

Computing the Cross Ambiguity Function � A Review

by

Christopher L. Yatrakis

Bachelor of Science in Computer Engineering
Binghamton University, State University of New York, 2001

THESIS

Submitted in partial fulfillment of the requirements for
the degree of

Master of Science of Electrical Engineering

Binghamton University, State University of New York
2005

 2

Accepted in partial fulfillment of the requirements for the

degree of Master of Science in Electrical Engineering
in the Graduate School of

Binghamton University, State University of New York

2005

Mark L. Fowler ___ January 28, 2005

Department of Electrical and Computer Engineering

Eva Wu ___ January 28, 2005
Department of Electrical and Computer Engineering

Xiaohua Li ___ January 28, 2005

Department of Electrical and Computer Engineering

 3

Abstract

 Computing the cross ambiguity function is essential for TDOA/DD emitter location. Many algorithms

for computing the cross ambiguity function have been presented in literature throughout the years. How-

ever, the existing literature is lacking in providing analysis in how these algorithms apply to emitter loca-

tion, in determining which methods are better under certain scenarios. There has also been no attempt to

discuss the similarities and differences of multiple algorithms or provide an outline of the relationships of

some of these algorithms. Some of these algorithms are very similar to each other and include techniques

to reduce the computational load needed to accurately compute the ambiguity function. Four such algo-

rithms, the �Fine-Mode�, �Fine-Mode� Generic Filter, �Fine-Mode� Generic Filter Frequency Domain,

and Two-Dimensional Cross Spectra, using windowing/filtering and decimation to approximate the am-

biguity function that allow for accurate computation, as well as a �brute force� method are discussed and

analyzed to provide similarities and differences in their structures. Relationships among the five methods

are established and results from testing the five algorithms in an emitter location scenario to determine

accuracy and computational complexity with varying sampling rates, decimation, and Doppler shift are

given. The results show that there is no one clear best overall method that gives the best accuracy and best

computational complexity. Given a particular frequency, sampling rate, and amount of decimation the

best method in terms of accuracy and computational complexity varies. The two-dimensional Cross Spec-

tra method does produce the worst TDOA accuracy among all the methods. Though the findings are

promising, further study is needed for all the methods. Analysis of the results indicates that sources of

error deal with curve-fit errors that can be attributed to the simulation software used and aliasing errors

from the amount of decimation. Suggestions for further study are made and may be used to provide a

roadmap for further work in this area. An objective of this thesis to consolidate into one single place the

information on cross ambiguity function algorithms for five algorithms found in literature and their rela-

tionships between each of them was obtained.

 4

Table of Contents

Abstract ... 2

Table of Contents.. 4

Table of Tables ... 5

Table of Figures .. 7

Chapter 1 Introduction .. 9

Chapter 2 Background on Ambiguity Function... 11

2.1 Definition and Theoretical Viewpoint ... 11

Chapter 3 Computationally Efficient Methods .. 26

3.1 Fourier Transform of Lag Product Viewpoint... 26

3.2 Filter Bank Viewpoint ... 48

3.3 2-D DTFT of Cross-Spectra Matrix .. 49

Chapter 4 Summary of Methods & Computational Complexity ... 61

4.1 Comparison of Methods .. 61

4.2 Test Setup .. 63

4.3 Summary of Results .. 79

Chapter 5 Conclusion... 112

References... 115

Appendix A Matlab Code for Main Driver Script.. 116

Appendix B Matlab Code for freq_shift Function .. 120

Appendix C Matlab Code for curve_fit Function ... 121

Appendix D Matlab Code for fmg Function ... 122

Appendix E Matlab Code for fmgfd Function .. 124

Appendix F Matlab Code for fb Function... 127

Appendix G Matlab Code for twodcs Function... 129

 5

Table of Tables

Table 1. Test Case Specifics ... 69

Table 2. "Better" Filter Parameters for Matlab Filter Design Tool... 74

Table 3. Test Results.. 83

Table 4 HF Narrow Band Low Decimation Test Case Results ... 86

Table 5 HF Narrow Band Medium Decimation Test Case Results ... 86

Table 6 HF Narrow Band High Decimation Test Case Results... 86

Table 7 HF Medium Band Low Decimation Test Case Results .. 87

Table 8 HF Medium Band Medium Decimation Test Case Results .. 87

Table 9 HF Medium Band High Decimation Test Case Results ... 87

Table 10 HF Wide Band Low Decimation Test Case Results ... 88

Table 11 HF Wide Band Medium Decimation Test Case Results... 88

Table 12 HF Wide Band High Decimation Test Case Results .. 88

Table 13 VHF Narrow Band Low Decimation Test Case Results... 89

Table 14 VHF Narrow Band Medium Decimation Test Case Results .. 89

Table 15 VHF Narrow Band High Decimation Test Case Results .. 89

Table 16 VHF Medium Band Low Decimation Test Case Results ... 89

Table 17 VHF Medium Band Medium Decimation Test Case Results ... 90

Table 18 VHF Medium Band High Decimation Test Case Results... 90

Table 19 VHF Wide Band Low Decimation Test Case Results .. 90

Table 20 VHF Wide Band Medium Decimation Test Case Results .. 90

Table 21 VHF Wide Band High Decimation Test Case Results ... 90

Table 22 UHF Narrow Band Low Decimation Test Case Results... 91

Table 23 UHF Narrow Band Medium Decimation Test Case Results .. 91

Table 24 UHF Narrow Band High Decimation Test Case Results .. 91

 6

Table 25 UHF Medium Band Low Decimation Test Case Results ... 91

Table 26 UHF Medium Band Medium Decimation Test Case Results ... 91

Table 27 UHF Medium Band High Decimation Test Case Results... 92

Table 28 UHF Wide Band Low Decimation Test Case Results .. 92

Table 29 UHF Wide Band Medium Decimation Test Case Results .. 92

Table 30 UHF Wide Band High Decimation Test Case Results ... 92

Table 31 Results From Increased Oversampling ... 104

Table 32 CAF Values for TDOA Curve Fit for HF Wide Bandwidth High Decimation Test 105

Table 33 CAF Values for TDOA Curve Fit for HF Medium Bandwidth High Decimation Test Case... 105

Table 34 FMGFD Results with fir1 filter, L=D, and Reduced Zero-Padding ... 108

Table 35 Breakdown of Method Advantages and Disadvantages ... 113

 7

Table of Figures

Figure 1 Multiple Platform Emitter Location ... 11

Figure 2 TDOA and FDOA Contours... 12

Figure 3 Frequency Domain View of Received Signal .. 14

Figure 4 Frequency Domain View of Received Signal Modulated to DC.. 15

Figure 5 Low Pass Equivalent (Complex Envelope) Signal ... 15

Figure 6 Model of Transmitter (Emitter) and Receiver (Collector).. 16

Figure 7 Two-Dimensional Vector View of Cross Correlation .. 19

Figure 8 Coarse Process for Calculating CAF .. 21

Figure 9 Example of Output CAF Surface.. 21

Figure 10 Cross-Section of CAF in Time delay Direction ... 22

Figure 11 Cross-Section of CAF in Doppler Direction .. 23

Figure 12 Process for Computing CAF in Discrete Time... 25

Figure 13 CAF Computed in Discrete Time... 25

Figure 14. Computation of Ambiguity Function Using "Fine-Mode" ... 30

Figure 15. Procedures for Computing the Ambiguity Function Using "Fine-Mode" 31

Figure 16 Aliasing from Rectangular Window... 32

Figure 17 Frequency Response of a Rectangular Filter of Length L = 100. ... 33

Figure 18 Passband of Rectangular Filter Covering the Doppler Range .. 33

Figure 19 Aliasing of Rectangular Filter .. 34

Figure 20 Improved Lag-Product Filtering Using More Appropriate Filter ... 34

Figure 21 Generic Filter Used In Practice .. 35

Figure 22 Generic Filter with Pass-Band Ripple .. 36

Figure 23 Block Diagram of DTFT of rτ[n].. 36

 8

Figure 24 Lag Product Convolution with Generic Filter .. 37

Figure 25 Result of Decimation Factor > Filter Length... 38

Figure 26 Computation of Ambiguity Function Using "Fine-Mode" Generic Filter.................................. 39

Figure 27 Procedures for Computation of Ambiguity Function Using "Fine-Mode"Generic Filter 40

Figure 28 Discrete Time Correlation in Frequency Domain for the mth block ... 45

Figure 29 Computation of Ambiguity Function Using �Fine-Mode� Generic Frequency Domain Part I.. 45

Figure 30 Computation of Ambiguity Function Using �Fine-Mode� Generic Frequency Domain Part II 46

Figure 31 Procedures for Computing Ambiguity Function Using "Fine-Mode" Generic Frequency

Domain.. 47

Figure 32 Aliasing of Decimation Filter for τ = 10 .. 53

Figure 33 Procedures for Computing 2-D Windowed Cross-Spectrum Method .. 59

Figure 34: Windows for the two-window version .. 60

Figure 35 Relationship of Each Method ... 63

Figure 36 Frequency Representation After Decimation for Narrow Band HF Test Case 68

Figure 37 Testing Structure .. 70

Figure 38 Filter Analysis Using Digital Frequency .. 71

Figure 39 Cramer-Rao Lower Bounds for TDOA ... 94

Figure 40 Cramer-Rao Lower Bounds for FDOA ... 95

Figure 41 Cramer-Rao Lower Bounds for TDOA with Best Test Result Values from Tables 4 -30 96

Figure 42 Cramer-Rao Lower Bound for FDOA with Best Test Result Values from Tables 4 - 30.......... 97

Figure 43 PSD of Lag Product for Filter Low Decimation, FM Method, DFT Size = 128....................... 99

Figure 44 PSD of Lag Product with Filter Medium Decimation, FM Method DFT Size = 128 100

Figure 45 PSD of Lag Product with Filter High Decimation, FM Method, DFT Size = 128.................. 101

Figure 46 Zoomed in View of Aliasing for HF Med BW, High Decimation Test Case.......................... 102

Figure 47 CAF Plot in TDOA Dimension for HF Medium Band High Decimation FM Test Case......... 103

Figure 48 Plot Comparing Computational Complexity of FMG and FMGFD... 109

 9

Chapter 1 Introduction

Multiple algorithms have been developed in order to compute the narrow-band cross-ambiguity

function (CAF). These algorithms share many similarities in their structure (decimation, filtering, etc�).

One application where these existing algorithms are applied is in emitter location. Emitter location uses

techniques in the disciplines of estimation theory and signal processing to find transmitters of a tasked

frequency and distance from a reference point of platforms (receivers) that collect data in order to use

time-difference-of-arrival (TDOA or time-delay) and/or frequency-difference-of-arrival (FDOA or Dop-

pler) to locate the precise location to a desired accuracy. In emitter location, the object is to compute the

cross-ambiguity function as quickly as possible and use it to determine the most accurate position of the

emitter. In existing literature, no detailed analysis has ever been performed that combines analysis of

multiple CAF methods that highlights their similarities but at the same time compares and contrasts these

algorithms for emitter location to provide insight on what algorithm to use, under certain conditions.

In order to provide this information, a detailed analysis on five cross-ambiguity algorithms was

performed. The methods used for the analysis were the Filter Bank, �Fine-Mode�, �Fine-Mode� Generic

Filter, �Fine-Mode� Generic Filter Frequency Domain, and the Two-Dimensional Cross Spectra methods.

This analysis included using mathematical derivations from literature for all the methods in order to indi-

cate similarities and differences between the structures of the algorithms. Only existing algorithms were

used for this analysis. No new algorithms were created and used. The analysis of these algorithms in-

cluded highlighting which methods use data reduction (decimation), differences in filtering, any limita-

tions placed upon the algorithms, and in which domain (time versus frequency) these algorithms are cal-

culated.

After the analysis was complete, relationships between each of the algorithms were established

that link these similarities and differences together. These methods were then tested using two simulated

pseudo-voice signal streams for three different frequencies (HF, VHF, and UHF) in Matlab. Under each

frequency the amount of Doppler shift to one of the streams, along with the sampling and decimation

 10

rates were varied. The time-delay and Doppler values measured off the ambiguity surfaces for each of the

methods were compared to truth to determine the accuracy results, and the number of real computations

(additions and multiplies) were calculated for each method for each test case and then contrasted to de-

termine computational complexity. A lengthy error analysis was conducted that points out sources of er-

rors, limitations from the simulation software, as well as possible future points of study regarding these

methods.

 This thesis provides an analysis that (i) discusses similarities among five existing cross-

ambiguity function algorithms and (ii) test these methods in an emitter location scenario. By testing these

methods under a specific emitter location scenario insights were obtained that can be used to (i) under-

stand the trade-offs in computational complexity versus accuracy and to (ii) determine circumstances un-

der which these methods may be preferred for emitter location. A secondary objective to condense into

one document information on these five algorithms was also achieved.

This thesis consists of five chapters. Chapter 2 discusses background information on emitter lo-

cation and cross-ambiguity functions. Chapter 3 provides the mathematical derivations for each of the

five methods remaining as well as the analysis that highlights similarities and differences between each

method. Chapter 4 gives the relationships between each method and explains the test setup used and

derivation of test case parameters, as well as providing the results and error analysis from the tests con-

ducted. Chapter 5 is the conclusion that includes a summary of the positives and negatives of the five

CAF algorithms examined. The References section follows Chapter 5. The Appendices appear after the

References section and include the Matlab simulation code used for the test cases performed. Appendix

A contains the main driver Matlab script code. Appendices B through G contain code for the Matlab

functions used for calculating the TDOA and FDOA and number of computations for each method or for

helper functions used in calculation of the latter.

 11

Chapter 2 Background on Ambiguity Function

In this chapter, the background on the narrow-band cross ambiguity function (CAF) is presented

from an emitter location perspective. The background information presented includes a definition of the

emitter location problem and why the ambiguity function must be used. Within this presentation an alter-

native view on how the CAF may be thought of as the inner product of two vectors is given. Terms used

in estimation theory and signal processing such as range and low-pass equivalent signal are briefly dis-

cussed.

2.1 Definition and Theoretical Viewpoint
Emitter location can best be defined by examining Figure 1:

)(ts

tjetts 1)(1
ω−

Data Link

Data
Link

tjetts 2)(2
ω−

tjetts 3)(3
ω−

Figure 1 Multiple Platform Emitter Location

 An emitter transmits a signal denoted by s(t). The data collectors represented by airplanes, col-

lect signal data. Each collector is at a specific distance or range away from the emitter. Since the exact

location of the emitter is not known, the distance from each collector to the emitter is not known. The

emitter transmits its signal at some time t. Since there is a distance between each collector and the emit-

 12

ter, in some instances thousands of meters, the emitter�s signal s(t) arrives at the collectors at some time

after time t. This received signal is a delayed version of the transmitted signal. Assuming the emitter is

stationary, if the collectors are moving, they each have a velocity with respect to the emitter, so the re-

ceived signals also have Doppler shifts applied to them. In the case of Figure 1, the three received signals

from left to right, including the time delays and Doppler shifts are s(t-t1)ejτ1t, s(t-t2)ejτ2t, and s(t-t3)ejτ3t.

Where t1, t2, and t3 represent the time delays and ν1, ν2, and ν3 represent the frequency offsets or Doppler

shift of the received signals with respect to the transmitted frequency ω at collectors one, two, and three

respectively.

In order to locate the emitter, TDOA and FDOA are applied to the signal data.

