “Fine-Mode” method, if any method was to provide
insight into what was happening, the “Fine-Mode” method would be the one. The lag product for the first
TDOA shift was examined. This lag product was plotted in the frequency domain with the “all-ones”
filter and its frequency shifted replicas super-imposed. This was done for each filter length and decima-

tion for this test case (L=D=12, L=D=24, L=D=1400). The plots are in Figure 43 through Figure 45. As
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can be seen from Figure 43 through Figure 45, there is aliasing for the low and the medium decimation
rates. The aliasing that occurs in for these two rates does not effect the Doppler range of interest (-5 Hz to
5 Hz). Though it can not be seen from Figure 45, there is aliasing present. A zoomed in view is available
in Figure 46. The Aliasing for the high decimation rates does occur over the Doppler range of interest

and seems to be the major contributing factor to the poor accuracy for the high decimation rates (> 100).

Lag-Product with Filter overlap for HF Medium Bandwidth Low Decimation Test Case for FM and 1st Lag Product
[ [

[
| | —e— Lag Product }
: : —— "All Ones Filter" and Frequency Shifted Replicas :
| | [
| | |
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Figure 43 PSD of Lag Product for Filter Low Decimation, FM Method, DFT Size = 128
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Lag-Product with Filter overlap for HF Medium Bandwidth Med Decimation Test Case for FM and 1st Lag Product

—— "All Ones Filter" and Frequency Shifted Replicas

—— Lag Product

Frequency (kHz)

Figure 44 PSD of Lag Product with Filter Medium Decimation, FM Method DFT Size = 128
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Lag-Product with Filter overlap for HF Medium Bandwidth High Decimation Test Case for FM and 1st Lag Product

—— "All Ones Filter" and Frequency Shifted Replicas

—e— Lag Product
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Figure 45 PSD of Lag Product with Filter High Decimation, FM Method, DFT Size = 128
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Lag-Product with Filter overlap for HF Medium Bandwidth High Decimation Test Case for FM and 1st Lag Product
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Figure 46 Zoomed in View of Aliasing for HF Med BW, High Decimation Test Case
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O>T Z WXD~EQD

Figure 47 CAF Plot in TDOA Dimension for HF Medium Band High Decimation FM Test Case

In order to see what effect the aliasing had on the surface, the CAF in the TDOA dimension was
plotted for the Doppler value that resulted in the highest peak in the Doppler dimension. This plot is in
Figure 47. The CAF in the TDOA dimension looks like it is centered at 0 micro-seconds. However, after
the curve-fit is applied, the TDOA is computed to be 279.987817 micro-seconds (see Table 9). It appears
that though there is aliasing, it is not seem to affect the CAF much at all. In fact it is not the major error
but curve-fit error that causes the large TDOA error. However, after examining x-axis in Figure 47, it
was determined that the x-axis is in tens of micro-seconds. To get an accurate TDOA estimate, there
should be five points around 0 micro-seconds. This indicates that the Tau-spacing used for this test case
is too coarse. By increasing the sampling rate, TDOA accuracy will improve. This test case was exe-

cuted again with increased sampling rates (better Tau-spacing), and the results are in.Table 31. With each
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running, the TDOA results did improve. Since for all the high decimation rates over 100, the accuracy
degraded significantly, large oversampling rates appear to be required. Further study is needed to verify
this result and to determine an optimal oversampling value that will yield a balance between accuracy and

computational complexity.

Frequency | Sampling L D TDOA Er- FDOA Real Adds | Real Mults
(MH?z) Rate (kHz) ror (us) Error
(Hz)
5 11 1400 1400 1159.855401 | 0.036731 3,211,416 2,114,352
5 44 1400 1400 279.987817 | 0.125448 3,235,608 2,127,408
5 110 1400 1400 111.995127 | 0.264527 3,274,008 2,148,912
5 220 1400 1400 49.892726 | 0.096647 3,360,024 2,198,064
5 330 1400 1400 33.261817 | 0.194150 3,550,488 2,308,656
5 440 1400 1400 24.946363 | 0.194150 3,550,488 2,308,656
5 550 1400 1400 19.957090 | 0.194150 3,550,488 2,308,656
5 110000 1400 1400 0.101601 | 0.198817 | 166,784,280 | 102,775,344

Table 31 Results From Increased Oversampling

Examining the results in Table 4 through Table 30, the “Fine-Mode” Generic and “Fine-Mode”
Generic Frequency Domain methods when using the same filter/window were about the same in accuracy
for the majority of the test cases. This makes sense because the implementation for both methods is the
same, except one is implemented in the time domain and the other in the frequency domain [2]. The
FDOA accuracy discrepancy between both methods based on Table 4 through Table 30 is on the order of
~ 1 MHz. This is quite good accuracy and support the claim made in [2] that these two methods produce
the same results. Most of the test case results display TDOA accuracy discrepancies between these two
methods of ~1us. Notable exceptions are the HF medium and wide bandwidth high decimation test cases
with L=D and using the filters designed using the Matlab filter design tool (Table 9 and Table 12). A
contributing factor to this discrepancy was discovered to be because of curve-fit error. The Matlab polyfit
command was used to perform the curve-fit. Upon examining the cross-ambiguity function (CAF) for the
TDOA curve-fit for the HF wide bandwidth high decimation test case from Table 12, the values for both

the methods were the same to 0.01 numerical precision, yet two different curve-fits were produced and
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thus two different TDOA values. The CAF values used for the curve-fit for both methods are shown in

Table 32.

FMG Method FMGFD Method
CAF Values CAF Values
20.16231456739720 20.18102705010027
25.91042656222847 25.93185268724099
28.01950169363270 28.01429643250628
25.91145176432027 25.92680221576133
20.16334521420673 20.17662377051057

Table 32 CAF Values for TDOA Curve Fit for HF Wide Bandwidth High Decimation Test

For the HF medium bandwidth high decimation test case from Table 9, the CAF values between the two
methods for the TDOA curve-fit were off by about 1. The discrepancy between the two methods was lar-
ger than the one for the HF wide bandwidth high decimation test case, but given the values it was ex-
pected that the results would be more similar. The CAF values used for the curve-fit for both methods for

this test case are shown in Table 33.

FMG Method FMGFD Method
CAF Values CAF Values
39.18582718831557 40.78948949752790
50.83887011809706 52.69312488560406
55.10254091606012 55.14852592401184
50.82277097553202 52.49065539932252
39.19567053020109 40.48488978636797

Table 33 CAF Values for TDOA Curve Fit for HF Medium Bandwidth High Decimation Test Case

Upon further review, the curve-fit for the HF medium bandwidth high decimation test case from Table 9
was plotted using the “Fine-Mode” Generic Frequency Domain method. Another curve-fit plot was su-
per-imposed on the first plot using the same CAF values but with several microseconds of perturbation in
the time-delay values. The curve-fit was not noticeably changed. It was concluded that the curve-fit er-

rors were in a relative sense rather than an absolute sense. This is analogous to a 20,000 foot view where
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10,000 cars are lined up in a row. If 2,000 of these cars are moved one foot forward, the cars will still
appear to be lined up in a row.