)(ts

tjetts 1)(1
ω−

Data Link

Data
Link

τ23 = t2 � t3
= constant

TDOA
Time-
Difference-
Of-
Arrival

tjetts 2)(2
ω−

tjetts 3)(3
ω−

ν21 = ω2 � ω1
= constant

ν23 = ω2 � ω3
= constant

Figure 2 TDOA and FDOA Contours

The time of arrivals of the signal data between two collectors are subtracted to produce a differ-

enceτ, thus the acronym TDOA. In Figure 2, the TDOA between collectors two (middle plane in the fig-

ure) and one (left-most plane) is denoted by τ21, and τ23 denotes the TDOA between collectors two and

three (right-most plane). The math tells us that a TDOA will produce a hyperbola in which the emitter

lies on. This is fine, except where on the hyperbola does the emitter lie? If a second TDOA was com-

 13

puted, another hyperbola could be computed. Where these two hyperbolas intersect would be the emitter

location, thus the reason for having τ21 and τ23!

Taking the differences between the Doppler shifts between two collectors will produce a FDOA,

ν. In Figure 2, the FDOA between collector two and collector one (left-most plane) is denoted by ν21, and

ν23 denotes the FDOA between collector two and collector three. Like the TDOA technique, FDOA will

also produce a hyperbola. So by having three collectors, the emitter could be located using the TDOA

technique only or the FDOA technique only, but what if both techniques were used together. In the case

of Figure 2 there would be four curves intersecting, thus providing a more accurate emitter location!

By knowing the TDOA and FDOA of the collectors and applying estimation theory techniques an

estimate of the emitter�s location can be obtained. This is not as easy as is described. The emitter posi-

tion is what is desired, but some unknowns make this emitter location problem a difficult one to solve.

The emitter is transmitting its signal. It is received at some time offset from when it was transmitted, but

at what time did the emitter begin transmitting? This is one unknown! The other unknown is the re-

ceived signal is received at some frequency, which due to collector velocity has a Doppler shift on it, but

what frequency is the emitter transmitting at? If the time at which the emitter began transmitting was

known, the time delay at each platform could be computed accurately and the TDOAs could easily be

computed, and the same goes for FDOAs if the frequency of the emitter was known, but since the time at

which the emitter began transmitting and the frequency at which it is transmitting is unknown, how is this

emitter going to be located if TDOA and FDOA cannot be computed?

The answer is simple, correlation. By computing the CAF between collectors one and two and

then two and three, τ21, τ23, ν21, and ν23 can be computed. The CAF can be computed by taking the cross-

correlation between the received signals at two platforms. The cross-correlation takes one of the received

signals at one of the collectors and it delays it a certain amount. That delayed signal is then slid a certain

amount in time with respect to another received signal, from a different collector, which is kept fixed in

time. At each of the slide amounts, the samples from the fixed and shifted signal are multiplied and

 14

summed together, producing a number. The maximum number over the entire duration of the shifted and

the fixed signal is the most the two signals match. If a cross-correlation is performed in two-dimensions,

with the two dimensions being TDOA and FDOA, a peak will be produced. The received signals are the

same signal only with a different time delay, amplitude, and Doppler shift. The point where the maxi-

mum value from the cross-correlation occurs (the peak) will have a corresponding TDOA and FDOA

with it. It is this TDOA and FDOA that is of interest. This TDOA and FDOA are the ones that we are

trying to calculate!

To be able to obtain the received signals in a form to be able to cross correlate them, some ma-

nipulation must be performed. The first manipulation is to generate the complex envelope for the re-

ceived signals. To do this, first examine what types of signals the collectors intercepted. The signals that

were collected by the collectors were only collected for the finite duration of time T. This makes the sig-

nals time-limited. Recalling properties in signal processing theory, time-limited signals produce signal

replicas of the signal in the frequency domain. The data collected by the collectors was real data. This

will produce spectra pairings at both positive and negative frequencies in the frequency domain

f

X R F (f)

Figure 3 Frequency Domain View of Received Signal

To generate the complex envelope, modulate the positive or negative frequency band to zero by

multiplying by a complex exponential, ejω in the time domain. This multiplication shifts the spectra in the

frequency domain. The sign of the jω term of the modulating complex exponential is determined on

 15

whether the positive (sign is negative for a shift of the spectra down in frequency) band or negative (sign

is positive for a shift of the spectra up in frequency).

f

X (f)

Figure 4 Frequency Domain View of Received Signal Modulated to DC

 For purposes of this paper, the positive band is shifted towards zero. Once the positive band is

shifted to DC or zero, a low pass filter filters out all of the other spectral bands/replicas. This now has

produced a signal that has a bandwidth from �B/2 to B/2 and is centered at frequency equal to zero.

f

X d
L P E (f)

B /2B /2

Figure 5 Low Pass Equivalent (Complex Envelope) Signal

This is called the low-pass equivalent (LPE) or complex envelope. Generating the complex envelope has

advantages. Using complex models provides insight that working with real signal models would not al-

low. It is this insight that will allow us to exploit the ideas needed to be able to produce the CAF. An-

other advantage of using the complex envelope is that because the signal takes up the frequency band

 16

from �B/2 to B/2, the signal can be sampled at Fs ≥ B Hz. If the real signal model was used the sampling

rate would have to be 2B. Having to sample at a lower rate requires less time and less calculations.

The second manipulation comes in the form of applying the time delay and Doppler imparted to

the collected signal.

T x R x
R (t)

Figure 6 Model of Transmitter (Emitter) and Receiver (Collector)

In Figure 6 the emitter from Figure 1 is the transmitter (Tx) and a collector from Figure 1 is represented

as a receiver (Rx). The general time delay, also called propagation time, denoted by τ(t), is a function of

time. This value calculated by taking the distance from the emitter to the collector and dividing it by the

speed of light is given by

 c
tR tτ)()(= , (1)

where c is the speed of light constant. The general range is denoted by R(t). Taking the Taylor series ex-

pansion of the distance expands it into the following form

 …+++=
2

)(
2atvt R tR o , (2)

Emitter location is done for some specified observation interval. This interval is usually small in time for

a variety of reasons; mainly the emitter does not usually transmit for a continuous period of time but for

short durations. Therefore, since the observation interval is small, it is assumed that the velocity is rela-

tively constant over this observation interval. From this assumption, the third, and higher terms of R(t)

approximate zero and can be ignored. This leaves R(t) as a function of Ro and νt

 17

 vt R tR o +=)(. (3)

Applying the time delay and Doppler to the received signals yields a general form as

)]1[()][()(
c

Rt
c
vs

c
vtRtsts oo

r −−=
+

−= . (4)

This signal is the received band pass signal; it has not yet been shifted to create the LPE (complex enve-

lope) signal. What is interesting about this signal is the [1 �ν/c]t term alters the received signal. Based

on the value of Doppler,ν, the signal is time scaled. In the time domain, the received signal is compressed

if ν is negative, or the signal is expanded if ν is positive.

Also, by examining the above equation for sr(t), the time delay has been simplified to a constant

(no longer is it dependent on time t as was previously shown). The range, Ro can be calculated by

222)()()(EEEo ZZYYXXR −+−+−= , (5)

where X, Y, Z are the coordinates of a collector at a specific time of interest, and XE, YE, ZE are the coordi-

nates of the emitter. The problem with the above equation can easily be seen. The emitter location is not

known! Simplification cannot be done. However, letting τd = Ro/c makes the equation for sr(t) become

)]1[()(dr τt
c
vsts −−= , (6)

where (6) is a simpler form to view than (4).

To understand how the time delay, Doppler, and complex envelope all come together, the analytic

signal must be analyzed

])([)()(~ tφtωj cetEts += , (7)

where E(t) equals s(t) and ej[ωct+φ (t)] is the modulation required to produce a LPE (complex envelope) sig-

nal. Applying the Doppler shift and time delay to the analytic signal yields:

 18

)}]1([)]1([{
)]1([)]1([~)(~ ddc τt

c
v

φτt
c
v

ωj
ddr eτt

c
vEτt

c
vsts

−−+−−
−−=−−= .

(8)

Analyzing the [1 � ν/c], it can be seen that the term [1 � ν/c] ≈ 1. This is because the speed of light con-

stant, c approximates 3x108 m/s. Any velocity substituted for ν is always << 3x108 m/s. Performing the

division of ν/c will produce a result that ≈ 0. Now if it is assumed that E(t) and φ(t) vary slowly enough

for the range of Doppler of interest such that they remain constant over the observation interval, then E(t)

can be approximated as

)()]1([tEt
c
vE ≈− , (9)

and φ(t) can be approximated as

)()]1[(tφt
c
vφ ≈− . (10)

This is called the narrowband approximation. Note that this approximation can be used if the signal of

interest that the emitter is transmitting is indeed a narrowband signal. For the purposes of this paper, it is

assumed that the transmitted signal is narrowband. If the signal is a wideband signal, this approximation

cannot be performed!

 Using the narrowband approximation, the analytic signal model becomes

tjωc
vt

jωτjωtj}τtφτωtc
v

ωtj{ω
d

ccdcd
d

ddccc eeeeτtEeτtEts
−−−−+−−

−=−=)()()(
)()()(~ τϕ

,

(11)

where E(t-τd)ejφ(t-τd) is the received signal�s LPE (complex envelope) signal time-shifted by τd, ejωct is the

carrier term, ejωcτd is a constant phase term and e-jωcνt/c is the Doppler shift term. If the analytic signal is

simplified by letting α =ωcτd , ωd = ν/c, and s~ (t - τd) = E(t - τd)ejϕ(t-τd) then the narrowband LPE signal

model becomes

 19

tjj

dr
deetsts ωατ −−=)(�)(~ . (12)

To estimate Doppler and time delay, first consider a continuous time view, for simplicity. This paper as-

sumes that the signals mentioned in the next chapters to try and explain the procedure for estimating Dop-

pler and time delay are all LPE signals, but s� is not used. Given LPE signals s1(t) = s(t) and s2(t) = s(t-

τd)ejαe-jωdt for t ∈[0,T], compute τd (time delay) and ωd (Doppler). One way to view this is to visualize

vectors in two-dimensional vector space. In specific consider two vectors, V1 and V2 and let them be

separated by some distance, call id θd.

θ d V 2

V 1

Figure 7 Two-Dimensional Vector View of Cross Correlation

The two vectors are shown above in Figure 7. Let the goal be to measure θd. One way of finding θd is to

keep V1 fixed and rotate V2 clockwise by some small incrementθ. For each value of θ, compute an inner

product between the two vectors by

)()(, 21 ϑϑ AVV = . (13)

This will produce a result that will be a function of θ. Notice what value produces the largest inner prod-

uct. The maximum value of A(θ) occurs when V1 and V2 are directly on top of one another or when θ

equals θd. So if A(θ) is plotted over all values of θ, the maximum would be at the peak of A(θ)! This

 20

sounds very familiar to what the CAF does. In fact the inner product just described is mathematically

equivalent to the CAF!

To represent the CAF mathematically, first, let sω,τ(t) = ejωts2(t+τ). All that has been done is taken

s2(t) and delayed it in time by τ and shifted it in frequency by some amount ω. So the new form of sω,τ(t)

becomes

tωωjjα

dω,τ
deeττtsts)()()(−+−= . (14)

Performing the inner product obtains

)()(),(1 tstsτA ω,τ=ω . (15)

Using the definition of inner product, A(ω,τ) can be rewritten as

 dttstsA
T

)()(),(,
0

1 τωτω ∫= . (16)

Upon substituting the value for sω,τ(t) and taking the complex conjugate, the following equation for A(ω,τ)

is given by

 dteetstsA jj
d

T
d αωωτττω)(

0
1)()(),(−+−∫= , (17)

where α = -ωcτd. From the inner product view, |A(ω,τ)| has a maximum at ω = ωd and τ = τd. Calculating

the maximum value produces

EnergyBEdtetsdteetstsA s

T
jtjj

T

dd
dd ==∫=∫ +−= −−

0

2)(

0
)()()(),(αωωατττω ,

(18)

where noting that ejα is a constant and is represented by B (not bandwidth). By finding the peak from the

CAF, the energy of the signal can be calculated! The process for computing the CAF is becoming de-

fined.

 21

D e l a y D o p p l e r
S h i f t

� C o m p a r e �
S i g n a l s
F o r a l l

D e l a y s &
D o p p l e r s

)(1 ts

)(2 ts

F i n d
P e a k

Figure 8 Coarse Process for Calculating CAF

To compute a CAF, take two signals. Each signal will be from a different collector. On the sec-

ond signal, impart a delay and a Doppler Shift. Then take the inner product of the two signals for all the

time delays and Dopplers of interest. What comes out is the CAF

Figure 9 Example of Output CAF Surface

A peak will result, and this peak will be centered on the true time delay and the true Doppler.

 What is interesting about the CAF is that not only will it provide the time delay and Doppler

measurements, but it also provides insight into the characteristics of the time delay and Doppler. Start

 22

with examining the time delay. First begin by considering the case when ω = ωd (the CAF has been cen-

tered on the Doppler value, but not time delay).

|A (ω d ,τ) |

ττ d

w id t h ∼ 1 / B W

Figure 10 Cross-Section of CAF in Time delay Direction

This CAF is represented mathematically by

 dtetstsA j
T

d
ατττω ∫ +−=

0
)()(),(. (19)

By examining the right-hand side of (19), the TDOA is nothing more than a correlation between two sig-

nals. The most interesting insight that can be taken from Figure 10 is that the slice of the CAF in the time

delay direction shows that TDOA or time delay peak width is based on inverse of the bandwidth of the

signal the emitter transmits. The CAF provides information on the signal that was transmitted. If the

bandwidth of the signal is small, the CAF peak in the TDOA direction will have a wide lobe, where if the

bandwidth of the transmitted signal was wide, then the peak in the TDOA direction will be a sharp,

skinny peak.

 Similar information can be obtained from the Doppler part of the CAF. To look at the Doppler,

let τ = τd (TDOA portion of CAF peak has been found, but not Doppler). This CAF is as follows:

 23

ωωd

|A(ω,τd)|

width ∼ 1/T

Figure 11 Cross-Section of CAF in Doppler Direction

This CAF is mathematically represented by

 dteeetsA tj
T tdjj ωωατω −∫












=

0

2)(),(, (20)

The right hand side of the (20) depicts that the Doppler or FDOA of the CAF is nothing more than the

Fourier Transform of the complex sinusoid ejωdt, with |s(t)|2ejα being a window function! The most impor-

tant aspect gleamed from the FDOA slice of the CAF is that the width of the FDOA peak is inversely

proportional to the time width or integration period of the signal. The longer the integration period (i.e.

the more data applied to the CAF) the sharper and narrower the peak will be. A very short integration

time will yield a wide lobe in the FDOA direction of the CAF. There is a tradeoff here. The signal of

interest collected is usually on for a short period of time and therefore is collected for that short period or

for even a shorter period of time. So to get the best FDOA resolution, most of the signal has to be applied

to the CAF, so the integration time is as long as possible. This has the possibility to create many calcula-

tions.

 The equations given for |A(ω,τ)|, have been for continuous time. Since for continuous time, there

is an infinite number of points to process, the CAF, can only be computed for discrete values of time de-

lay and Doppler. To compute the discrete values of time delay and Doppler, some a priori information is

needed which includes the max/min Doppler (from largest expected velocity difference) and max/min

 24

time delay (from largest expected range difference). The max/min values allow for computation of a pre-

cise number of Dopplers and time delays that are of interest to use in computation of the CAF. Two other

important values needed are the delay spacing (taken from expected/measured signal bandwidth) and the

Doppler spacing (taken from the observation time interval, T). These values dictate how fine a grid of

time delays and Dopplers that will be used in conjunction with the number of time delays and Dopplers.

Once the number of delays, Dopplers, and bin spacing for both are calculated, an easy approach to calcu-

lating the CAF is to view it as the Fourier Transform of lag products. Recall that

 dteetstsA jtj
T

αωττω)()(),(2
0

1 +∫= . (21)

This is nothing more than the Fourier transform of the products s1(t) and s2(t), except s2(t) has a time de-

lay associated with it, thus the term lag products. If the lag products are defined as

)()()(21 ττ += tststf . (22)

Then for each time delay, τm of interest, A(ω,τm) = F{fτm(t)}. Where F{fτm(t)} is the Fourier transform of

the lag products. For the corresponding discrete time signals, fτ(t) becomes

][][][21 mnsnsnfm += , (23)

where n is the sample index and m is the delay index, which is synonymous with τm in the continuous time

world. The delay spacing is set by the sampling interval. The sampling rate is chosen so as to match the

signal bandwidth according to the Nyquist rate. This involves having the signal data sent through an A/D

converter and then performing preprocessing of the output. This is done for both streams that are to be

correlated.

 25

ADC Pre-Processing ↑L & Filter

ADC Pre-Processing ↑L & Filter

Ambigu ity
C omputation

s 1[n]

s 2[n]

Sampling rate cho sen
to match signal B W
according to N yq uist

Interpolate to
get desired
delay spacing

Figure 12 Process for Computing CAF in Discrete Time

The pre-processed signal data is then interpolated by a factor of L and then filtered to produce the proper

delay spacing. The two discrete time signal are then used in the computation of the CAF

|A(ωd,τ)|

τ

Figure 13 CAF Computed in Discrete Time

As seen in Figure 13, the dots and triangles represent the time delay and Doppler values that the CAF was

computed over in discrete time. The solid line connecting the dots and triangles represent what the CAF

looks like in continuous time.

 26

Chapter 3 Computationally Efficient Methods

This chapter will develop several computationally efficient methods for computing the CAF. The de-

velopments are structured in such a way to clearly show relationships between methods; readers whose

interest lies mostly in seeing the final resulting methods rather than the interconnected developments can

skip immediately to Chapter 4.3.

3.1 Fourier Transform of Lag Product Viewpoint

The Cross-Ambiguity function can be viewed as a Fourier Transform of lag products. To see this

viewpoint, start with the DTFT version of the ambiguity function. In practice the DFT form would be

used, but here the DTFT form simplifies notation. The ambiguity function to be computed is given by

∑
−

=

−

+=
1

0

2
*
21][][),(

N

n

F
vnj

sensnsA
π

τντ , (24)

where τ is an integer and represents the time delay over the range from 0 ≤ τ ≤ T and ν is a real variable

that represents Doppler. The * denotes complex conjugate. Though the equation in (24) is mathemati-

cally correct, the ambiguity function that is computed using this equation is a �brute force� method where

no data reduction is performed. Though this method is a �brute force� method, it may be advantageous in

some applications.

The][][*
21 τ+nsns term from the summation in (24) is called the lag product, where the lag is the

time delay of amount τ between s1 and s2. The product arises from the fact that s1 and s2 are multiplied

together. By letting the lag product be equal to

][][][*
21 ττ += nsnsnr , (25)

and substituting it back into (24), it can be seen that the ambiguity function is nothing more than the

DTFT of the lag product

 27

∑
−

=

−

=
1

0

2

][),(
N

n

F
vnj

senrA
π

τντ . (26)

When computing the DTFT in (26) directly, the DTFT will be over the range from -Fs/2 to Fs/2 (standard

range for a DTFT). However, in virtually ever case in practice, the maximum Doppler shift is << than

Fs/2. So when the DTFT is implemented using the DFT, the majority of the DFT points that are com-

puted are not even in the desired range of Doppler. Therefore, a method is desired to find a more efficient

way to compute (26), which will be shown below. The first step is to simply re-index the sum in (26)

using n = mL+p, where m = 0 � M-1 and p = 0 � L-1. To ensure that M blocks are created, r[n] must be

made to be a length divisible by L; this is done by zero-padding r[n] to the desired length. The value of L

is a parameter of the algorithm that can be chosen. The result in (26) now becomes

∑∑
−

=

−

=

+−

+=
1

0

1

0

)(2

][),(
M

m

L

p

F
pmLvj

sepmLrA
π

τντ . (27)

Separating the complex exponential in (27) and rearranging terms gives

∑ ∑
−

=

−

=

−−

+=
1

0

1

0

22

][),(
M

m

L

p

F
pj

F
vmLj

ss epmLreA
πν

τ

π

ντ . (28)

To simplify this further, note the following. The Doppler model states that

c
vff o= , (29)

where f is the Doppler shift in Hz, fo is the frequency of the signal of interest in Hz, v is the velocity of the

collection platform, and c is the speed of light constant. Assuming an extreme situation, that v is at most

 28

1000 m/s (supersonic aircraft) and fo is at most 10 GHz, then the dynamic range of the Doppler shift be-

comes

 MHz1.0
10
1010 8

3
10 ==f , (30)

which is much smaller than the bandwidth of the typical signal centered at 10 GHz. Since the collected

signals are complex envelope, the sampling rate (Fs) of either collected signal (s1 or s2), according to Ny-

quist�s sampling theorem, is 10 GHz. Comparing the maximum Doppler shift to Fs, the Fs is 105 times

greater than the Doppler shift, f. Then the complex exponential on the inner summation of (28) is

1)10(2 5

≈
−− Lje π , (31)

for values of L up to quite large values. Therefore, the approximation can be made that

1,...1,0,1
2

−=≈
−

Lpe sF
vpj π

, (32)

which says that if L is selected such that L << Fs/2πνmax, where νmax is the maximum expected Doppler

shift, an upper bound can be placed on the block size L based on the sampling rate and the maximum ex-

pected Doppler. This simplifies the ambiguity function in (28) to

∑ ∑
−

=

−

=

−

+=
1

0

1

0

2

][),(
M

m

L

p

F
vmLj

pmLreA s
τ

π

ντ . (33)

Although not discussed, for a method of determining A(τ,ν) without making the approximation in (32) see

Section 5.7.2 on page 153 of [9].

Noticing that the lag product of the inner summation in (33) is multiplied by nothing by ones, this

gives

 29

][1][),(
1

0

1

0

2

ppmLreA
M

m

L

p

F
vmLj

s∑ ∑
−

=

−

=

−

+= τ

π

ντ , (34)

where 1[p] is defined as:



 −=

=
otherwise,0

1,...,1,0,1
][1

Ln
n , (35)

where L is the chosen block length. After a change of variable in the inner summation of (34), (34) be-

comes

][1][),(
1

0

12

mLnnreA
M

m

LmL

mLn

F
vmLj

s −= ∑ ∑
−

=

−+

=

−

τ

π

ντ . (36)

This is exactly the result proposed in Section V-A of [1] for �fine mode� computation, although the

method of development was quite different (it was based on rough arguments related to filtering and

decimation). The result in (36) can be viewed as a three step process for each delay value τ: (i) form the

lag product r[n] given in (25), (ii) apply a filter of length L � as in the inner summation of (36), and (iii)

compute the DFT of the filtered sequence � this DFT would play the role of the DTFT in the outer sum in

(36). The length L filter can be viewed as filtering using a rectangular impulse response of length L,

given by (35) and then decimating by a factor of L; note that here the filter length and the decimation fac-

tor are the same. In practice the inner summation in (36) can be defined as:

∑
−+

=

=
1

][][~
LmL

mLn
nrmr ττ , (37)

 which is the resulting output of filtering r[n] using (35) and then decimating by L. The decimation factor

L is computed as L = Fs/νmax, where, as mentioned previously, Fs is the sampling rate of the received sig-

nal and νmax is the maximum expected Doppler shift expected on the received signal of interest. Thus by

substituting (37) into (36), (36) can be re-written as

 30

∑
−

=

−

=
1

0

2

][~),(
M

m

F
vmLj

semrA
π

τντ . (38)

Note that because the filter length equals the decimation factor, each output of this filter and decimation is

computed by moving the length-L filter ahead by L samples. This results in the non-overlapped blocks of

(36).

1=τ

0]1[
]1[]2[
]2[]3[

]6[]5[

]5[]4[

]4[]3[
]3[]2[

]2[]1[
]1[]0[

1

*
21

*
21

*
21

*
21

*
21

*
21

*
21

*
21

×−
−×−

−×−

×

×

×

×

×

×

Ns
NsNs
NsNs

ss

ss

ss
ss

ss
ss

"
"

DFT

1=τ

)1,1(

)1,1(
)0,1(

−KA

A
A

"
"

0=τ

]1[]1[
]2[]2[

]3[]3[

]5[]5[

]4[]4[

]3[]3[
]2[]2[

]1[]1[

]0[]0[

*
21

*
21

*
21

*
21

*
21

*
21

*
21

*
21

*
21

−×−

−×−

−×−

×

×

×

×

×

×

NsNs
NsNs

NsNs

ss

ss

ss
ss

ss

ss

"
"

DFT

0=τ

)1,0(

)1,0(
)0,0(

−KA

A
A

"
"

T=τ

0]1[
0]2[
0]3[

]5[]5[
]4[]4[

]3[]3[

]2[]2[

]1[]1[
][]0[

1

1

1

*
21

*
21

*
21

*
21

*
21

*
21

×−
×−
×−

+×

+×

+×

+×

+×

×

Ns
Ns
Ns

Tss
Tss

Tss

Tss

Tss
Tss

"
"

DFT

T=τ

)1,(

)1,(
)0,(

−KTA

TA
TA

"
"

##

Figure 14. Computation of Ambiguity Function Using "Fine-Mode"

Used with Permission From [10]

 31

Procedures:
1. Determine the number of time delays and Doppler shifts of interest.
2. Design an �all-ones� filter 1[n] based on the number of Doppler shifts of interest. Length

of the filter (L) has an upper limit of Fs/2πvmax, where vmax is the max Doppler shift
frequency.

3. Set the decimation rate D = L.
4. Zero-pad s1[n] and s2[n] to a length that is divisible by the length of 1[n] (L).
5. Determine the number of blocks M = length(s1[n])/L.
6. Compute each Inner Sum and take the DFT

for τ = 0 to T
 for m = 0 to M-1

 /* Get data for this block */

 ∑
−+

=

−=
1

][1][][~
LmL

mLn
mLnnrmr ττ , where][][][*

21 ττ += nsnsnr is the lag product

 Zero-pad][~ mrτ to get appropriate Doppler bin spacing
 end for on m

 ∑
−

=

−

=
1

0

2

][~),(
K

m

K
kmLj

emrkA
π

ττ , for k = 0, 1, 2, �, K

 /*),(kA τ is nothing more than the DFT of the filtered and decimated lag- product */

 end for on τ

Figure 15. Procedures for Computing the Ambiguity Function Using "Fine-Mode"

The method in (38) uses an �all-ones� rectangular window. This is not the most optimal filter to

use in certain applications, but can often be used successfully despite its poor qualities as a filter. For

example, assume that for the correct time delay (τ), the ambiguity surface looks like the following

 32

ωνd

|A(τ , ν)|

π/L−π/L

Spectrum of
Rectangular Filter

Ambiguity Surface

Figure 16 Aliasing from Rectangular Window

Where the ambiguity surface is centered on its true Doppler (νd), and the Doppler range of interest is from

+/- π/L. The sinc function shown in Figure 16 is the DTFT of the rectangular filter that filters the lag

product. It does not go to zero outside of the Doppler range of interest. Such, there is aliasing as parts

outside the Doppler range of interest get folded back in after decimation. To see this with a more specific

example, assume that the length of the rectangular filter is L = 100, the decimation rate M = 100, the

Doppler range of interest is -5 kHz ≤ v ≤ 5 kHz, and the sampling rate of the signal Fs = 1 MHz. The fre-

quency response of this rectangular filter is that of Figure 17. Zooming in to view the passband of the

rectangular filter, it is clear from Figure 18 that the passband covers the Doppler range of interest. Afte.r

decimating by M, frequency shifted replicas of the filter appear at multiples of Fs/M = 10 kHz. These rep-

licas are aliased back into the passband of the rectangular filter centered at f = 0 Hz, as is seen in Figure

19. Even though the rectangular filter is not an ideal low-pass filter, it has a nice property that all the

nulls from the aliasing are in the center of the passband or equivalently at the center of each Doppler bin

[10], which minimizes the impact of the aliasing.

 33

Figure 17 Frequency Response of a Rectangular Filter of Length L = 100.

Used with Permission from [10]

Doppler Range

Figure 18 Passband of Rectangular Filter Covering the Doppler Range

 34

Used with Permission from [10]

Figure 19 Aliasing of Rectangular Filter

Used with Permission from [10]

In most cases, a more generic filter that is specifically designed for the Doppler range of interest

is desired. This design should be carried out in the frequency domain to produce an optimal generic filter

that has a flat pass-band and a more narrow transition band, thus to avoid the effects of aliasing.

ωνd

|A(τ , ν)|

π/D−π/D

Spectrum of
Generic FilterAmbiguity Surface

Figure 20 Improved Lag-Product Filtering Using More Appropriate Filter

 35

As can be seen in Figure 20, the filter is specifically designed for the Doppler range of interest, since the

ambiguity surface is zero outside of +/- π/D. This minimizes any aliasing that would occur. The decima-

tion rate, D, is used in this instance instead of L because in the �Fine-Mode� algorithm from [1], D was

equal to the filter length. Since a more generic filter is being applied, this constraint no longer applies.

The decimation rate, D, must satisfy D ≤ L.

The filter from Figure 20 is an �ideal� filter and is impossible to create because it is non-causal.

ωνd

|A(τ , ν)|

π/D−π/D

Spectrum of
Generic Filter

Ambiguity Surface

Figure 21 Generic Filter Used In Practice

In practice, an approximation to the rectangular filter such as in Figure 21 is used. As shown in Figure

21, the approximation to the rectangular window has a flat pass-band over the Doppler range of interest

and a transition band that extends outside of the Doppler range of interest. This generic filter can be de-

signed to meet any requirements.

 36

ωνd

|A(τ , ν)|

π/D−π/D

Spectrum of
Generic Filter

Ambiguity Surface
Pass-Band Ripple

Figure 22 Generic Filter with Pass-Band Ripple

In fact, the requirements on the filter in Figure 21 can be relaxed to include ripple in the pass-band (see

Figure 22), be longer in length, and/or have a much different transition band than the one shown in Figure

21. In all of these cases, errors are introduced because of pass-band ripple and/or the �decay� in the tran-

sition band. These errors need to be and can be corrected over the specific Doppler range of interest.

To fix these errors, recall from (26) that A(τ,ν) is the DTFT of rτ[n].

Figure 23 Block Diagram of DTFT of rτ[n]

 37

To apply the generic filter, rτ[n] is convolved with h[n] as shown in Figure 24.

Figure 24 Lag Product Convolution with Generic Filter

After the convolution in the time domain, the result in the frequency domain is

),()(),(~ vAvHvA ττ = , (39)

where H(ν) is the DTFT of h[n] and A(τ, ν) is the DTFT of rτ[n]. Recall from Figure 21 that H(ν) is > 0

over the Doppler range of interest ([-π/D, π/D]). Therefore, over the Doppler range of interest there exists

a 1/H(ν) such that

)(
),(~

),(
~~

vH
vAvA ττ = . (40)

The result in (40) accounts for and fixes the aliasing error due to the transition band of the filter h[n] ex-

tending outside the Doppler range of interest and is a result presented in Section III of [2]. The result

 38

here is no different than the result obtained in (38). The lag product (rτ[n]) is still filtered using a FIR

filter and is then decimated by a factor D. However, the filter used is a more generic filter that can be any

length, with filters approximating the �ideal� filter being more complex due to the increased number of

taps. With the use of the generic filter h[n], the decimation factor is no longer limited to being equal to

the filter length; it is now ≤ Fs/νmax.

x1 x3x2 x9x5x4 x8x7x6

D = 4, L = 6

Figure 25 Result of Decimation Factor > Filter Length

If the decimation factor is greater than the filter length, this causes problems in that samples are skipped,

as shown in Figure 25 where the filter length is 4 and the decimation factor is 6. Care should be made to

assure that the decimation factor is ≤ than the filter length.