After examining several other test cases with the TDOA accuracy discrepancies between the
“Fine-Mode” Generic and “Fine-Mode” Generic Frequency Domain methods, the curve-fit error was
again concluded to be the major contributing factor for the discrepancy. It is not known why the CAF
values are not identical. It was hypothesized that the “Fine-Mode” Generic Frequency Domain method
had errors because since the number of TDOAS for this method was based on the DFT size and were al-
ways the next highest power of two (and in some cases much larger than the number of TDOAs for the
“Fine-Mode” Generic method) many small errors could be adding up over time and result in a large
TDOA error. This was disproved when the minimum DFT size for TDOA was used. The same exact
TDOA value resulted. It was also thought that not enough TDOAs were being used and resulting in a
poor surface in the TDOA direction and that by adding more TDOAs accuracy would improve. This the-
ory was also disproved because when using a larger DFT size, again the same TDOA resulted. This made
sense in that the TDOA computed for the minimum DFT size, the normal DFT size based, and the larger
DFT size all produced the same result. The normal and larger DFT size only had more zeros to deal with
during the computation than the minimum DFT size. Ultimately, these zeros would be thrown away and
the same TDOA result will be produced, which it was. Further analysis is needed to determine why the
CAF values for the “Fine-Mode” Generic and “Fine-Mode” Generic Frequency Domain methods were
not identical in the TDOA direction of the CAF.

Tolimieri and Winograd in [2] claim that the “Fine-Mode” Generic Frequency Domain method is
more computationally efficient than the “Fine-Mode” Generic method when L is sufficiently large. From
examining the number of computations in Table 4 through Table 30, it is clear that was not the case, es-
pecially when L was large (L=1400 in Table 9 and L = 2801 in Table 12). After analysis, it was con-
cluded that perhaps the zero-padding used for the “Fine-Mode” Generic Frequency Domain method
(zero-padding to 2L-1 so as to get linear correlation instead of circular correlation [see Chapter 3 Section

3.1]) was more than what was needed. In [2], Tolimieri and Winograd propose a method for obtaining
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linear correlation via circular correlation. Instead of zero-padding each correlation input block to 2L-1,

the first correlation input block (fy[#]) is zero padded to a length L+7, where T is the number of time-

delays. The second correlation input block (s,[#]) is always, L+T samples long. By not zero-padding to a

length 2L-1 and taking a DFT of length 2L-1, the number of computations needed to compute the “Fine-

Mode” Frequency Domain method should be reduced to a level such that it is computationally efficient.

This was tested for all the cases that used the firl filter and the results appear in Table 34. Comparing the

results from Table 4 through Table 30 with the results in Table 34, it is clear that the larger amount of

zero-padding as is consistent with the frequency domain implementation of filters has much better accu-

racy. The computational complexity is about the same for both zero-pad implementations.

Frequency | Bandwidth | Method L D TDOA FDOA Real Adds | Real Mul-
(Hz) error error tiplies
HF 5,000 FMGFD 6 6| 41.037224 | 0.113341 54,843,052 | 32,690,264
HF 5,000 FMGFD 100 6 0.880685 | 0.113372 237128372 | 143915368
HF 5,000 FMGFD 12 12 | 13.423914 | 0.113327 25,892,698 | 15,384,628
HF 5,000 FMGFD 100 12 1.836173 | 0.113367 112,280,616 | 67,768,400
HF 5,000 FMGFD 700 | 700 | 69.164339 | 0.262675 11,405,826 6,681,604
HF 5,000 FMGFD 700 | 100 1.449117 | 0.043614 103,843,740 | 62,082,872
HF 10,000 FMGFD 12 12 7.248036 | 0.245023 25,892,698 | 15,384,628
HF 10,000 FMGFD 200 12 0.961954 | 0.245094 232,811,586 | 141,015,172
HF 10,000 FMGFD 24 24 | 11.629854 | 0.244922 25,366,620 | 15,019,192
HF 10,000 FMGFD 200 24 1.946362 | 0.245086 110,123,500 | 66,319,320
HF 10,000 FMGFD 1400 | 1400 | 208.842095 | 0.125516 11,300,544 6,610,304
HF 10,000 FMGFD 1400 | 200 1.145049 | 0.021616 100,960,676 | 60,183,368
HF 20,000 FMGFD 24 24 4.784969 | 0.178514 25,366,620 | 15,019,192
HF 20,000 FMGFD 400 24 0.069797 | 0.178701 228,328,412 | 138,024,888
HF 20,000 FMGFD 48 48 3.639283 | 0.178512 11,940,958 7,073,468
HF 20,000 FMGFD 400 48 0.090013 | 0.178679 107,913,492 | 64,844,328
HF 20,000 FMGFD 2801 | 2801 | 175.245943 | 0.061655 11,107,968 6,487,296
HF 20,000 FMGFD 2801 | 400 1.576495 | 0.010625 97,322,560 | 57,805,952
VHF 5,000 FMGFD 6 6| 41.146000 | 0.007331 54,843,052 | 32,690,264
VHF 5,000 FMGFD 12 12 | 13.742184 | 0.007169 25,892,698 | 15,384,628
VHF 5,000 FMGFD 83 83 | 28.049687 | 0.221589 12,228,164 7,212,680
VHF 10,000 FMGFD 12 12 7.334231 | 0.301159 25,892,698 | 15,384,628
VHF 10,000 FMGFD 24 24 | 11.918662 | 0.300903 25,366,620 | 15,019,192
VHF 10,000 FMGFD 166 | 166 | 18.209960 | 0.109390 12,060,980 7,098,984
VHF 20,000 FMGFD 24 24 4.854528 | 0.151559 25,366,620 | 15,019,192
VHF 20,000 FMGFD 48 48 3.856381 | 0.151652 11,940,958 7,073,468
VHF 20,000 FMGFD 333 ] 333 1.400821 | 0.000857 20,013,856 | 11,701,824
UHF 5,000 FMGFD 6 6| 42.140362 | 0.224350 54,843,052 | 32,690,264
UHF 5,000 FMGFD 7 71 39.963089 | 0.208663 29,344,536 | 17,259,824
UHF 5,000 FMGFD 8 8 | 32.386288 | 0.240375 28,308,584 | 16,697,040
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UHF 10,000 FMGFD 12 12 6.651027 | 0.109908 25,892,698 | 15,384,628
UHF 10,000 FMGFD 14 14 8.864003 | 0.163833 13,929,870 8,193,692
UHF 10,000 FMGFD 18 18 | 10.792366 | 0.062767 13,009,922 7,693,956
UHF 20,000 FMGFD 24 24 4.281872 | 0.244974 25,366,620 | 15,019,192
UHF 20,000 FMGFD 28 28 5.747670 | 0.185607 24,526,648 | 14,546,544
UHF 20,000 FMGFD 33 33 5.228732 | 0.111178 23,763,632 | 14,117,216

Table 34 FMGFD Results with firl filter, L=D, and Reduced Zero-Padding

An analysis was also conducted to determine why the “Fine-Mode” Generic Frequency Domain

method was not as computationally efficient as the “Fine-Mode” Generic method. As mentioned previ-

ously, Tolimieri and Winograd in [2] mentioned for large L, the “Fine-Mode” Generic Frequency Domain

method is more computationally efficient. This analysis was performed from a different persepective. In

[2], Tolimieri and Winograd have large number of Taus; in some cases the number of Taus is equal to the

number of signal samples. For many applications, that is probably far too many time-delays to process.