 39

1=τ

)1,1(
~~

)1,1(
~~

)0,1(
~~

−KA

A

A

"
"

0=τ

]2[]1[]1[

]1[]2[]2[

]0[]3[]3[

]2[]5[]5[

]1[]4[]4[

]0[]3[]3[

]2[]2[]2[

]1[]1[]1[

]0[]0[]0[

*
21

*
21

*
21

*
21

*
21

*
21

*
21

*
21

*
21

hNsNs

hNsNs

hNsNs

hss

hss

hss

hss

hss

hss

×−×−

×−×−

×−×−

××

××

××

××

××

××

"
"

DFT

0=τ

)1,0(
~~

)1,0(
~~

)0,0(
~~

−KA

A

A

"
"

T=τ

]2[0]1[
]1[0]2[
]0[0]3[

]2[]5[]5[

]1[]4[]4[

]0[]3[]3[

]2[]2[]2[

]1[]1[]1[

]0[][]0[

1

1

1

*
21

*
21

*
21

*
21

*
21

*
21

hNs
hNs
hNs

hTss

hTss

hTss

hTss

hTss

hTss

××−
××−
××−

×+×

×+×

×+×

×+×

×+×

××

"
"

DFT

T=τ

)1,(
~~

)1,(
~~

)0,(
~~

−KTA

TA

TA

"
"

0=τ

]2[0]1[
]1[]1[]2[

]0[]2[]3[

]2[]6[]5[

]1[]5[]4[

]0[]4[]3[

]2[]3[]2[

]1[]2[]1[

]0[]1[]0[

1

*
21

*
21

*
21

*
21

*
21

*
21

*
21

*
21

hNs
hNsNs

hNsNs

hss

hss

hss

hss

hss

hss

××−
×−×−

×−×−

××

××

××

××

××

××

"
"

DFT

Figure 26 Computation of Ambiguity Function Using "Fine-Mode" Generic Filter

Used with Permission From [10]

 40

Procedures:
1. Determine the number of time delays and Doppler shifts of interest.
2. Design a generic filter h[n] based on the number of Doppler shifts of interest.

Length of the filter (L) has an upper limit of Fs/2πvmax, where vmax is the max
Doppler shift frequency.

3. Set the decimation rate D = L.
4. Zero-pad s1[n] and s2[n] to a length that is divisible by the length of h[n] (L).
5. Determine the number of blocks M = length(s1[n])/L.
6. Compute each Inner Sum and take the DFT

for τ = 0 to T
 for m = 0 to M-1

 /* Get data for this block */

 ∑
−+

=

−=
1

][][][~
LmL

mLn
mLnhnrmr ττ , where][][][*

21 ττ += nsnsnr is the lag product

 Zero-pad][~ mrτ to get appropriate Doppler bin spacing
 end for on m

 ∑
−

=

−

=
1

0

2

][~),(
K

m

K
kmLj

emrkA
π

ττ , for k = 0, 1, 2, �, K

 /*),(kA τ is nothing more than the DFT of the filtered and decimated lag-

product */
 end for on τ

Figure 27 Procedures for Computation of Ambiguity Function Using "Fine-Mode"Generic Filter

After filtering the lag-product, the magnitude and phase of the lag-product will be modified.

Having a modified phase is undesirable because it distorts true time delay and Doppler calculated off of

the ambiguity surface. To correct for the phase delay, the phase delay must be subtracted off from the

phase measured off of the ambiguity surface. Therefore, the phase delay has to be known. This makes

the generic filter be a linear phase filter for the ability to have a constant phase delay, and from properties

of linear phase filters, the generic filter must be symmetric [2]. For a second constraint, recall that the

reason for filtering the lag-product was to narrow the Doppler range down to some range of interest, be-

 41

cause the original contains unneeded frequencies. Therefore, the generic filter outside of the Doppler

range of interest the filter must be zero [2].

To be able to filter the lag-product (rτ[n]), a discrete time convolution needs to be performed. How-

ever, recall that convolution in the discrete time domain gives rise to multiplication in the frequency do-

main. Instead of performing the convolution in the discrete time domain, it would be more efficient to

compute it in the frequency domain. To see this, start with (36) but replace the �all-ones� filter 1[n] with

the generic filter h[n], where h[n] is defined as



 −=

=
otherwise,0

1,...,1,0,
][

Lnyarbitraril
nh , (41)

where L is the chosen block length. Since a generic filter is being used, the decimation factor applied af-

ter filtering may be ≤ than L. Let the decimation factor be D < L. Applying this decimation factor and

substituting (41) into (36) the following is obtained

][][),(
1

0

12

mDnhnrevA
M

m

LmD

mDn

F
vmDj

s −= ∑ ∑
−

=

−+

=

−

τ

π

τ , (42)

Substituting (25) into (42), (42) becomes

][][][),(
1

0

1
*
21

2

mDnhnsnsevA
M

m

LmD

mDn

F
vmDj

s −+= ∑ ∑
−

=

−+

=

−

ττ
π

. (43)

Rearranging terms in (43) and arbitrarily grouping the h[n-mD] term with s1[n] gives

 42

∑ ∑
−

=

−+

=

−

+−=
1

0

1
*
21

2

][][][),(
M

m

LmD

mDn

F
vmDj

nsmDnhnsevA s ττ
π

. (44)

Recall the limitation that was placed on (44) where A(τ,v) had to be zero-padded to ensure it was a length

divisible by L. The number of zeros that need to be added to the end of the sequence given the filter

length L, decimation factor D, and the number of signal samples N can be verified to be

N
D

LNDLNDLzzerosofnumber −



 −+==),,(, (45)

where   means take the ceiling of the division. The number of blocks needed is simply

1),,(+



 −==

D
LNNDLbblocksofnumber . (46)

To efficiently compute the convolution in (44), the computation should be done in the frequency domain,

as is discussed in Section 5.6 on page 148 in [9]. In order to do this, arbitrarily group h[n] and s1[n] to-

gether to get

][][][1 mDnhnsnfm −= . (47)

Substituting (47) into (44) gives

 43

∑ ∑
−

=

−+

=

−

+=
1

0

1
*
2

2

][][),(
M

m

LmD

mDn
m

F
vmDj

nsnfevA s ττ
π

. (48)

Since it is desired to compute the inner sum of (48), let

 ∑
−+

=

+=
1

*
2][][][

LmD

mDn
m nsnfmw ττ , (49)

where wτ[m] is the inner sum of (48). Instead of viewing τ as fixed and m as variable as in (49), the roles

can be arbitrarily switched so that m is fixed and τ is variable. This yields a correlation of finite duration

signal streams fm and s2

∑
−+

=

+=
1

*
2][][][~ LmD

mDn
mm nsnfw ττ . (50)

Note that if the decimation rate D is < the filter length L, there will be overlap between the blocks. Since

it has been established that it is more efficient to compute a convolution in the frequency domain, the

DFT must be used as is explained in Section 5.6 of [9]. This leads to the result

LTLkTkSkFIDFTw mm 2,120,0]},[][{][~ *
2 ≤−≤≤≤≤= ττ ,

(51)

where k is DFT indices for both Fm and S2, and Fm[k] and][*
2 kS are the DFTs of fm[n] and s2[n+τ], re-

spectively for the appropriate block. The DFT can be used here even though we have a correlation and not

a convolution because the both convolution and correlation can be computed in the frequency domain.

For correlation in the frequency domain, there is a multiply and a conjugation, whereas for convolution,

there is only a multiplication.

 44

The equation in (51) states a lower limit on L. It can be viewed as eitherΤ limiting the length of L

or as the filter length of L limiting Τ. The limit is L ≥ T/2, where T is the maximum number of time de-

lays. This maximum number of time delays works with the maximum number of Doppler shifts to put an

upper (see (32)) and lower bound on the filter L, unlike the �Fine-Mode� algorithm in [1] which did not

have a lower bound. This puts a constriction on the usage of this method in that it may not be the ideal

method for a large number of time delays.

To ensure that the correlation in (50) is linear and is not circular, proper zero-padding must be

applied. Since the correlation is done over a filter length L for all blocks, both streams (fm and s2) for a

particular block will always be length L, therefore the proper zero-padding for every block is 2L-1, as is

discussed in Section 4.7 of [9]. To complete the computation of the ambiguity function, a DFT over the

Doppler frequencies of interest must be computed for each block of][~ τmw computed in (51). The result

in (51) is the result form the π3 method from Section III of [2].

s1[n], mD≤n≤mD+L-1

h[n-mD]

fm[n]
DFT

s2[n] DFT & Complex
Conjugate

IDFT
][~ τmw

Fm[k]

][*2 kS
Zero Pad

Zero Pad

 45

Figure 28 Discrete Time Correlation in Frequency Domain for the mth block

m = 0
]00[+Df

D
F

T

]00[2 +Ds

"
]10[+Df

]10[−+ LDf

]10[2 +Ds

"

" "

#

#

m = 0
]0[]0[*

2
SF ×

" "
]1[]1[*

2
SF ×

]12[]12[*
2

−×− LSLF

ID
F

T
#

0

)12(0 −L

]10[
2

−+ LDs
0

)12(0 −L

D
F

T
 and C

onjugate

m = 0
]0[~w

"

"

]1[~w

][~ Tw
0

)12(0 −L

m = 1
]01[+Df

D
F

T

]01[2 +Ds

"
]11[+Df

]11[−+ LDf

]11[2 +Ds

"

" "

m = 1
]0[]0[*

2
SF ×

" "
]1[]1[*

2
SF ×

]12[]12[*
2

−×− LSLF

ID
F

T

0

)12(0 −L

]11[
2

−+ LDs
0

)12(0 −L

D
F

T
 and C

onjugate

m = 1
]0[~w

"

"

]1[~w

][~ Tw
0

)12(0 −L

m = M-1
]0[+TDf

D
F

T

]0[2 +TDs

"
]1[+TDf

]1[−+ LTDf

]1[2 +TDs

"

" "

m = M-1
]0[]0[*

2
SF ×

" "
]1[]1[*

2
SF ×

]12[]12[*
2

−×− LSLF

ID
F

T

0

)12(0 −L

]1[
2

−+ LTDs
0

)12(0 −L

D
F

T
 and C

onjugate

m = M-1
]0[~w

"

"

]1[~w

][~ Tw
0

)12(0 −L

Figure 29 Computation of Ambiguity Function Using �Fine-Mode� Generic Frequency Domain Part I

 46

)0,0(A

"
"

)0,1(A

)0,(TA

)1,0(A

"
"

)1,1(A

)1,(TA

)2,0(A

"
"

)2,1(A

)2,(TA

)3,0(A

"
"

)3,1(A

)3,(TA

)4,0(A

"
"

)4,1(A

)4,(TA

)5,0(A

"
"

)5,1(A

)5,(TA

)6,0(A

"
"

)6,1(A

)6,(TA

)7,0(A

"
"

)7,1(A

)7,(TA

)8,0(A

"
"

)8,1(A

)8,(TA

)9,0(A

"
"

)9,1(A

)9,(TA

##

#

)1,0(−KA

"
"

)1,1(−KA

)1,(−KTA

#

m = 0
]0[~w

"
]1[~w

][~ Tw

m = 1
]0[~w

"
]1[~w

][~ Tw

m = M-1
]0[~w

"
]1[~w

][~ Tw
Zero-Pad &DFT Zero-Pad & DFT

Zero-Pad & DFT Zero-Pad & DFT

Zero-Pad & DFT Zero-Pad &DFT

#
#

τ

k

Figure 30 Computation of Ambiguity Function Using �Fine-Mode� Generic Frequency Domain Part II

 47

Procedures:
1. Determine the number of time delays and Doppler shifts of interest.
2. Design the generic filter h[n] based on the number of time delays and Doppler shifts of

interest. Length of the filter (L) is bounded by [T,Fs/2πvmax], where T is the max number
of time-delays and vmax is the max Doppler shift frequency.

3. Chose the decimation rate D ≤ Fs/vmax
4. Zero-pad s1[n] and s2[n] to a length that is divisible by the length of h[n] (L).
5. Determine the number of blocks M = length(s1[n])/L.
6. Compute each Inner Sum and take the DFT

for m = 0 to M-1
 /* Get data for this block */

 for n = 0 to L-1

][][

][][][

2,2

1

mDnsns
mDnhmDnsnf

m

m

+=
−×+=

 end for on n

 Zero-Pad fm[n] and s2,m[n] to 2L-1

 /* Take the DFT of fm[n] and s2,m[n] */

∑

∑
− −

−

=

−

=

=

12
2
2

,2,2

12

0

2
2

][][

][][

L

n

L
knj

mm

L

n

L
knj

mm

enskS

enfkF

π

π

 /* Multiply Fm[k] and S2,m[k] together */
][][][*

,2 kSkFkW mmm ×=

 /* Take the IDFT of Wm[k] */

 LTLkTkSkFw
L

k
mmm 2,120,0,][][][~ 12

0

*
,2 ≤−≤≤≤≤×= ∑

−

=

ττ

 Zero pad][~ τmw to ensure correct Doppler bin spacing
 end for on m

 ∑
−

=

−

=
1

0

2

][~),(
M

m

N
kmDj

m ewkA
π

ττ

Figure 31 Procedures for Computing Ambiguity Function Using "Fine-Mode" Generic Frequency Domain

 48

Another way to reach the result in (51) is to use Parseval�s theorem. To see this, first start with the result

in (50) and let the proper zero-padding be performed such that linear correlation will be performed. This

yields

∑
−+

=

+=
12

*
2][][][~ LmD

mDn
mm nsnfw ττ . (52)

Using Parseval�s theorem, (52) becomes

∑∑
−

=

−+

=

=+=
12

0

2
2

*
2

12
*
2][][

2
1][][][~ L

k

L
kj

m

LmD

mDn
mm ekSkF

L
nsnfw

τπ

ττ . (53)

The result in (53) is nothing more than the IDFT of Fm[k]][*
2 kS , thus the result in (53) and (51) are

equivalent.

3.2 Filter Bank Viewpoint

 Another method for computing the ambiguity function is to start with (24) from Chapter 3 Sec-

tion 3.1. The result in (24) looks like the linear convolution defined in Section 4.7 of [9], except there is a

�+� in s2 in (24) instead of a �-� sign. Recall that convolution and correlation are identical except that

before convolution is performed, there is a �pre-flip�. If the data in (24) is �pre-flipped�, the result in (24)

becomes

∑
−

=

−

−=
1

0

2
*
21][][),(

N

n

F
vnj

sensnsA
π

τντ . (54)

If s1 and s2 are convolved, then s2 will be flipped about n = 0, thus giving the correlation in (24). Combin-

ing, s1 and the complex exponential from (54) gives

∑
−

=

−=
1

0

*
2][][),(

N

n
v nsnhA τντ , (55)

 49

where hv[n] = s1[n] sF
vnj

e
π2−

. The result in (55) is nothing more than a convolution between a signal (s2)

and a FIR filter (s1), where s1 are the tap values of the FIR filter that are dependent on the frequencies in

v. The s2 signal is effectively passed through the filter (s1). This result is same as from Section II of [2].

Although this method is computed by �brute force�, it may be suitable for some situations. However,

there is no decrease in complexity due because no decimation or approximation is performed.

 3.3 2-D DTFT of Cross-Spectra Matrix

Often it is desirable to do frequency domain processing on signals, in order to determine if there

is interference that must be removed [11] [1]. This is very important when it comes to computing the am-

biguity function because if there is any interference, the TDOA/FDOA measurements measured off the

ambiguity surface will not be accurate, thus causing the emitter location to be incorrect. In a precision

emitter location system, this yields undesirable performance. Therefore it is desirable to compute the

Fourier transform of each signal using a window which allows for spectral analysis, as is shown on page

78 of [8] [11].

The �Fine-Mode� Generic Frequency Domain method discussed in Section III in [2] allows for

some spectral analysis, but only for one signal. The filter used for that method can be thought of as a

window applied to signal blocks of one signal stream prior to computing the DFT(see (47) - (51)) [11].

What is desired is to find a balance between requirements placed on the window (spectral analysis) and

the decimation requirements (decimation factor D). The first step in this analysis is to start with (24) and

zero pad s1 and s2 appropriately such that the sum in (24) can be broken up into M non-overlapping blocks

each of length L as was done in (27). Recall that ML ≥ N and L << N. Substituting (25) into (27) and in-

troducing a change of variable in the inner summation produces

sF
pvjM

m

LmL

mLp

epspsA
π

τντ
21

0

1
*
21][][),(

−−

=

−+

=
∑ ∑ += . (56)

 50

Now extend the M signal blocks of length L in length N signals as follows



 −++=

=



 −++=

=

otherwise,0
1,...,1,],[

][

otherwise,0
1,...,1,],[

][

2
,2

1
,1

LmLmLmLnforns
ns

LmLmLmLnforns
ns

m

m

, (57)

where m is the block index from (56) and n goes from 0 to N-1. Using the signal blocks from (57) allows

an approximation for the A(τ,v) to be made

sF
nvjM

m

N

n
mm ensnsAvA

π

τνττ
21

0

1

0

*
,2,1][][),(~),(

−−

=

−

=
∑∑ +=≈ . (58)

The approximation (58) results from the fact that the non-overlapping signal data blocks have gaps in the

two signal streams after they are multiplied together. This is different from (56), where no gaps in the

signal data streams exist after they are multiplied. Another way to view this is that in (56) a global shift

scheme is used to impart the specific time delay, τ, on the s2 signal by zeros into a block and signal sam-

ples from that block to the next block (block-to-block shifting). In (58) a local shift scheme is used based

on the partitioning that was defined in (57) such that no block-to-block shifting is performed to impart the

time delay. To impart the time delay, τ, in (58), τ zeros replace τ signal samples in the block of L signal

samples. Thus as the time delay becomes larger and larger, less and less data is correlated because data is

being lost as zeros are being inserted . To minimize the impact of this �block-shift loss�, the maximum

time delay should satisfy T = max(|τ|) << N [11]. A method will be discussed later that will remove this

impact.

As noted above, for each block, m, there will be at most L non-zero signal samples. Therefore the in-

ner sum in (58) can be re-written as

 51

∑∑
−

=

−−−−

=

+=+
1

0

2
*
,2,1

221

0

*
,2,1][~][~][][

L

n

F
nvj

mm
F

mLvj
F

nvjN

n
mm

sss ensnseensns
πππ

ττ ,

(59)

where][~
,1 ns m and][~

,2 ns m are obtained from circular shifting s1,m[n] and s2,m[n] to the left by mL samples.

The complex exponential out in front of the right-hand side of (59) is due to the effect of a circular shift

on the DTFT [9]. Substituting (59) into (58) yields

∑∑
−

=

−−

=

−

+=≈
1

0

2
*
,2,1

1

0

2

][~][~),(~),(
L

n

F
nvj

mm

M

m

F
mLvj

ss ensnsevAvA
ππ

τττ .

(60)

Applying the narrowband approximation to (60) as was discussed in (29) - (32) gives

∑∑
−

=

−

=

−

+=≈≈
1

0

*
,2,1

1

0

2

],[~][~),(
~~),(~),(

L

n
mm

M

m

F
mLvj

nsnsevAvAvA s ττττ
π

.

(61)

where the inner sum in (61) is similar to the �Fine-Mode� method in [1], except that (61) has the �block-

shift loss� discussed above. And as discussed in (32) - (33) for the �Fine-Mode� method, because of the

use of the narrowband approximation, an upper bound on L (filter length/decimation rate) is established

such that L << Fs/2πνmax [11].

Using Parseval�s Theorem, the inner-sum on the right-hand side of

(61) can be re-written as

LTekSkS
L

nsns L
kj

m

L

n

L

k
mmm 20,][~][~

2
1][~][~ 2

2
*
,2

1

0

12

0
,1

*
,2,1 ≤≤≤=+∑ ∑

−

=

−

=

ττ
πτ

,

(62)

 52

where]}[~{][~
,1,1 nsDFTkS mm = and]}[~{][~

,2,2 nsDFTkS mm = have both been zero-padded to the appro-

priate length to ensure that the correlation on the left-hand side of the equation in (62) is linear and not

circular. As mentioned for the �Fine-Mode Generic Frequency Domain method� a lower bound is placed

on L. The limit is L ≥ T/2, where T is the maximum number of time delays [11]. Note that the right hand

side of the equation in (62)is nothing more than a 2L-point inverse DFT.

Substituting (62) into (61) gives

∑ ∑
−

=

−

=

−









=

1

0

2
2

*
,2

12

0
,1

2

][~][~
2
1),(

~~ M

m

L
kj

m

L

k
m

F
mLvj

ekSkS
L

evA s

πτπ

τ , (63)

where the outside sum is a DTFT and the inside sum is an inverse DFT. Since the product

][~][~ *
,2,1 kSkS mm can be viewed as a cross-spectrum, the approximate ambiguity function in (63) will be

referred to as the �non-windowed cross-spectrum� (CS) method [11]. Note that the DTFT in (63) can be

computed on a grid using a DFT via the FFT algorithm, making sure the appropriate zero-padding is pro-

duced to get the desired Doppler bin spacing [11].

An approximate CS method has been shown, but the �block-shift loss� is a serious problem. This

problem is now addressed. As was shown in (34) - (38), the inner sum of (63) can be written in the time

domain as a correlation of a decimating filter (hτ[n]) and a lag product signal (rτ[n] =][][*
21 τ+nsns),

which is given by

][][),(
~~ 12

0

1

0

2

mLnrnhevA
L

n

M

m

F
mLvj

s += ∑∑
−

=

−

=

−

ττ

π

τ , (64)

where to get the CS method for τ ≥ 0 select








−+=

−=
=

otherwise,0
1,...,1,,1

1,...,2,1,0,0
][Lnfor

nfor
nh ττ

τ

τ , (65)

 53

which depends on the time delay value τ [11]. A similar case can be made for τ ≤ 0. Note that zero-

padding to 2L has been performed to ensure linear correlation. The decimation filter hτ[n], suffers from

the �block-shift loss� discussed above. As the time delay becomes larger and larger, gaps are formed as

the more and more zeros replace the ones in the filter. After decimation, the corresponding frequency

response of the filter (Hτ[f]) gets aliased back into the Doppler region of interest. For τ = 0, the nulls of

the aliased versions of Hτ[f] line up at the origin as shown in Figure 19. When τ ≠ 0, the length of the

filter hτ[n] decreases, and this causes the nulls of the aliased versions of Hτ[f] not line up, as is shown in

Figure 32, which is same example used to create Figure 18 - Figure 19 only a time delay of 10 has been

used, which results in a shorter filter in (65) (length of 90 for delay of 10).

Doppler Range of Interest

Figure 32 Aliasing of Decimation Filter for τ = 10

Used with Permission from [11]

This aliasing error becomes worse as the time delay (|τ|) increases. Thus, the CS method in (63) gets

worse for large time delay values [11]. This is different from the �Fine-Mode� method from [1], such that

 54

the decimation filter defined in (35) doesn�t depend on τ [11]. As shown in Figure 19, the aliased version

of the frequency response of the filter have nulls at the center of the Doppler range of interest, namely

zero Doppler. This minimizes the impact of the aliasing [11].

The aliasing problem due to the �block-shift loss� in the CS method can be removed by appropriately

choosing window functions for both signal streams and a decimation rate [11]. Start with (63) and re-

place the non-window DFTs][~
,1 kS m and][~*

,2 kS m with windowed versions][~
,,1 kS wm and][~*

,,2 kS wm using a

common window w[n] [11]. This makes the time-domain form of (61) become

∑∑

∑∑
−

=

−

=

−

−

=

−

=

−

+=

++=

12

0

*
,2,1

1

0

2

12

0

*
,2,1

1

0

2

],[~][~][

)][~][])([~][(),(
~~

L

n
mm

M

m

F
mLvj

L

n
mm

M

m

F
mLvj

nsnsnhe

nsnwnsnwevA

s

s

τ

τττ

τ

π

π

,

(66)

where][][][ττ += nwnwnh is a decimation filter. Note that the inner-sum in (66) has appropriate zero-

padding to ensure linear correlation. As was true for the non-windowed case, the decimation filter is dif-

ferent for each value of τ [11]. Re-writing (66) as a correlation of the decimation filter (hτ[n]) and a lag

product signal (rτ[n] =][][*
21 τ+nsns) yields

∑∑
−

=

−

=

−

+=
12

0

1

0

2

][][),(
~~ L

n

M

m

F
mLvj

mLnrnhevA s
ττ

π

τ [11]. (67)

Note that the inner-sum in (67) shows appropriate zero-padding to ensure linear correlation. From (67) it

can be seen that there are two requirements for choosing the window w[n]: (i) w[n] should be chosen such

that the resulting decimation filter (hτ[n]) provides the necessary suppression of aliasing in the Doppler

range of interest and (ii) it should be chosen such that spectra (][~
,,1 kS wm and][~*

,,2 kS wm) can have appro-

priate spectral analysis pre-processing (e.g. removal of interferers, selection between co-channel signals,

etc�) as is displayed in [8][11]. If the first part is dealt with, it is clear that a non-rectangular window

 55

would not work because of the fact the non-rectangular window has a frequency response with a wider

main lobe as is shown in [8][11]. This would cause aliased nulls to be even further from zero Doppler.

To solve this aliasing problem the time delay dependence must be removed from the filter so that the ali-

ased nulls align at 0 Doppler as is shown in Figure 19. This is not enough, however, because the window

must be chosen such that the impact of aliasing due to the �block-shift loss� is minimized [11]. To do this

the assumption made above that the two window functions can be the same must be modified to allow for

the two window functions to be different. Define][][][21 ττ += nwnwnh . The goal is to choose the two

windows such that their product is not dependent on the time delay (τ) [11]. This can be accomplished, as

is shown in Figure 34, by having the w2 window be chosen to be longer than the w1 window and have a

constant value over a range such that the w1 window can fit inside the w2 window and can be slid along

this constant range. This allows the w1 window to have any arbitrary shape, but it must be short enough

such that it fits inside the w2 window [11]. Letting the w2 window be the Tukey window defined in [8]

allows for the product of the w2 and w1 windows (Figure 34) to be independent of the time delay, τ. This

also allows the decimating filter to be equal to the w1 window (shorter window) [11].

Taking the DFTs of][~][,11 nsnw m and][~][,22 nsnw m we get][~
1,,1 nS wm and][~

2,,2 nS wm , and if we substi-

tute them into (63) the equivalent time-domain form becomes

∑∑

∑∑
−

=

−

=

−

−

=

−

=

−

+=

++=

12

0

*
,2,11

1

0

2

12

0

*
,22,11

1

0

2

2

2

][~][~][

][~][][~][),(
~~

Lw

n
mm

M

m

F
mLvj

Lw

n
mm

M

m

F
mLvj

nsnsnwe

nsnwnsnwevA

s

s

τ

τττ

π

π

.

(68)

Note that the inner-sums of (68) have appropriate zero-padding to ensure linear correlation. The shorter

window now defines the performance of the decimation filter. The aliasing error is independent of the

time delay, τ. However the nulls of the aliased versions of the filter still do not line up at zero Doppler

 56

[11]. To reduce the aliasing error, the decimation rate, D, must be changed to be D < L. This results in

computing the various spectra using overlapping data][~
,,1 ns om and][~

,,2 ns om which are defined as

1,,2,1,0][][~

1,,2,1,0][][~

2

1

2,,2

1,,1

−=+=

−=+=

wom

wom

LnfornmDsns

LnfornmDsns

…

…

, (69)

where m is the block index [11]. Substituting (69) into (63) and replacing the decimation rate in the com-

plex exponential outside the �[]� with the new decimation rate D gives the windowed CS method

∑ ∑
−

=

−

=

−









=

1

0

2
2

*
,,,2

12

0
,,,1

2

][~][~
2
1),(

~~
21

M

m

L
kj

wom

L

k
wom

F
mDvj

ekSkS
L

evA s

πτπ

τ .

(70)

Note that the inner summation reflects that zero-padding has been performed such that linear correlation

is performed from the inverse DFTs in the �[]�. It can be found that the value of D = 0.88L gives the best

alignment of nulls at zero Doppler, thus reducing the impact of aliasing [11]. The result in (70) is imple-

mented by forming a matrix as follows

][~][~],[
21 ,,,2,,,1 kSkSkmCS womwom ×= , (71)

where m is the block index and k is the DFT index from (70). Next zero-pad the columns of the CS ma-

trix to the correct Doppler bin spacing and take the DFT across the columns of the CS matrix to produce

the following

∑
−

=

−

=
1

0

2

],[),(
M

m

F
vmDj

Doppler
semkCSvkA

π

. (72)

Next zero-pad the rows of the ADoppler(k,v) matrix to get the correct Doppler bin spacing and take the DFT

across the rows of the ADoppler(k,v) matrix to get

 57

∑
−

=

=
1

0

2

),(1),(
~~ K

k

K
kj

Doppler evkA
K

vA
τπ

τ . (73)

The result in (73) is the result described in [5].

 58

Procedures:
1. Determine the number of time delays and Doppler range of interest
2. Design window w1[n]. The shape of the window can be arbitrarily chosen. The window length

1wL = L

with an appropriately number of zeros preceding and trailing the window to give it a total length of 2wL .
3. The window w2[n] is a P percent Tukey window (e.g. P = 75 % specifies that the center 75% of the

window�s samples are ones) of length 2wL = 100(L + 2T)/P, where T = max{|τ|}. Set the decimation rate D
= 0.88L.

4. Zero-pad s1[n] and s2[n] to be divisible by a length 2wL .

5. Determine the number of blocks 



 −=

D
LNM w2 .