However, for this analysis, the decimation (D), filter length (L), DFT size for the Doppler calculations

were fixed with values representative of what was used in the test cases conducted. The hypothesis was

that for not only must the filter length be sufficiently larger than the decimation, but also the number of

Taus must be sufficiently large as well. A plot was made to test this hypothesis and is show in Figure
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48.
Normalized Number of Computations vs. # Taus
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Figure 48 Plot Comparing Computational Complexity of FMG and FMGFD

For the plot in Figure 48, the number of complex computations for the “Fine-Mode” Generic (denoted
FMG in Figure 48) and “Fine-Mode” Generic Frequency Domain (denoted FMGFD in Figure 48) were
used. For the “Fine-Mode” Generic Frequency Domain method the equation for the number of complex

computations used was

FMGFD. —=M(L+3DFTQ2L-1)+2L—1)HT +1)(DFT(M)+2K +1).

comp

(86)
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where M is the number of blocks as computed in (46), L is the decimation filter length, K is the number of
Dopplers, and T is the number of Taus. The number of computations used for DFT was taken as the sum
of equations 5.23a and 5.23b from Section 5.3 of [9]. The number of complex computations used for the

“Fine-Mode” Generic method was

FMG,_  =(T+1)N+ML+DFT(M)+2K+1), (87)

comp
where , again, M is the number of blocks as computed in (46), L is the decimation filter length, K is the
number of Dopplers, and 7 is the number of Taus, and N is the number of signal samples. As for the
“Fine-Mode” Frequency Domain method computations, number of computations used for DFT was taken
as the sum of equations 5.23a and 5.23b from Section 5.3 of [9]. The equations in (86) and (87), are es-
sentially equations 3.3 and 3.6 from [2], with the exception that the number of computations used for the
FFT in 3.3 and 3.6 differ from that used for DFT in (86) and (87) and there is an ML multiplication in
(87) versus just an L in equation 3.3 from [2]

For this analysis, N was set to 44000, L was set to 500, K was set to 8192. Each method was cal-
culated for 2° to 2% number of Taus for decimation rates of D = 10, 100, 250, 400 and 500. The point in
Figure 48 that the “Fine-Mode” Generic Frequency Domain method becomes more computationally effi-
cient than the “Fine-Mode” Generic method is when the value of the curve becomes greater than one. It
is clear from Figure 48 that the number of Taus plays a role in determining when one method is more
computationally complex versus the other, thus confirming the hypothesis. For the test cases conducted,
Figure 48 also indicates that for the number of Taus used for the “Fine-Mode” Generic Method (11), the
“Fine-Mode” Generic method would always be more computationally efficient than the “Fine-Mode” Ge-
neric Frequency Domain method. This was the case for the testing conducted. If the number of used in
the testing was > 32 then, the “Fine-Mode” Generic Frequency Domain method would have been more

efficient.



111

For all of the tests, the Filter Bank method was clearly the best in accuracy. This is due to a lack of data
reduction methods (e.g. decimation) in the algorithm. This method has significantly more total computa-
tions than any of the other methods (order of 10° more computations than the next computationally ineffi-
cient method). Unless there is no regard for computational complexity, this method should be avoided
due to this large drawback.

For computational complexity, the “Fine-Mode” method ranks the best for all the tests. The
“Fine-Mode” Generic, “Fine-Mode” Generic Frequency Domain, 2-D Cross Spectra, and Filter Bank
methods in the order given, are how the remaining methods ranked in terms of computational complexity
overall.

The “Fine-Mode” Generic and “Fine-Mode” Generic Frequency Domain methods had the same
accuracy for all the tests. One possible reason for this result was because the same filter was used for
both the methods. Even though the filter was applied in a different order for the methods, essentially, the
multiplication of sy, s,, and the filter 4[n] was always occurring.

After the Filter Bank method, to quantify which methods were better for a particular frequency,
bandwidth, and decimation, tables blah through blay were generated to highlight the best method(s).
There was no “clear-cut” best overall method. However, most often for the high decimation rates, the
“Fine-Mode” Generic and “Fine-Mode” Generic Frequency Domain methods had the best Tau and Dop-
pler accuracy. For the low and medium decimation rates, the “Fine-Mode” method most often had the
best Tau accuracy. The 2-D Cross Spectra method seemed to perform decently for the HF and VHF fre-
quencies, but performed portly for the UHF frequency. The terminology used to represent the methods in
the tables is as follows “Fine-Mode” method = FM, “Fine-Mode” Generic method = FMG, “Fine-Mode”

Generic Frequency Domain method = FMGFD, and 2-D Cross Spectra method = 2DCS.
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From the testing, there is no best overall method that has the best accuracy and lowest computa-

tional complexity. For all the methods there is a trade-off in accuracy vs. computational complexity. For

example, the Filter Bank method has the best accuracy at the cost of being one of the most computation-

ally complex. The best method in terms of accuracy and complexity varies given a particularly fre-

quency, sampling rate, and decimation rate.

The five methods examined have many advantages (data reduction techniques) and limitations.

Some of these are summarized in Table 35.