6. Compute each Inner Sum and take the DFT

for m = 0 to M-1
 /* Form the mth signal blocks */

 for n = 0 to 2wL -1

][][~
][][~

2,,2

1,,1

mDnsns
mDnsns

om

om

+=
+=

 end for on n

 Zero-Pad w1[n]][~

,,1 ns om and w2[n]][~
,,2 ns om to 2 2wL -1

 /* Take the DFT of w1[n]][~

,,1 ns om and w2[n]][~
,,2 ns om */

∑

∑
−

=

−

−

=

−

=

=

12

0

2
2

,,22,,,2

12

0

2
2

,,11,,,1

2
2

2

2
2

1

][~][][~

][~][][~

w
w

w
w

L

n

L
knj

omwom

L

n

L
knj

omwom

ensnwkS

ensnwkS

π

π

 /* Multiply][~
1,,,1 kS wom and][~*

,,,2 2
kS wom together to create the */

 /* cross-spectra matrix CS[m,k] whose columns are the spectra of the blocks */
][~][~],[*

,,,2,,,1 21
kSkSkmCS womwom ×=

 end for on m

 Zero pad the columns of CS[m,k] to ensure correct Doppler bin spacing

 /* Computing the DTFT of the columns of CS[m,k] at the desired Doppler values */

 ∑
−

=

−

=
1

0

2

],[),(
M

m

F
vmj

Doppler
semkCSvkA
π

 Zero pad the rows of],[vkADoppler to ensure correct Tau bin spacing

 /* Compute the IDFT of the rows of),(vkADoppler at the desired Tau bin values */

 ∑
−

=

=
1

0

2

),(1),(
~~ K

k

K
kj

Doppler evkA
K

vA
τπ

τ

 59

Figure 33 Procedures for Computing 2-D Windowed Cross-Spectrum Method

Used with Permisson from [11]

The frequency domain approach outlined in Figure 33 provides a way to remove interfering sig-

nals, including ones that are not resolved in time delay or Doppler [5]. Interference removal is designed

into the approach using (72). When no noise or interference is present, there is part of the spectrum that

runs parallel to the frequency axis and is located at the Doppler shift value between the signals (s1, s2). If

the phase values along this part of the spectrum are extracted, unwrapped, and plotted, a straight line with

a slope equal to the delay between the two signals is the result [5][11]. The key is to take the difference

between adjacent Doppler bins for this particular Doppler frequency. This yields a constant value propor-

tional to the time delay [11]. If interfering signals are present, then there will be discontinuities in the

phase plot. Given some a priori knowledge about the desired signal�s characteristics (bandwidth, fre-

quency, etc�), it is possible to devise an algorithm to remove the frequencies belonging to the interfering

signals and retain the desired signal of interest [5][11].

 60

N1

N2

PN2

T T

Window w1[n]

Window w2[n]

Figure 34: Windows for the two-window version

 61

Chapter 4 Summary of Methods & Computational Complexity

The preceding chapter developed several methods in detail. This chapter provides a summary of the

resulting methods in a way that clearly outlines the various practical methods worthy of consideration for

practical use. In addition, computation counts are determined for each of the methods.

4.1 Comparison of Methods

The methods discussed in Chapter 3 are all related. Starting with the DTFT form of the ambiguity

function as is in (24) one can move directly to using the filter bank method as shown in (55). This

method is a �brute-force� direct computation method. This method may be the one of the easiest to com-

pute, but in some applications it may be the more computationally inefficient because no decimation is

performed and the FIR filter in this method becomes very large for a large number of Doppler frequen-

cies.

Taking the DTFT form of the ambiguity function in (24), forming the lag-product, and breaking the

large sum into smaller non-overlapping sums (with the lengths of the smaller sums equal to the decima-

tion rate) gives the result in (28). Making the approximation in (32) that the speed of light constant is

much larger in respect to the velocity of the entity collecting the emitter signal data produces the result in

(34). The result in (34) is Seymour Stein�s �Fine-Mode� Method and is less computationally complex

than the filter band method because there is decimation included in the algorithm [1]. The decimation is

equal to the length of the smaller non-overlapping sums. Generally, the use of data reduction methods

(decimation) results in a more computational efficiency.

Replacing the �all-ones� filter from Stein�s �Fine-Mode� method with a more generic filter gains the

advantage that the more generic filter can be designed to achieve better Doppler aliasing suppression. The

�all-ones� filter allows for aliasing as shown in Figure 19. The argument made by Stein in [1] is that for

most applications, this aliasing is acceptable. For some applications, suppression of Doppler aliasing may

lead to better TDOA/FDOA accuracy.

 62

 The tradeoff in using the generic filter over the �all-ones� filter is that the decimation factor is lower

than in Stein�s method. Also because of the use of a more generic filter, the simplicity of the �all-ones�

filter is lost. Using the �all-ones� filter did not require any additional multiplies. Using the more generic

filter does. This method, therefore, does not have as much complexity reduction as Stein�s method. The

�Fine-Mode� Generic method allows for non-overlapping smaller sums, and is a method proposed by To-

limieri and Winograd in [2] and is shown in (40). This method is essentially Stein�s �Fine-Mode� method

but with a more generic filter. It also contains corrections for the generic filter used (transition band,

pass-band ripple, etc�).

As noticed by Tolimieri and Winograd in [2], it is computationally efficient in many applications to

compute the ambiguity function via the frequency domain. This is easily accomplished by breaking up

the lag product from Stein�s �Fine-Mode� method [1] or Tolimieri and Winograd�s �Fine-Mode� Generic

method [2] into their respective separate signal streams. These signal streams are then broken up further

into an integer multiple of overlapping blocks. For the first signal stream, take the DTFT and then apply

a window for each block, whereas for the second stream, just take the DTFT for each block. These two

streams of block DTFTs are multiplied together on a block by block basis followed by applying an

IDTFT on a block by block basis. This method is the �Fine-Mode� Generic Frequency Domain method

and is similar to the 2-D Cross Spectra method discussed in [5]and [11]. In the 2-D Cross Spectra

method, the second signal stream is windowed in addition to the first. The window on the second signal

stream is a special window called the Tukey window. It allows for the first windowed stream to be slid

back and forth inside the length of the second windowed stream without changing the lag-product struc-

ture. Both frequency domain methods (�Fine-Mode� Generic Frequency Domain and 2-D Cross Spectra),

but the 2-D Cross Spectra method in [5] may be preferable because it provides windowed spectral analy-

sis on both signal streams to further aid in excision of interferers.

Figure 35 depicts the relationships between each of the methods presented in Chapter 3.

 63

Ambiguity Function in
DTFT Form

Break up into smaller
sums as shown in

(27)

Make approximation
to complex envelope

due to smaller
Doppler range as
shown in (29-33).

Form is (33)

Filter Bank Method

Stein�s Fine Mode
Method

Replace Stein�s �All-
ones� Filter with a

Generic Filter

Tolimieri and
Winograd�s Fine

Mode Generic Filter
Method

2-D Windowed Cross
Spectrum Method

(Desjardin�s Patent)

Tolimieri and
Winograd�s Fine

Mode Generic Filter
Frequency Domain

Method

Figure 35 Relationship of Each Method

4.2 Test Setup

In order to compare the pros and cons of each of the various methods a set of tests that would

stress the algorithms needed to be developed. This was not an easy task, and the test set that was devel-

oped is not designed to test every scenario, but it does provide representative cases to help determine

which methods are best suited for certain conditions.

In order to develop the test set, the different items affecting the algorithms namely, frequency,

bandwidth, sampling rate, number of Dopplers and time-delays, and decimation factor were examined.

 64

When examining the frequency, the assumption was made that the emitter was stationary and the collec-

tion platforms were airborne and would always be traveling at a constant velocity. The value of 250 m/s

was chosen for the velocity because a collection platform traveling at 250 m/s is representative of the ve-

locity of many airplanes. Using this assumption that the velocity is always constant (250 m/s) makes the

Doppler shift frequency equation in (29) become

7103391.8 −×±= off , (74)

where the speed of light constant used was c = 299792458 m/s. It is clear from (74) that as the frequency

of the signal of interest (fo) increases, the expected Doppler shift on the signal also increases. If the ex-

pected Doppler shift on the signal of interest increases, the Doppler range of interest also increases, thus

requiring more Doppler frequencies to be used in the calculation of the ambiguity surface. Therefore in

order to have tests where there is variation in the number of Dopplers, three unique frequencies, one from

the HF band (5 MHz), one from the VHF band (50 MHz) and one from the UHF band (500 MHz) were

chosen. The frequencies in these bands were chosen arbitrarily. Using these three frequencies gives

maximum expected Doppler shifts of ±4.169551 Hz, ±41.69551 Hz, and ±416.9551 Hz for the HF band,

VHF band, and UHF band respectively. The Doppler shift values that were applied for each different fre-

quency were chosen to be 3 Hz for the 5 MHz frequency, 16 Hz for the 50 MHz frequency, and -322 Hz

for the 500 MHz frequency. For simplicity of simulation, the time-delay was set to be 0 nanoseconds for

all the test cases.

The next item examined was the bandwidth. As the bandwidth of a signal increases, the rate that

the collected signal is sampled must increase in order to avoid the effects of aliasing, as according to Ny-

quist. The assumption was made for the purpose of simplifying the test set that each of the three frequen-

cies would each have a constant time-bandwidth product (BT) that would produce an approximate 40 dB

gain (BT = 10000) in processing. A value of 10000 was chosen because a 40 dB processing gain is a rea-

 65

sonable amount of gain to have for narrow-band correlation processing. Having a constant BT provides

for a more realistic simulation where signals at wider bandwidths are collected for shorter times than nar-

rower bandwidths in order to achieve the desired processing gain. Again for simplicity no noise was

added to the test signals.

Three different bandwidths were used for the three different frequencies. These bandwidths were

chosen based on values shown to be appropriate given the frequencies used as stated at the United States

Federal Communications Commission�s website [12]. The narrow, medium, and wide bandwidths se-

lected for the 5 MHz, 50 MHz, and 500 MHz frequencies were 5 kHz, 10 kHz, and 20 kHz, respectively.

The corresponding sampling rates for the bandwidths were chosen based on the assumption that the data

to be correlated would be in complex envelope form. This would allow critical sampling at the actual

bandwidth, as per Nyquist. However, each sampling rate was arbitrarily increased by 10 % in order to

reduce the inclusion of aliasing errors when critically sampling and using decimation. This gave sam-

pling rates of 5.5 kHz, 11 kHz, and 22 kHz for each of the frequency bands. The sampling rates for the

three frequencies and corresponding bandwidths are listed in Table 1.

The next items examined were the number of time-delays and Dopplers. As mentioned in Chap-

ter 3 Section 3.1, the �Fine-Mode� Generic Frequency Domain method has a limit on the number of time-

delays. From Figure 35, it can be inferred that the 2-D Cross Spectra method also has this limitation. To

compare the performance of these two methods to the others, the number of time-delays or Taus must

vary across some range. Because the purpose of this test simulation is to see the accuracy vs. the compu-

tational complexity for particular, there is no need to tie an algorithm to a particular geometry, so the Taus

may be arbitrarily chosen and reasonably show what happens to accuracy and complex complexity. How-

ever, during preliminary testing, and after reviewing the algorithms, it became apparent that certain algo-

rithms provide an inefficient number of Taus that cannot be chosen. Only the �Fine-Mode� and �Fine-

Mode� Generic methods use a desired number of Taus as an input. For all cases where a value for the

number of Taus was needed, the value of eleven was used.

 66

After some analysis and pre-testing, it was determined that all of the methods provided a variable

number of Dopplers based DFT size used for a particular method. The only method that used a direct

computation for the number of Dopplers in its processing was the Filter Bank method. Therefore, no pre-

determined values for the number of Dopplers were selected. The number of Dopplers was calculated

only for the Filter Bank method. The number of Dopplers is determined based on the Doppler spacing.

The Doppler spacing is calculated as

T
SpacingDoppler

10
4= , (75)

where T is calculated as

sF
NT == , (76)

where N is the number of samples (constant 11000) and Fs is the sampling rate (5.5, 11, and 22 kHz). The

value of 4 in the numerator of (75) appears because this gives the null-to-null value of the main lobe of

the rectangular filter/window as described in Section 6.3.1 in [9]. Each method is filtered/windowed.

The rectangular filter/window is used because it provides a worse case scenario (most narrow peak) for

computing the Doppler spacing. This guarantees that the Doppler spacing computed will be sufficient for

all the methods. The value of 10 in the denominator of (75) appears because to compute the Doppler

from the ambiguity surface, a curve fit has to be applied in the Doppler direction. The curve fit requires

five points (the peak and two points on each side). This requires that there be ten points from null-to-null.

Dividing 4/T by 10 guarantees that there will be enough points in the Doppler direction for the curve fit.

For the purposes of testing the Doppler spacing values computed for the 5.5 kHz, 11 kHz, and 22 kHz

sampling rates were 0.2, 0.4, and 0.8 respectively. After preliminary testing, the 0.8 value was not small

enough because the curve fit for the 22 kHz cases were not accurate and succumbing to errors. Analysis

showed that a value of 0.5 was sufficient to provide accurate curve fits for the 22 kHz cases.

The final item examined was data reduction. Data reduction techniques (e.g. decimation) allow

for reducing the amount of data used in computation, but at the cost of accuracy. Decimation is incorpo-

 67

rated into the �Fine-Mode�, �Fine-Mode� Generic, �Fine-Mode� Generic Frequency Domain�, and the 2-

D Cross Spectra methods. Varying the amount of decimation in each of these techniques would give a

measure as to how the performance in calculating the true Doppler and time-delay degrades. Since the BT

=10000, a constant amount of samples is collected for each frequency given the sample rates in Table 1

(11000 samples). Therefore, three values of decimation were chosen for each bandwidth for each band

(HF, VHF, and UHF) for 27 total values. The decimation applied for each sampling rate for a particular

band was chosen such that the Fs/2 frequency after decimation would be the same. The highest decima-

tion values for each sampling rate were limited by the fact that the decimation could not exceed the

maximum filter/window length (L). The maximum filter/window length as stated in Chapter 3 Section

3.1 is computed as

max2 v
Fs

π , (77)

where Fs is the sampling rate of the signal, and vmax is the maximum expected Doppler shift.

The low decimation rate was selected based on the fact that the �Fine-Mode� Generic Window

Frequency Domain and 2-D Cross Spectra methods have a lower bound on the filter length (L). This

lower bound is T/2 where T is the number of time-delays. Since L must always be ≥ this lower bound, it

was deemed appropriate for this testing that the minimum decimation could be set to this value for all the

methods. The medium decimation rate was chosen such that it would provide an Fs/2 frequency after

decimation somewhere in the middle of the low decimation and high decimation. To get a feel for how

close the Fs/2 frequency after decimation is to the maximum Doppler frequency, see Figure 36 which de-

picts the frequency representation for the narrow band HF test case. The values of decimation for each of

the frequencies and sampling rates are shown in Table 1.

 68

νmax = 5 Hz

Fs/2 = 2.75 kHz

Frequency

Fs/2D = 8 Hz,
D = 700

Fs/2D = 0.917 kHz,
D = 6

Fs/2D = 0.459 kHz,
D = 12

Figure 36 Frequency Representation After Decimation for Narrow Band HF Test Case

Fre-

quency
(MHz)

Band-
width
(kHz)

Sampling
Rate (Ksps)

BT T(sec) Number
of Sam-

ples

Desired
Doppler
Spacing

(Hz)

Decimation
Rate

5 5 5.5 10000 2 11000 0.2 6 (L)
 12 (M)

700 (H)
5 10 11 10000 1 11000 0.4 12 (L)

 24 (M)
1400 (H)

5 20 22 10000 0.5 11000 0.5 24 (L)
 48 (M)

2801 (H)
50 5 5.5 10000 2 11000 0.2 6 (L)

12 (M)
83 (H)

50 10 11 10000 1 11000 0.4 12 (L)
 24 (M)

166 (H)
50 20 22 10000 0.5 11000 0.5 24 (L)

 48 (M)
333 (H)

500 5 5.5 10000 2 11000 0.2 6 (L)

 69

Fre-
quency
(MHz)

Band-
width
(kHz)

Sampling
Rate (Ksps)

BT T(sec) Number
of Sam-

ples

Desired
Doppler
Spacing

(Hz)

Decimation
Rate

7 (M)
8 (H)

500 10 11 10000 1 11000 0.4 12 (L)
 14 (M)

18 (H)
500 20 22 10000 0.5 11000 0.5 24 (L)

 28 (M)
33 (H)

Table 1. Test Case Specifics

Thus the testing performed was in a tiered level structure as is shown in Figure 37. Note that this

tiered level structure is computed for each unique frequency. Also note that the Filter Bank method does

not have any decimation built into it, so from each of the bandwidths the decimation level is skipped. For

testing, a tiered level structure was executed for each frequency (5 MHz, 50 MHz, and 500 MHz).