Method Advantage Disadvantage
FB Best accuracy among all methods Not able to select number of Taus to
examined use din computation
Not able to select number of Dopplers
to be used in computation
Computationally complex
FM Most computationally efficient Not able to select number of Dopplers
method to be used in computation
Able to select number of Taus to be Limited by use of “all-ones” filter
used in computation Upper limit placed on L
FMG Ability to use any filter Not able to select number of Dopplers
Accuracy dependent upon filter used to be used in computation
Able to select number of Taus to be Accuracy dependent upon filter used
used in computation Upper limit placed on L
Computationally efficient at low
number of Taus
Ability to have L > D
FMGFD Ability to use any filter Not able to select number of Taus to

Accuracy dependent upon filter used
Not able to select number of Dop-
plers to be used in computation
Computationally efficient at high
number of Taus

Ability to have L > D

used in computation

Not able to select number of Dopplers
to be used in computation

Accuracy dependent upon filter used
Computationally complex at low num-
ber of Taus

Upper and lower limit placed on L
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Method Advantage Disadvantage
2DCS e  Ability to excise interference e  Computationally complex
e  Ability to use window of any shape e  Poor Tau accuracy
that meets requirements e Not able to select number of Taus to
e  Accuarcy dependent upon win- used in computation
dow(s) used e  Not able to select number of Dopplers
e  Ability to have L > D to be used in computation
. e  Upper and lower limit placed on L

Table 35 Breakdown of Method Advantages and Disadvantages

Notes:

FB = Filter Bank

FM = Fine Mode

FMG = Fine Mode Generic

FMGFD = Fine Mode Generic Frequency Domain
2DCS = 2-D Cross Spectra

Some of the limitations are based on the design of the algorithm. The Filter Bank, “Fine-Mode” Generic
Frequency Domain and 2-D Cross Spectra methods do not allow the user to select the number of Taus to
use in computing the correlation surface. They provide an excessive amount of Taus. To limit this, for
the Filter Bank method, the user of the algorithm would have to design a specific convolution/correlation
routine that would select the Taus of interest. This may not be an easy task. An attempt can be made to
limit the number of Taus for the “Fine-Mode” Generic Frequency Domain and 2-D Cross Spectra meth-
ods using extra care in picking the decimation (D), filter/window lengths (L), Doppler spacing, and/or the
number of blocks (M) to provide DFT sizes that are as close to the desired number of Taus as possible. In
some applications, this may not be possible. The user must be able to determine if he/she is able to live
with the extra Taus and then attempt to try and limit the excess, before using these methods.

For Doppler the “Fine-Mode”, “Fine-Mode” Generic, “Fine-Mode” Generic Frequency Domain
and 2-D Cross Spectra methods provide an excess number of Dopplers. This also is due to the DFT sizes
being > the number of samples used for the DFTs being taken. Again, this can be attempted to be con-
trolled by carefully choosing D, L, Doppler spacing, and M. As mentioned above, this may not be possi-

ble for some cases.
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Another limitation observed is that D is limited by the sampling rate and the maximum expected
Doppler frequency for all the methods that make use of data reduction techniques. This limits the amount
of decimation that may be performed in certain scenarios, thus requiring more data for calculations than is
desired. There is also a limit established on how large L may be. For the “Fine-Mode” and “Fine-Mode”
Generic methods, only an upper bound exists. A lower bound and upper bound exist for the “Fine-Mode”
Generic Frequency Domain and 2-D Cross Spectra methods. No limit exists for the Filter Bank method.
Before using the “Fine-Mode” Generic Frequency Domain and 2-D Cross Spectra methods, it must be
determined if the desired filter length, L, does not fall below the lower limit. In cases where a small L is
desired, the “Fine-Mode” Generic Frequency Domain and 2-D Cross Spectra methods may not be suit-
able.

As noted in Chapter 4 Section 4.3, further study is needed to determine why the 2-D Cross Spec-
tra method has poor Tau accuracy and to why the methods, with the exception of the Filter Bank method,
did not perform as well as expected when comparing the results of the data with no perturbations to the
Cramer-Rao lower bound. One path of examination that could yield a more accurate curve-fit result
would be to use the results produced in this study for a coarse estimate. Then one could refine the coarse
estimate by using a smaller subset of the data to along with the coarse estimate to produce a fine estimate
for the emitter location as is proposed in [2]. Further testing using these methods should also be con-
ducted to determine the results with perturbations. The tests conducted here did not include any interfer-
ing signals or added environmental noise because the purpose of the tests was to determine under certain
circumstances the best method from a computational perspective with accuracy being a secondary
benchmark. Accuracy of all the methods must be examined more thoroughly with modeling of real-life

perturbations in order to correlate the accuracy with the computation complexity more realistically.
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Appendix A Matlab Code for Main Driver Script

% This script acts as the main driver to carry out a test case for all
% fregs, bandwidths, decimation rates

clear all;

% Set variables and arrays
tukey win = 0;

bw to run = 1;

freq to_run = 1;
method to run = 1;
fhf = 5e6;

fvhf = 50e6;

fuhf = 500e6;

f0 = [fhf fvhf fuhf];
c = 299792458;

vel = 250;

num_tau = 11;

= use Tukey window for FMGFD, 0 = firl filter
= narrow, 2 = medium, 3 = wide

= HF, 2 = VHF, 3 = UHF

= filter bank, 2 = FM, 3 = FMG, 4 = FMGFD, 5
Frequency of HF signal

Frequency of VHF signal

Frequency of UHF signal

Vector of frequencies

Speed of light constant

250 m/s velocity for collection platforms
Number of time-delays

o° 0 o° o° o o° o o° o o°
R

o\

dec_hf = [6,12,700;12,24,1400;24,48,2801];

$dec_hf = [6,12,100;12,24,200;24,48,400];

dec_vhf = [6,12,83;12,24,166;24,48,333;];

dec_uhf = [6 7 8;12 14 18;24 28 33];

dopp_space = [0.2,0.4,0.5;0.2,0.4,0.5;0.2,0.4,0.5];

sampling rate = [5.5e3,11e3,22e3;5.5e3,11e3,22e3;5.5e3,11e3,22e3];
dopp_freg = [3 16 -322];

% Set the state of the randn
randn ('state',?2) ;

% Set variables for test cases

freq = f0(freq_to run);

fs = sampling rate(freq to_run,bw_to_run);

doppler spacing = dopp_space (freq to run,bw to run);
doppler freq = dopp_ freq(freq_ to run);

% Create complex noise sequence

X = randn(1,11000) + j.*randn(1l,11000) ;
% Determine the maximum doppler shift
max_doppler = ceil (freg*vel/c) ;

% Calculate the number of dopplers
num_dopplers = ceil (2*max_doppler/doppler spacing) ;

% Create and apply filter to create sl (pseudo-voice signal)
cut off freq = ((fs - .1*fs)/2)/(fs/2);

h = firl (24, cut off freq);

sl = filter(h,1,x);

% Apply Doppler shift to s2 signal
s2 = freqg shift(doppler freq,0,sl,fs);

% Interpolate both streams to 4x
1 = resample(sl,4,1);
s2 = resample(s2,4,1);

n

o\°

Update fs
fs = fs * 4;

116
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for ii = 1:3 % {

% Determine decimation

if (freq == fhf) % { HF freq
D = dec_hf (bw to run,ii);

elseif (freq == fvhf) % } VHF Freqg {
D = dec_vhf (bw_to run,ii);

else % } UHF Freq
D dec_uhf (bw_to_run,ii);

end } if HF freg

o |l

switch (method to run)

)

case 1 % { Filter Bank - No decimation
% Get Dopplers of interest

if (freqg == fhf) % {
dopplers = -max_doppler:doppler spacing:max_doppler;
num_dopplers = length(dopplers) ;

elseif (freq == fvhf) % } VHF Freq {
dopplers = (doppler freg-10) :doppler_ spacing: (doppler freqg+10) ;
num_dopplers = length(dopplers) ;

else % } UHF Freq {
dopplers = (doppler freg-10) :doppler spacing: (doppler freg+10) ;
num_dopplers = length(dopplers) ;

end % } if HF Freq

% Compute CAF
[A,tau_vec,dopp vec, tau,doppler,num comp] =
fb(sl,s2,fs,num tau,num dopplers,doppler spacing,dopplers) ;
% Compute RMS error
tau error = sqrt(tau™2);
doppler error = sqrt((doppler)”2);
fprintf (1, 'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n', ...
tau_error/le-6,doppler error,ceil (num comp(l)),ceil (num _comp(2))) ;
if (ii == 1) % {
break; % Only need to one this case once for each bandwidth since no decima-
tion
end %}
case 2 % } Stein's Fine Mode ({
Get number of samples
= length(sl);

2 oe

o\°

Calculate filter length and decimation rate
= D;

=

Calculate the number of blocks
= ceil (abs ((N-L)) /D) +1;

= o

% Compute the cross-ambiguity function

[A,tau_vec,dopp_vec, tau,doppler,num comp] =
fmg(sl,s2,fs,ones(1,L),D,M, num_tau,doppler spacing,max doppler,0) ;

% Compute RMS error

tau_error = sqrt(tau®2);

doppler error = sqgrt((doppler)*2);

fprintf (1, 'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = $%$.0f\n', ...

tau_error/le-6,doppler error,ceil (num comp(l)),ceil (num comp (2))) ;
case 3 % } FMG

% Calculate filter cut-off frequency for filter

cut_off freq = max doppler/(fs/2);

)

% Get the number of samples
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N = length(sl);

% Determine L
=D;

t

% Create Generic filter
hl = firl(L-1,cut off freq);

% Calculate the number of blocks
M = ceil ((N-L)/D)+1;

% Compute the cross-ambiguity function

[A,tau_vec,dopp_vec, tau,doppler,num comp] =
fmg(sl,s2,fs,hl,D,M, num_tau,doppler_ spacing,max doppler,1);

% Compute RMS error

tau_error = sqrt(tau”2);

doppler error = sqgrt((doppler)”*2);

fprintf (1, 'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n', ...

tau_error/le-6,doppler error,ceil (num comp(l)),ceil (num comp(2))) ;
case 4 % FMGFD

Get the number of samples
= length(sl) ;

Z oo

o°

Determine L
= D;

[

o\°

Get filter to use
if (tukey win == 0) % { firl filter
cut_off freqg = max doppler/(fs/2);
winl = firl(L-1,cut off freq);
else % } use Tukey Window
% Design filter for stream 1 - use Tukey window
P = 0.80;
winl = tukeywin(L,P)."';
end % } if firl filter

% Calculate the number of blocks
M = ceil ((N-L)/D)+1;

% Compute the cross-ambiguity function

[A,tau_vec,dopp_vec, tau,doppler,num comp] =
fmgfd old(sl,s2,fs,winl,D,M,num tau,doppler spacing,max doppler) ;

% Compute RMS error

tau error = sqgrt(tau™2);

doppler error = sqrt (doppler”2);

fprintf (1, 'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n', ...

tau_error/le-6,doppler error,ceil (num comp(l)),ceil (num comp(2))) ;
case 5 % } 2DCS {
% Get the number of samples

N = length(sl);
% Get length L.
L = D;

Compute the cross-ambiguity function
A,tau vec,dopp_vec, tau,doppler,num comp] =
sl,s2,fs,L,D,num_tau,doppler spacing,max doppler) ;

—~ — o°

twodcs

)

% Compute RMS error
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tau _error = sqgrt(tau™2);
doppler error = sqrt((doppler freq)’2);
fprintf (1, 'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n', ...
tau error,doppler error,ceil (num_comp(1l)),ceil (num comp(2))) ;
otherwise
fprintf (1, 'ERROR: UNDEFINED METHOD\n') ;

)

end % } switch

)

end %} for ii = 1 all decimation rates for this sampling rate



Appendix B Matlab Code for freq_shift Function

function y = freq shift (fnew, fold, x, fs);

o° 0% o° o° A o° O o A o O° A o° A% o o° O o° o o°

o°

syntax: y = freq shift (fnew, fold, x, fs);

The function freq_shift takes the input data stream x and frequency
shifts it by the amount (fnew-fold)/fs. The shifted frequency stream y
is returned

INPUTS:
fnew - desired frequency to shift data in stream x to
fold - frequency that data in x is currently at

b'4 - complex signal data stream (1 X N) to frequency shift
fs - sampling rate of signal stream x
OUTPUTS:
y - frequency shifted complex signal data stream
ASSUMPTIONS:

This function assumes that all the inputs have been entered, thus no
checking is done on the number of inputs

AUTHOR :
C. Yatrakis

Calculate the difference in frequency between fnew and fold and normalize

delta f = (fnew-fold)./fs;
% Get the length of the signal stream x
N = length(x) ;

o\°

<

Apply frequency shift
= x.*exp(-j*2*pi*delta £*(0:(N-1)));
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Appendix C Matlab Code for curve_fit Function

function [tau,doppler] = curve fit(A,tau vec,dopp vec) ;
% SYNTAX: [tau,doppler] = curve_ fit (A,tau vec,dopp_vec) ;
% DESCRIPTION:

o\°

The function curve fit takes a cross-ambiguity surface

and applies a curve fit in the Tau direction and Doppler direction
to obtain Tau and Doppler from the surface. The Tau and Doppler
are returned.

o° o o o

o\°

INPUTS:

A - cross-ambiguity surface (Tau X Doppler)

tau vec - vector of time-delays used in computing surface (1xTau)

dopp_vec - vector of Doppler frequenices used in computing surface
(1xDoppler)

o® o o o° o

o

OUTPUTS:
tau - Tau measured off the surface (scalar)
doppler - Doppler measured off the surface (scalar)

o° 0P o°

o

ASSUMPTIONS:
There is enough room to the right and left of the surface peak
to be able to pick points (e.g. surface peak not at edge)

o° 0P o°

o\°

Interpolation to peak has already been taken care of

o\°

o\°

AUTHOR :
C. Yatrakis

o\°

o\°

Get peak indices

[j1,dopp_pk index] = max(max(A));
[j2,tau_pk _index] = max(max(A,[],2));
% Get Tau values to apply curve fit to

tau values = A(tau pk index-2:tau pk index+2,dopp pk index) ;

% Get Tau curve fit coefficients

[tau _cf coefs] = polyfit([tau vec(tau pk index-2:tau pk index+2)],tau values.',k2);
% Get Doppler values to apply curve fit to

dopp_values = A(tau pk index,dopp pk index-2:dopp pk index+2);