Frequency

Narrow
Bandwidth

Low
Dec

Med
Dec

High
Dec

Medium
Bandwidth

Low
Dec

Med
Dec

High
Dec

Wide
Bandwidth

Low
Dec

Med
Dec

High
Dec

 70

Figure 37 Testing Structure

The tool used to create and execute the simulations was Matlab Student Edition version

6.5.0.1924 Release 13. The signal processing toolbox (purchased separately from the Student Edition)

was also included in the Matlab software used to execute the simulations. To create the simulations, an

m-file was created that would act as a script. Flags were created in the m-file that when set with particu-

lar values, would allow for a particular case to be simulated. A pseudo-voice sequence was used to create

the 9 different signals (3 signals at 3 unique frequencies and bandwidths). This sequence was complex

and was first created by taking a random normally distributed noise sequence for the largest number of

signal samples needed (11000) and filtering each one with a different filter (9 in total). The state of the

random sequence used was set to be a constant (state 2 [arbitrarily chosen]) such that for each time the

script was started, the same random sequence would be used. This was done to reduce any errors that

could be introduced by using a different random sequence for each test case.

The next step taken was to design a filter for each sampling rate (9 in total). Since BT was a con-

stant 10000, each filter designed would have the same form only a different frequency range when view-

ing the spectrum. This simplified the filter design to one filter. Recall that to avoid critically sampling

the signal, each sampling rate used was 10% greater than the Nyquist sampling rate (
csF) or

ss FF
c

=×1.1 . Converting from physical frequency in Hz to digital frequency n radians/sample, it is

clear that the one filter will always be in the same proportion since the same cut-off frequency is used for

all 9 signals, as is shown in

 71

παπ

Fs/2αFs/2

αFs/2 (1-α)Fs/2

Ω (rad/sample)

f (Hz)

Figure 38 Filter Analysis Using Digital Frequency

Figure 38.

The Matlab fir1 command was used to design the filter. The filter had 25 taps and a cut-off fre-

quency of 0.9091π radians/sample. The filter was applied to the pseudo-voice sequence by using the

Matlab filter command, thus creating the signal s1. Depending upon frequency and bandwidth, the s1 sig-

nal was then frequency shifted to give the signal desired the Doppler shift. The Doppler shifted s1 signal

was the s2 signal. A function called freq_shift was created and used to apply the Doppler shift to the s1

signal. For simplicity of simulation, it was assumed that both signal streams produced would be at the

same signal-to-noise ratio (SNR). Therefore, no manipulation of the data was performed to adjust the

SNR of the second stream. Both signal streams were both upsampled by a factor of 4 to guarantee that

the desired spacing in the Tau dimensions would provide for an adequate curve fit in determining the Tau

measurements from the CAF peak. At this point, depending upon the flags used, different functions were

executed for the different methods. The Filter Band method was coded in the fb function. The �Fine-

Mode� and �Fine-Mode� Generic methods were coded in the fmg function. For simplicity of implemen-

 72

tation, when coding the �Fine-Mode� Generic method, the corrections in the algorithm for ripple and edge

effects were not implemented. The �Fine-Mode� Generic Frequency Domain method was coded in the

fmgfd function, and the 2-D Cross-Spectra method was coded in the twodcs function. All the test cases,

except for the Filter Bank method, for all the frequencies (HF, VHF, and UHF) were run with L=D. This

was done to make the attempt to be able to compare the accuracy back to the �Fine-Mode� method, where

L always is equal to D. Since all the methods, except the Filter Bank method, support L=D, all the date

reduction methods could be compared on the same level. By forcing the �Fine-Mode� Generic, �Fine-

Mode� Generic Frequency Domain, and 2-D Cross Spectra methods to have L=D accuracy was sacrificed

to produce better computational complexity. To determine the impact of having L>D, the �Fine-Mode�

Generic, �Fine-Mode� Generic Window Frequency Domain, and 2-D Cross Spectra methods were re-run

with L>D for the HF Frequency. Recall that it was stated in Chapter 3 Section 3.3 that the optimal accu-

racy for the 2-D Cross Spectra method is obtained with L = D/0.88. The decision was made to run with L

> D such that L > D/0.88 in order to provide a comparison between the �Fine-Mode� Generic, �Fine-

Mode� Generic Frequency Domain, and 2-D Cross Spectra methods and show how accuracy and compu-

tational complexity is affected with L >> D.

For the �Fine-Mode� Generic method, the filter used was designed using the Matlab fir1 com-

mand. The cut-off frequency used was the maximum expected Doppler frequency. The �Fine-Mode�

Generic Frequency Domain method also was run with this same fir1 filter, in order to provide a compari-

son to the �Fine-Mode� Generic method, that ruled out the filter/window being used and instead focused

on the method (time-domain vs. Frequency domain).

The windows used on the 2-D Cross Spectra method were chosen to be the same type of windows

(Tukey). Having the same type of windows provided simplification in having to design fewer windows,

since the window on the second signal stream is always a Tukey window. Using a Tukey window on the

first signal stream also made sense because the Tukey window has amplitude of 1 and the less the signal

stream is modified, the better. The Tukey window is similar to a rectangular window, providing a narrow

peak (more desirable for curve-fitting). To be able to provide a decent comparison with the 2-D Cross

 73

Spectra method, the �Fine-Mode� Generic Frequency Domain also was computed for all the test cases

using a Tukey window on the first signal stream. This would provide the opportunity to observe the accu-

racy between the two methods when a second Tukey window is introduced in the 2-D Cross Spectra

method.

Since the accuracy of the �Fine-Mode� Generic method is based on the filter used, the HF test

cases using the �Fine-Mode� Generic method were re-run using �better� filters designed using the Matlab

Filter Design tool, in order to demonstrate this. Before using the filters designed using the Matlab tool, an

attempt was made to create the filters using the remez algorithm, but given that the filter lengths were

much shorter than the order that remez desired for high accuracy, the remez algorithm produced poor fil-

ters. The �better� filters were designed in an ad-hoc manner, where parameters in the tool were modified

until the filter looked better visually in the frequency domain than the fir1 filter (flatter stop band and

more attenuation in the stop band) better results in at least one dimension (Tau or Doppler) were obtained,

or results close to the fir1 filter were obtained. The purpose of this research is not to develop the �ideal�

filters to use for the given test cases, but to show that accuracy is dependent upon the filter used and that

by using a �better� filter should produce better accuracy. Note that some filters created could not yield

better performance to the fir1 filter. This was most likely due to the stop-band attenuation not being

lower than the fir1 filter or other limitations placed on these �better� filters that could not allow them to

exceed or equal the performance of the fir1 filters. See Table 2 for the parameters entered into the Matlab

Filter Design tool to create the �better� filters. See Table 3 in Chapter 4 Section 4.3 for a list of results

from executing the test cases.

Filter
Type

Design
 Method

Filter
Order

Density
Factor

Fs
(KHz)

Fpass
(Hz)

Fstop
(Hz)

Wpass

Wstop Usage

Lowpass FIR
(Equiripple)

5 50 22 5 10000 1 1 HF Narrow
BW, L=D,
D=6

 74

Filter
Type

Design
 Method

Filter
Order

Density
Factor

Fs
(KHz)

Fpass
(Hz)

Fstop
(Hz)

Wpass

Wstop Usage

Lowpass FIR
(Equiripple)

11 50 22 5 1500 1 0.2 HF Narrow
BW L=D,
D=12

Lowpass FIR
(Equiripple)

699 16 22 5 50 1 1 HF Narrow
BW L=D,
D=700 and
L=700,D=
100

Lowpass FIR
(Equiripple)

99 16 22 5 500 1 1 HF Narrow
BW
L=100,
D=6,12

Lowpass FIR
(Equiripple)

11 50 44 5 3000 1 0.2 HF Me-
dium BW
L=D, D=12

Lowpass FIR
(Equiripple)

23 50 44 5 3000 1 0.2 HF Me-
dium BW
L=D, D =
24

Lowpass FIR
(Equiripple)

1399 50 44 5 37 1 0.2 HF Me-
dium BW
L=D,
D=1400

Lowpass FIR
(Equiripple)

199 16 44 5 1000 1 1 HF Me-
dium BW
L=200,
D=12,24

Lowpass FIR
(Equiripple)

23 50 88 5 8160 1 0.2 HF Wide
BW L=D,
D=24

Lowpass FIR
(Equiripple)

47 50 88 5 2800 1 0.2 HF Wide
BW L=D,
D=48

Lowpass FIR
(Equiripple)

2800 50 88 5 98 1 0.2 HF Wide
BW L=D,
D=2801

Lowpass FIR
(Equiripple)

399 16 88 5 380 1 1 HF Wide
BW
L=400,
D=24,48

Lowpass FIR
(Equiripple)

2800 16 88 5 98 1 1 HF Wide
BW
L=2801,
D=400

Table 2. "Better" Filter Parameters for Matlab Filter Design Tool

 75

The �Fine-Mode� Generic Frequency Domain method HF test cases were also executed with these �bet-

ter� filters in order to better compare the two methods.

For the Filter Bank method, a queuing method for passing the number of Dopplers into the calcu-

lation was adopted because calculating all the Dopplers for UHF cases caused Matlab to run out of mem-

ory. The queuing method adopted made use of apriori knowledge of the expected Doppler frequency and

allowed for a range of Dopplers to be entered and calculating them for this method. This queuing method

applied is not unlike what may be used by actual emitter location systems.

In order to provide a metric for the accuracy produced for all the methods, the numbers of compu-

tations for each method were calculated for each test case. The number of computations were separated

out into number of real adds and number of real multiplies. Real computations were calculated because

processors used in emitter location systems work with real computations not complex. The equations

used to compute the number of real multiplies and real adds for each complex multiply can be verified to

be

NAddsal
NMultipliesal

2Re#
4Re#

=
=

, (78)

where N is the number of complex multiplies. In the case where complex DFT operations were per-

formed, a radix-2 DFT was assumed because it is the DFT via the FFT algorithm most widely used. The

equations used to convert the complex DFT to real multiplies and adds are equations 5.24a and 5.24b

from Section 5.3 from [2].

In order to compute the number of real computations (multiplications and adds) for the Filter

Bank method, equation 2.3 from [2] which contains the number of complex multiplications was used as a

starting point. This equation was converted to real multiplications and adds and thus became

 76

[][]
[]

[]
)(log)(3

4)(4)(log)(6)(22)1(Re#

42)(log)(2
82)(log)(4)(44)1(Re#

2

2

2

2

TNTN
TNTNTNTNNKAddsal

TNTN
TNTNTNNKMultipliesal

++
+++−++++++=

+−++
++−++++++=

,

(79)

where K is the number of Dopplers, N is the number of signal samples, and T is the number of time-

delays.

To compute the number of real computations for the �Fine-Mode� and �Fine-Mode� Generic

methods, equation 3.3 from [2] which contains the number of complex multiplications was used as base

number of computations. Thus the number of real multiplications and adds can be proven to be

[][]

)2)_(2
)_(log)_(342)(1(Re#

42)_(log)_(24)1(Re#

2

2

+
−+++=

+−++=

SizeDFT
SizeDFTSizeDFTMLNTAddsal

SizeDFTSizeDFTNTMultipliesal

,

(80)

for the �Fine-Mode� method and

[]

)2)_(2
)_(log)_(342)(1(Re#

)42)_(log)_(2
)12(44)(1(Re#

2

2

+
−+++=

+−
++++=

SizeDFT
SizeDFTSizeDFTMLNTAddsal

SizeDFTSizeDFT
LMNTMultipliesal

,

(81)

for the �Fine-Mode� Generic method, where T is the number of time-delays, M is the number of inner

sums (number of blocks), L is the filter length, and DFT_Size is the size of the DFT for each inner sum.

Note that there are more multiplications performed for the �Fine-Mode� Generic method. The �Fine-

 77

Mode� method requires fewer multiplications because it makes use of the �all-ones� filter and those mul-

tiplies come for free because of the multiplication by one.

 The number of computations for the �Fine-Mode� Generic Frequency Domain made use of equa-

tion 3.6 from [2] for the base number of complex computations. The number of real multiplications and

adds can be proven to be

[]
[][]

)2)2_(2
)2_(log)2_(3(1_))1_(2

6)1_(6)1_(log)1_(94(Re#

42)2_(log)2_(21_))1_(4
122)1_(log)1_(64(Re#

2

2

2

2

+
−+

++−+=

+−+
++−+=

SizeDFT
SizeDFTSizeDFTSizeDFTSizeDFT

SizeDFTSizeDFTSizeDFTLMAddsal

SizeDFTSizeDFTSizeDFTSizeDFT
SizeDFTSizeDFTLMMultipliesal

,

(82)

where M is the number of blocks, L is the window/filter length, DFT_Size1 is the size of the DFT of both

signal streams (fm and s2) and DFT_Size2 is the size of the IDFT of the multiplication of Fm and *
2S (see

Figure 31).

 The 2-D Cross Spectra method also made use of equation 3.6 from [2] for its original base num-

ber of complex computations. This equation was slightly modified to account for the 2nd stream being

windowed. The number of real multiplications and adds are

 78

[]
[]

[]

)2)__(2
)__(log)__(3(__

)2)__(2
)__(log)__(3(_))_(2

4)_(2)_(log)_(64(Re#

)42)__(log)__(2(__)4
2)__(log)__(2(_))_(4

82)_(log)_(48(Re#

2

2

2

2

2

2

2

2

+
−

++
−+

++−+=

+−++
−+

++−+=

TauSizeDFT
TauSizeDFTTauSizeDFTDoppSizeDFT

DoppSizeDFT
DoppSizeDFTDoppSizeDFTSizeDFTSizeDFT

SizeDFTSizeDFTSizeDFTLMAddsal

DoppSizeDFTTauSizeDFTDoppSizeDFT
DoppSizeDFTDoppSizeDFTSizeDFTSizeDFT

SizeDFTSizeDFTLMMultipliesal

w

w

,

(83)

where M is the number of blocks,
2wL is the window of for s2, DFT_Size is the size of the DFT of both

windowed signal streams (s1 and s2), DFT_Size_Dopp is the size of the DFT of the columns of the CS ma-

trix (see Figure 33), and DFT_Size_Tau is the size of the IDFT of the rows of the ADoppler matrix (see

Figure 33).

 In order to compute the time-delay and Doppler for all the test cases, two curve-fits were applied

to the ambiguity function computed, one in the time-delay direction and the other in the Doppler direc-

tion. To apply the curve-fits, five points around the peak (the peak and two points on either side of the

peak) were selected and then put through the Matlab polyfit command to fit a quadratic to the data. Dur-

ing preliminary testing, the polyfit was producing poorly conditioned output polynomials. Therefore, the

curve-fit was modified to use the polyfit command with command option of centering and scaling the

curve-fit on the data. According to the Matlab help files provides better precision to the curve-fit. Since

the data was centered on the true Doppler, the Doppler error calculation simplified from

()2____ FrequencyDopplerTrueDopplerCalculatedErrorDoppler −= ,

(84)

to

 79

()2__ DoppleryCalculatedErrorDoppler = , (85)

The Matlab code for the all the functions as well as the main script, without the �better filter�

logic which was kludged to produce results, can be viewed in the Appendices.

4.3 Summary of Results

 The results of all the tests executed are summarized in Table 3. The time-delay error and Doppler

error columns have been color-coded to rate the results. The color code is green is good, yellow is de-

graded, and red is bad. The color codes are meant to be used on a column-by-column basis and should

not be read across the rows. The color codes are applied as follows: any time-delay error < 1 us or Dop-

pler error < 1 Hz is deemed good. Any time-delay error ≥ 1 us but < 20 us or Doppler error ≥ 1 Hz but <

20 Hz is deemed degraded. Any time-delay error ≥ 20 us or Doppler error ≥ 20 Hz is deemed bad. The

ideal level of error for the time-delay and Doppler is 0 us and 0 Hz, respectively. However because of

errors introduced by decimation, the desired values of error and time-delay were < 1 us and < 1 Hz re-

spectively.