% Get Doppler curve fit coefficients
[dopp_cf coefs,s,mu] = polyfit([dopp vec (dopp pk index-
2:dopp_pk index+2)],dopp values,2);

% Calculate Tau and Doppler from the surface peak
tau = -tau_cf coefs(2)/(2*tau cf coefs(1));
doppler = -dopp cf coefs(2)/(2*dopp cf coefs(1));



Appendix D Matlab Code for fmg Function

function [A,tau vec,dopp vec,tau,doppler,num comp] =
fmg(sl,s2,fs,h,D,M, T,doppler_spacing,max_doppler,fm fmg flag);
% SYNTAX: [A,tau vec,dopp vec,tau,doppler,num comp] =
fmg(sl,s2,fs,h,D,M,T,doppler_spacing,max_doppler,fm fmg flag);

)

o\

o\°

DESCRIPTION:

The function fmg performs the cross correlation of

2 signal streams using Seymour Stein's "Fine-Mode"

method with a generic filter. The implementation

uses a polyphase filter approach. The cross-ambiguity

function is returned along with vectors of the time-delays

and Dopplers for plotting. The time-delay and Doppler measured

off the surface, and the number of computations it

took to compute [computed using EQN 3.3 from Tolimieri &

Winograds "Computing the Ambiguity Surface" paper are also returned

o® o® o° o° o° o° o o° o

o

% INPUTS:

% sl - complex signal data stream 1 (1xN)

% s2 - complex signal data stream 2 (1xN)

% fs - complex sampling rate of both signal streams in Hz (scalar)

o\

h - filter to be applied to the lag-product (1xL)

D - decimation to be applied during correlation (scalar)

dec - decimation to use during correlation (scalar)

M - number of inner sums to apply in correlation(scalar)

T - number of time-delays to use during correlation processing (scalar)

doppler spacing - Doppler spacing for correlation surface (scalar)

max _doppler - maximum expected Doppler frequency (scalar)

fm fmg flag - flag that tells if this is for fm or fmg mode (scalar).
Used for determining the number of computations

o® o°® o o° o° o° o o° o

o\°

OUTPUTS:

A - complex cross-correlation function output (Tau X Dopplers)

tau vec - vector of taus used for plots (1 X Tau)

dopp_vec - vector of Dopplers used for plots (1 X Doppler)

tau - Tau measured off the surface (scalar)

doppler - Doppler measured off the surface (scalar)

num_comp - number of computations used to compute the cross-correlation
function (2x1) vector where the first row is real adds and
the second row is real multiplies

LIMITATIONS:

The size of both input streams must be the same

o o® o° o° o° o° o° o° o° o o

o°

AUTHOR :
C. Yatrakis

o\

Get the number of samples in each stream
= length(sl) ;

2 oo

o\°

Get the length of the filter
= length (h);

=

)

% Zero pad sl and s2 so they are divisible by L
num_ zeros = L+D*(M-1)-N;
sl = [sl zeros(l,num zeros)];

% Setup Tau range
if (mod(T,2) == 0) % { even

122



min tau = -T/2;

max_tau = T/2 -1;
else % } odd {

min tau = -(T-1)/2;

max_tau = (T-1)/2;

)

end % } if T is even

% Determine amount to zero-padding to get correct Doppler spacing
num w_zp = ceil((fs/D)/doppler spacing) ;

% Determine DFT size

dft_size = 2% (ceil(log2 (num _w_zp))) ;

)

% Cross Correlate sl and s2

°

for ii = min tau:max tau % { 0 to Num Taus - 1
% Apply time-delay to s2
if (ii >= 0) % {
s2_star = conj (
else % } 11 < 0 {
s2_star = conj ([s2(1,1-1i:N) zeros(1l,-ii) zeros(l,num_zeros)]);
end % } for ii >= 0

[zeros(1,ii) s2(1,1:N-1i) zeros(1l,num_zeros)]);

% Form lag-product
r tau = sl.*s2 star;

o°

Filter and decimate lag-product
r tau tilda = upfirdn(r tau,h,1,D);

% Take DFT via FFT algorithm
(ii-min tau+l,:) = fftshift (fft(r tau tilda,dft size));

b

% clear out filtered and decimated lag-product
clear('r tau tilda','r tau','s2 star');

)

end ¥ } for ii = min_tau to max_tau
% Get Tau spacing

tau spacing = inv(fs/D);
% Set tau vec

tau vec = [min tau:max tau] *tau spacing;
% Calculate new doppler spacing for dopp_ vec
fs_after dec = fs/D;

dopp_space_after dec = fs after dec/dft size;

% Set dopp_ vec
dopp vec = [(-dft_size/2):((dft_size/2)-1)]*dopp_ space after dec;

% Get tau and Doppler measurements from surface peak
[tau,doppler] = curve fit(abs(A),tau vec,dopp vec) ;

% Get the number of computations needed for this method

if (fm_fmg flag == 0) % { Stein's FM method
real mults = (T+1)* (4*N+2*dft size* (log2 (dft size) -2)+4);
real adds = (T+1)* (2*N+2*M*2*L+3*dft size*log2 (dft size)-2*dft size+2);
num comp = [real adds;real mults];

else % } FMG method
real mults = (T+1)* (4*N+4*M* (2*L+1)+2*dft size* (log2(dft size)-2)+4);

real adds = (T+1)* (2*N+2*M* (2*L+1)+3*dft size*log2(dft size)-2*dft size+2);

num _comp = [real adds;real mults];
end % } if FM method

return;
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Appendix E Matlab Code for fmgfd Function

function [A,tau vec,dopp vec,tau,doppler,num comp] =
fmgfd(sl,s2,fs,h,D,M, T,doppler spacing,max_doppler) ;

o
)

SYNTAX: [A,tau_vec,dopp_vec, tau,doppler,num comp] =

fmgfd(sl,s2,fs,h,D,M,T,doppler spacing,max_doppler) ;

)

o° o® o® o° o° o° o° o o° o° o° o o° A° O o o A° O° o° o° o A o° o o o A° A o o o A° o° o° o o

o\°

Z oo

o\°

[

)
s

num_ zeros = L+D*(M-1)-N; %

sl
s2

o
<)

if

DESCRIPTION:

The function fmgfd performs the cross correlation of

2 signal streams using Tolimieri and Winograd's "Fine-Mode"

Generic Fregeuncy domain method.The cross-ambiguity

function is returned along with vectors of the time-delays

and Dopplers for plotting. The time-delay and Doppler measured

off the surface, and the number of computations it

took to compute [computed using EQN 3.2 from Tolimieri &

Winograds "Computing the Ambiguity Surface" paper are also returned

INPUTS:

sl - complex signal data stream 1 (1xN)

s2 - complex signal data stream 2 (1xN)

fs - complex sampling rate of both signal streams in Hz (scalar)

h - window to be applied to the lag-product (1xL)

D - decimation to be applied during correlation (scalar)
dec - decimation to use during correlation (scalar)

M - number of inner sums to apply in correlation(scalar)

T - number of time-delays to use during correlation processing (scalar)

doppler spacing - Doppler spacing for correlation surface (scalar)
max_doppler - maximum expected Doppler frequency (scalar)

OUTPUTS:

A - complex cross-correlation function output (Tau X Dopplers)
tau vec - vector of taus used for plots (1 X Tau)

dopp_vec - vector of Dopplers used for plots (1 X Doppler)

tau - Tau measured off the surface (scalar)

doppler - Doppler measured off the surface (scalar)

num_comp - number of computations used to compute the cross-correlation

function (2x1) vector where the first row is real adds and
the second row is real multiplies

LIMITATIONS:
The size of both input streams must be the same

AUTHOR :
C. Yatrakis

Get the number of samples in each stream
= length(sl) ;

Get the length of the filter
= length(h);

Zero pad sl and s2 so they are divisible by L
= [sl zeros(1l,num zeros)];
= [s2 zeros(1l,num zeros)]

’

Setup Tau range

(mod (T,2) == 0) % { even
min tau = -T/2;
max _tau = T/2 -1
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else % } odd {
min tau = -(T-1)/2;
max_tau = (T-1)/2;

)

end % } if T is even
% Determine DFT size
dft sizel = 2" (ceil(log2(2*L-1)));

for mm = 0:M-1 % { 0 to Number of Blocks - 1
% Get £ m and zero pad to length L+T
f mm= s1(mm*D+1:mm*D+L) .*h;

% Get s2 m, and zero pad both to 2L-1
s2 mm = s2 (mm*D+1:mm*D+L) ;

% Take DFT of both streams
'mm = fftshift (fft(f mm,dft sizel));
S2 mm = fftshift (fft(s2_mm,dft sizel));

)

% Multiply DFT of streams together
W mm = F_mm.*conj (S2_mm) ;

% Take IDFT of both streams
tilda (mm+1,:) = f£ftshift (ifft (W _mm,dft sizel));

£

% Clear variables for next pass
clear ("W m','f mm','s2 mm','F mm', 'S2 mm') ;
end ¥ } for mm = 0 to Number of Blocks - 1

% Determine amount to zero pad columns of w tilda m to get correct Doppler
% spacing

num w_zp = ceil((fs/D)/doppler spacing) ;

% Determine DFT size

dft_size2 = 2" (ceil(log2 (num _w_zp))) ;

% Get the number of Taus
[row,num taus] = size(w_tilda);
% Compute correlation surface

A= fftshift (fft(w_tilda.',dft_size2,2),2);
% Calculate Tau spacing
tau_spacing = inv(fs/D);

% Set tau vec

if (mod(num taus,2) == 0) % { even
tau vec = [(-num_taus/2) : (num_taus/2)-1].*tau spacing;
else % } odd {
tau vec = [-((num_taus-1)/2):((num_taus-1)/2)].*tau_spacing;

)

end ¥ } if num taus is even
% Calculate new doppler spacing for dopp_ vec
fs after dec = fs/D;

dopp space_after dec = fs_after dec/dft size2;

% Set dopp vec
dopp_vec = [(-dft_size2/2):((dft_size2/2)-1)]*dopp space after dec;

% Get tau and Doppler measurements from surface peak
[tau,doppler] = curve fit (abs(A),tau vec,dopp vec) ;

)

% Get the number of computations needed for this method
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% Get the number of computations needed for this method

real mults = M* (4*L+6*dft sizel* (log2 (dft sizel)-2)+12+4*dft sizel)+...
dft sizel* (2*dft size2* (log2 (dft size2)-2)+4);

real adds = M* (2*L+9*dft sizel*log2 (dft sizel)-6*dft sizel+6+2*dft sizel)+...
dft sizel* (3*dft size2*log2 (dft size2)-2*dft size2+2);

num comp = [real adds;real mults];

return;
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Appendix F Matlab Code for fb Function

function [A,tau vec,dopp vec,tau,doppler,num comp] =
fb(sl,s2,fs,T,num dopplers,doppler spacing, fdopp) ;
% SYNTAX: [A,tau vec,dopp vec,tau,doppler,num comp] =
fb(sl,s2,fs,T,num dopplers,doppler spacing, fdopp) ;

o\°

o\°

DESCRIPTION:

The function fb performs the cross correlation of

2 signal streams using the Filter Bank method.

The implementation is a brute force approach.

The cross-ambiguity function is returned along with

vectors of the time-delays and Dopplers for plotting.

The time-delay and Doppler measured off the surface,

and the number of computations it took to compute [computed
using EQN 2.3 from Tolimieri & Winograds "Computing the
Ambiguity Surface" paper are also returned

o® o® o° o° o° o° o o° o

o

% INPUTS:

% sl - complex signal data stream 1 (1xN)

% s2 - complex signal data stream 2 (1xN)

% fs - complex sampling rate of both signal streams in Hz (scalar)

o\

T - number of time-delays to use during correlation processing (scalar)

num dopplers - number of doppler frequencies to use for correlation
surface (scalar)

doppler spacing - Doppler spacing for correlation surface (scalar)

fdopp - Doppler frequencies of interest (1 x num dopplers)

o° o°® o o o

o\°

OUTPUTS:

A - complex cross-correlation function output (Num Taus X Num Dopplers)

tau vec - vector of time-delays used in computing correlation function

dopp_vec - vector of frequencies used in computing the correlation
function

tau - Tau measured off the surface (scalar)

doppler - Doppler measured off the surface (scalar)

num_comp - number of computations used to compute the cross-correlation
function (2x1) vector where the first row is real adds and
the second row is real multiplies

o° o° o°® o° o° o° o o o° o

o\

LIMITATIONS:
The size of both input streams must be the same

o\ o\?

o°

AUTHOR :
C. Yatrakis

o\°

Get number of samples
= length(sl) ;

Z oo

)

% Get the tau spacing

tau_spacing = 1/fs;

for mm = 1l:num dopplers % { Dopplers of interest
comp _exp = exp(-j.*2.*pi.*fdopp (mm).*[0:N-1]./fs);
h mm = sl.*comp_exp;

% Compute the cross-ambiguity function
A(:,mm) = xcorr(h mm,s2)."';

o

end % } for mm = Dopplers of interest

clear('sl','s2','h mm', 'comp_exp') ;
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% Get the number of taus used in computing the ambiguity function
[num taus,col] = size(d);

% Set tau vec

if (mod(num taus,2) == 0) % { even
tau vec = [(-num_taus/2) : (num_taus/2)-1].*tau spacing;
else % } odd {
tau _vec = [-((num_taus-1)/2):((num_taus-1)/2)].*tau_spacing;

)

end ¥ } if num taus is even

% Set dopp vec
dopp_vec = [(-num dopplers/2): ((num dopplers/2))].*doppler spacing;

% Get tau and Doppler measurements from surface peak
[tau,doppler] = curve fit (abs(A),tau vec,dopp vec) ;

% Get the number of computations needed for this method
real mults = (num_dopplers+1)* (4*N + 4* (N+num_taus) +

4* (N+num_taus) * (log2 (N+num_taus) -2) +8) +
2* (N+num_taus) * (Log2 (N+num_taus) -2) + 4;
real adds = (num dopplers+1)* (2*N + 2* (N+num_taus) +
6* (N+num_taus) *log2 (N+num_taus) - 4* (N+num taus) + 4) +
3* (N+num_taus) *log2 (N+num_taus) - 2* (N+num_taus) + 2;
num _comp = [real adds;real mults];

return;



Appendix G Matlab Code for twodcs Function

function [A,tau vec,dopp vec,tau,doppler,num comp] =
twodcs (s1,s2,fs,L,D,T,doppler spacing,max _doppler) ;

% SYNTAX: [A,tau vec,dopp vec,tau,doppler,num comp] =
twodcs (s1,s2,fs,D,T,doppler_spacing,max_doppler) ;

o\°

o\°

DESCRIPTION:

The function fmgfd performs the cross correlation of

2 signal streams using Desjardin's 2-D Cross Spectra
method.The cross-ambiguity function is returned along

with vectors of the time-delays and Dopplers for plotting.
The time-delay and Doppler measured off the surface, and the
number of computations it took to compute are also returned

o° o® o° o o o°

o\

% INPUTS:

% sl - complex signal data stream 1 (1xN)

% s2 - complex signal data stream 2 (1xN)

$ fs - complex sampling rate of both signal streams in Hz (scalar)
$ L - length of window for first stream (scalar)

o\

D - decimation to be applied during correlation (scalar)

T - number of time-delays to use during correlation processing (scalar)
doppler spacing - Doppler spacing for correlation surface (scalar)
max_doppler - maximum expected Doppler frequency (scalar)

o® o o o

o\°

OUTPUTS:

A - complex cross-correlation function output (Tau X Dopplers)

tau vec - vector of taus used for plots (1 X Tau)

dopp_vec - vector of Dopplers used for plots (1 X Doppler)

tau - Tau measured off the surface (scalar)

doppler - Doppler measured off the surface (scalar)

num_comp - number of computations used to compute the cross-correlation
function (2x1) vector where the first row is real adds and
the second row is real multiplies

o° o° o o° o o° o° o o

o\°

LIMITATIONS:
The size of both input streams must be the same

o° o

o

AUTHOR :
C. Yatrakis

o\

Get the number of samples
= length(sl);

2 oe

o°

Setup the tau range
if (mod(T,2) == 0) % { even
min tau = -T/2;
max _tau = T/2 -1;
else % } odd {
min tau = -(T-1)/2;
max_tau = (T-1)/2;

°

end ¥ } if T is even

% Create Tukey window for stream s2. Use 80% Tukey window - arbitrary P
P =0.80;

Lw2 = ceil ((L+2*max_tau)/P);

win2 = tukeywin (Lw2,P).';

% Calculate the number of blocks
M = ceil ((N-Lw2) /D) +1;
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% Zero pad sl and s2 so they are divisible by length Lw2
num_zeros = Lw2+D* (M-1)-N; %%% REVISIT THIS

sl

[s1 zeros(1l,num zeros)];
s2 ]

[s2 zeros(1l,num zeros)

1

)

% Design window for stream 1 - use another Tukey window
winl = tukeywin(L,P)."';

% zero pad winl so it is length Lw2
num_zeros = Lw2-L;

winl = [winl zeros(1l,num zeros)];

% Compute DFT size

dft_sizel = 2% (ceil(log2 (2*Lw2-1)));

for m = 0:M-1 % { 0 to Num Blocks - 1
% Form the mth signal block
slmo_tilda = sl (m*D+1:m*D+Lw2) ;
s2mo_tilda = s2(m*D+1:m*D+Lw2) ;

% window both streams and zero pad to 2*Lw2 - 1
Slmowl tilda = fft(winl.*slmo tilda,dft sizel);
S2mow2 tilda = fft(win2.*s2mo tilda,dft sizel);
% Form CS matrix and zero pad
CS(m+1l,:) = Slmowl tilda.*conj (S2mow2_ tilda) ;

clear('slmo_tilda', 's2mo tilda', 'Slmowl tilda', 'S2mow2 tilda');

end ¥ } for mm = 0 to Num Blocks - 1

% Determine the amount of zero padding to perform on columns of CS

% matrix to get correct Doppler spacing
num w_zp dopp = ceil((fs/D)/doppler spacing) ;

% Determine the amount of zero padding to perform on rows of Adoppler

% matrix to get correct Tau spacing
num w_zp tau = max(dft_sizel,T);

% Determine DFT size & compute CAF

dft _size dopp = 2" (ceil(log2 (num w_zp dopp))) ;
dft_size tau = 2" (ceil(log2(num w_zp tau)));
Adoppler= fft(CS,dft size dopp,1);
clear('Cs','sl','s2");

A = fftshift (ifft (Adoppler,dft size tau,2).');
clear ('Adoppler') ;

% Set tau vec

[num taus,num dopplers] = size(A);
tau_spacing = inv(fs/D);
if (mod(num_taus,2) == 0) % { even
tau _vec = [(-num_taus/2): (num taus/2)-1].*tau_ spacing;

else % } odd {

tau _vec = [-((num_taus-1)/2):((num_taus-1)/2)].*tau spacing;

end % } if num taus is even
% Calculate new doppler spacing for dopp_ vec
fs_after dec = fs/D;

dopp_space_after dec = fs after dec/dft size dopp;

)

% Set dopp_vec

dopp_vec = [(-num dopplers/2): ((num dopplers/2)-1)]*dopp_space_ after dec;
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% Get tau and Doppler measurements from surface peak
[tau,doppler] = curve fit (abs(A),tau vec,dopp vec) ;
% Get the number of computations needed for this method
real mults = M* (8*Lw2+4*dft sizel* (log2(dft sizel)-2)+8+4*dft sizel)+...
dft sizel* (2*dft size dopp* (log2 (dft size dopp)-2)+4)+...
dft_size dopp* (2*dft_size tau* (log2(dft_size tau)-2)+4);

real adds = M* (4*Lw2+6*dft sizel*log2 (dft sizel)-2*dft sizel+4+2*dft sizel)+...

dft_sizel* (3*dft size dopp*log2 (dft_size dopp)-2*dft_size dopp+2)+...
dft size dopp* (3*dft size tau*log2 (dft size tau)-2*dft size tau+2);
num _comp = [real adds;real mults];
return;
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