Frequency

(MHz)
Method Fs (Hz) D L τ Error

(µs)
Dop-
pler

Error
(Hz)

Real
Adds

Real
Multiplies

5 FB 22000 N/A N/A 0 0 697,861,722 452,686,903

5 FB 44000 N/A N/A 0 0 365,462,807 236,954,093

5 FB 88000 N/A N/A 0 0 298,983,025 193,807,531

6 6 0.203434 0.113341 20,076,504 12,335,664
12 12 0.403557 0.113305 11,032,536 6,830,640

5 FM

22000
 700 700 73.750255 0.264644 3,240,408 2,148,912

12 12 0.438876 0.245003 11,032,536 6,830,640

24 24 0.902120 0.245004 6,806,040 4,274,736
5 FM

44000

1400 1400 279.987817 0.125448 3,235,608 2,127,408

24 24 0.314139 0.178531 6,806,040 4,274,736
48 48 0.620008 0.178579 4,839,960 3,095,088

5 FM 88000
2801 2801 333.138259 0.061644 3,219,480 2,118,192
6 6 0.028005 0.113360 20,252,520 16,912,080
12 12 12.655625 0.113340 11,120,544 11,231,040

5 FMG1 22000
700 700 52.517265 0.262709 3,241,920 6,385,536

1 Filter used for test case was designed using Matlab fir1 command

 80

Frequency
(MHz)

Method Fs (Hz) D L τ Error
(µs)

Dop-
pler

Error
(Hz)

Real
Adds

Real
Multiplies

12 12 5.969105 0.245018 11,120,544 11,231,040
24 24 1.468118 0.244926 6,850,056 8,588,304

5 FMG1 44000
1400 1400 201.766702 0.125538 3,236,376 6,429,744
24 24 0.181176 0.178517 6,850,056 8,588,304
48 48 0.910654 0.178509 4,861,968 7,364,640

5 FMG1 88000
2801 2801 171.796572 0.061644 3,219,864 6,421,296
6 100 0.188807 0.113383 53,266,344 82,939,728
12 100 0.290949 0.113380 26,576,184 42,142,320

5 FMG1 22000
100 700 1.463614 0.045306 16,410,696 31,740,048
12 200 0.433369 0.244906 44,057,568 77,105,088
24 200 0.859447 0.244909 22,266,696 39,421,584

5 FMG1 44000
200 1400 0.500552 0.025317 15,786,024 31,080,528
24 400 0.301804 0.178684 39,642,504 74,173,200
48 400 0.613012 0.178686 20,221,032 38,082,768

5 FMG1 88000
400 2801 0.212516 0.018019 15,194,712 30,168,240
6 6 0.040020 0.113359 20,252,520 16,912,080
12 12 0.446975 0.113305 11,120,544 11,231,040

5 FMG2 22000
700 700 11.643097 0.263071 3,241,920 6,385,536
12 12 0.434742 0.244995 11,120,544 11,231,040
24 24 0.706200 0.244941 6,850,056 8,588,304

5 FMG2 44000
1400 1400 1.450071 0.125611 3,236,376 6,429,744
24 24 0.067634 0.178515 6,850,056 8,588,304
48 48 0.523144 0.178527 4,861,968 7,364,640

5 FMG2 88000
2801 2801 2.527392 0.065953 3,219,864 6,421,296
6 100 0.199295 0.113379 53,266,344 82,939,728
12 100 0.371750 0.113378 26,576,184 42,142,320

5 FMG2 22000
100 700 0.901442 0.045704 16,410,696 31,740,048
12 200 0.436841 0.244948 44,057,568 77,105,088
24 200 0.873686 0.244948 22,266,696 39,421,584

5 FMG2 44000
200 1400 1.273246 0.022203 15,786,024 31,080,528
24 400 0.256963 0.178709 39,642,504 74,173,200
48 400 0.503396 0.178697 20,221,032 38,082,768

5 FMG2 88000
400 2801 0.293661 0.012058 15,194,712 30,168,240
6 6 1.961396 0.113341 26,431,436 15,773,080
12 12 12.587743 0.113326 25,892,698 15,384,628

5 FMGFD3 22000
700 700 28.659983 0.262602 23,884,290 13,960,196
12 12 5.772418 0.245024 25,892,698 15,384,628
24 24 0.421330 0.244913 25,366,620 15,019,192

5 FMGFD3 44000
1400 1400 193.979748 0.125223 23,690,944 13,827,456
24 24 1.259093 0.178523 25,366,620 15,019,192
48 48 0.852090 0.178508 24,844,766 14,664,124

5 FMGFD3 88000
2801 2801 174.374113 0.061878 23,305,856 13,581,568
6 100 0.203715 0.113371 489,609,908 296,056,168
12 100 0.398849 0.113367 232,239,912 139,650,640

5 FMGFD3 22000
100 700 0.504922 0.043591 215,076,764 128,278,328
12 200 0.428097 0.245093 480,964,674 290,281,604
24 200 0.869259 0.245084 227,919,852 136,765,400

5 FMGFD3 44000
200 1400 0.081991 0.021598 209,209,764 124,425,032
24 400 0.208732 0.178702 471,946,204 284,288,952
48 400 0.435327 0.178676 223,480,084 133,812,776

5 FMGFD3 88000
400 2801 0.980649 0.010554 201,729,600 119,557,248
6 6 1.877667 0.113341 26,431,436 15,773,080
12 12 10.892650 0.113327 25,892,698 15,384,628

5 FMGFD4 22000
700 700 53.583883 0.262675 23,884,290 13,960,196
12 12 4.937427 0.245023 25,892,698 15,384,628 5 FMGFD4 44000
24 24 1.635516 0.244922 25,366,620 15,019,192

2 Filter used for test case was designed using Matlab Filter Design Tool
3 Window used for test case was a Tukey window
4 Same fir1 filter used as for FMG

 81

Frequency
(MHz)

Method Fs (Hz) D L τ Error
(µs)

Dop-
pler

Error
(Hz)

Real
Adds

Real
Multiplies

1400 1400 200.623807 0.125516 23,690,944 13,827,456
24 24 0.194307 0.178514 25,366,620 15,019,192
48 48 0.872296 0.178512 24,844,766 14,664,124

5 FMGFD4 88000
2801 2801 171.373295 0.061655 23,305,856 13,581,568
6 100 0.202034 0.113372 489,609,908 296,056,168
12 100 0.408525 0.113367 232,239,912 139,650,640

5 FMGFD4 22000
100 700 0.729742 0.043614 215,076,764 128,278,328
12 200 0.429230 0.245094 480,964,674 290,281,604
24 200 0.877294 0.245086 227,919,852 136,765,400

5 FMGFD4 44000
200 1400 0.126728 0.021616 209,209,764 124,425,032
24 400 0.209519 0.178701 471,946,204 284,288,952
48 400 0.445662 0.178679 223,480,084 133,812,776

5 FMGFD4 88000
400 2801 1.103619 0.010625 201,729,600 119,557,248
6 6 1.670361 0.113342 26,431,436 15,773,080
12 12 0.522479 0.113301 25,892,698 15,384,628

5 FMGFD5 22000
700 700 6.320595 0.262803 23,884,290 13,960,196
12 12 0.624674 0.245005 25,892,698 15,384,628
24 24 0.828785 0.244940 25,366,620 15,019,192

5 FMGFD5 44000
1400 1400 341.533573 0.126409 23,690,944 13,827,456
24 24 0.117422 0.178512 25,366,620 15,019,192
48 48 0.577472 0.178529 24,844,766 14,664,124

5 FMGFD5 88000
2801 2801 11.362605 0.065900 23,305,856 13,581,568
6 100 0.198511 0.113371 489,609,908 296,056,168
12 100 0.419154 0.113367 232,239,912 139,650,640

5 FMGFD5 22000
100 700 3.462016 0.043476 215,076,764 128,278,328
12 200 0.441033 0.245082 480,964,674 290,281,604
24 200 0.893065 0.245073 227,919,852 136,765,400

5 FMGFD5 44000
200 1400 0.335380 0.021781 209,209,764 124,425,032
24 400 0.213101 0.178698 471,946,204 284,288,952
48 400 0.386859 0.178674 223,480,084 133,812,776

5 FMGFD5 88000
400 2801 0.762588 0.010871 201,729,600 119,557,248
6 6 471.928694 0.119615 141,304,060 82,049,784
12 12 536.071746] 0.114210 67,624,872 39,163,216

5 2DCS 22000
700 700 271.531861 0.262251 36,531,484 21,346,872
12 12 267.974226 0.244162 67,624,872 39163216
24 24 233.660125 0.244917 68,913,712 398,63,904

5 2DCS 44000
1400 1400 348.710958 0.126381 37,458,688 21,964,288
24 24 116.021828 0.178514 68,913,712 39,863,904
48 48 95.916826 0.178476 70,268,488 40,687,760

5 2DCS 88000
2801 2801 186.022185 0.061972 38,252,352 22,503,040
6 100 19.820280 0.113386 1,347,144,896 799,152,512
12 100 39.655814 0.113382 648,435,340 382,817,560

5 2DCS 22000
100 700 38.572067 0.043617 320,122,532 189,562,184
12 200 9.521413 0.245123 1,368,745,920 8,132,647,68
24 200 19.060423 0.245110 659,270,656 389,896,192

5 2DCS 44000
200 1400 19.085851 0.021597 324,376,272 192,408,992
24 400 4.075161 0.178760 1,389,658,280 827,105,616
48 400 8.137236 0.178749 669,733,976 396,822,704

5 2DCS 88000
400 2801 9.867400 0.010686 327,326,964 194,427,368

50 FB 22000 N/A N/A 0 0 1,362,659,551 884,152,522

50 FB 44000 N/A N/A 0 0 697,861,722 452,686,903

50 FB 88000 N/A N/A 0 0 564,902,156 366,393,779

6 6 0.013189 0.007319 20,076,504 12,335,664
12 12 0.000647 0.007128 11,032,536 6,830,640

50 FM 22000
83 83 1.806011 0.220343 3,933,384 2,554,416
12 12 0.546796 0.301155 11,032,536 6,830,640 50 FM 44000
24 24 1.232829 0.301164 6,806,040 4,274,736

5 Filter designed using Matlab Filter Design Tool, same as for FMG

 82

Frequency
(MHz)

Method Fs (Hz) D L τ Error
(µs)

Dop-
pler

Error
(Hz)

Real
Adds

Real
Multiplies

166 166 14.029722 0.108862 3,519,576 2,308,656
24 24 0.242958 0.151487 6,806,040 4,274,736
48 48 0.444009 0.151745 4,839,960 3,095,088

50 FM 88000
333 333 3.936305 0.001778 3,525,960 2,308,656
6 6 0.166738 0.007340 20,252,520 16,912,080
12 12 12.430606 0.007234 11,120,544 11,231,040

50 FMG1 22000
83 83 8.083229 0.221603 3,946,128 6,810,912
12 12 5.907726 0.301125 11,120,544 11,231,040
24 24 1.772533 0.300911 6,850,056 8,588,304

50 FMG1 44000
166 166 7.230216 0.109366 3,525,960 6,560,400
24 24 0.109891 0.151560 6,850,056 8,588,304
48 48 0.720542 0.151645 4,861,968 7,364,640

50 FMG1 88000
333 333 5.585045 0.000779 3,529,152 6,566,784
6 6 1.896360 0.007329 26,431,436 15,773,080
12 12 12.262696 0.007161 25,892,698 153,84,628

50 FMGFD3 22000
83 83 7.169745 0.221698 25,588,420 15,058,312
12 12 5.685575 0.301164 25,892,698 15,384,628
24 24 0.127705 0.300841 25,366,620 15,019,192

50 FMGFD3 44000
166 166 8.201645 0.109351 25,257,780 14,835,304
24 24 1.190068 0.151592 25,366,620 15,019,192
48 48 0.612315 0.151666 24,844,766 14,664,124

50 FMGFD3 88000
333 333 7.218809 0.000776 41,164,064 24,042,048
6 6 1.809923 0.007331 26,431,436 15,773,080
12 12 10.579849 0.007169 25,892,698 15,384,628

50 FMGFD4 22000
83 83 7.854864 0.221589 25,588,420 15,058,312
12 12 4.853693 0.301159 25,892,698 15,384,628
24 24 1.920431 0.300903 25,366,620 15,019,192

50 FMGFD4 44000
166 166 7.291491 0.109390 25,257,780 14,835,304
24 24 0.126921 0.151559 25,366,620 15,019,192
48 48 0.653187 0.151652 24,844,766 14,664,124

50 FMGFD4 88000
333 333 5.569979 0.000857 41,164,064 24,042,048
6 6 472.101980 0.013532 141,304,060 82,049,784
12 12 536.056858 0.008140 67,624,872 39,163,216

50 2DCS 22000
83 83 349.286349 0.221732 34,554,672 20,037,216
12 12 267.971858 0.300257 67,624,872 39,163,216
24 24 233.948641 0.300885 68,913,712 39,863,904

50 2DCS 44000
166 166 158.616845 0.109118 35,351,316 20,545,064
24 24 116.091211 0.151565 68,913,712 39,863,904
48 48 96.019831 0.151576 70,268,488 40,687,760

50 2DCS 88000
333 333 64.265958 0.000459 67,061,472 38,882,752

500 FB 22000 N/A N/A 1x10-6 5x10-6 1,362,659,551 884,152,522

500 FB 44000 N/A N/A 0 2x10-6 697,861,722 452,686,903

500 FB 88000 N/A N/A 0 3x10-6 564,902,156 366,393,779

6 6 0.419396 0.224765 20,076,504 12,335,664
7 7 0.635383 0.209007 11,032,440 6,830,640

500 FM 22000
8 8 0.150217 0.240312 11,032,344 6,830,640
12 12 0.052927 0.109282 11,032,536 6,830,640
14 14 0.822300 0.163491 6,805,368 4,274,736

500 FM 44000
18 18 1.157910 0.064482 6,805,752 4,274,736
24 24 0.983472 0.247195 6,806,040 4,274,736
28 28 0.355426 0.183001 6,806,040 4,274,736

500 FM 88000
33 33 0.958216 0.112369 6,806,328 4,274,736
6 6 0.671609 0.224621 20,252,520 16,912,080
7 7 3.563571 0.208471 11,183,304 11,356,560

500 FMG1 22000
8 8 2.172152 0.239282 11,164,344 11,318,640
12 12 6.235831 0.110565 11,120,544 11,231,040
14 14 2.857153 0.163854 6,880,800 8,649,792

500 FMG1 44000
18 18 1.586039 0.063606 6,864,432 8,617,056
24 24 0.681083 0.245018 6,850,056 8,588,304 500 FMG1 88000
28 28 0.957560 0.185293 6,843,768 8,575,728

 83

Frequency
(MHz)

Method Fs (Hz) D L τ Error
(µs)

Dop-
pler

Error
(Hz)

Real
Adds

Real
Multiplies

33 33 1.142923 0.111754 6,838,344 8,564,880
6 6 1.313849 0.224241 26,431,436 15,773,080
7 7 2.165415 0.208630 13,829,944 8,152,176

500 FMGFD3 22000
8 8 1.258024 0.240476 13,422,792 7,941,520
12 12 5.895590 0.109808 25,892,698 15,384,628
14 14 2.098840 0.163774 13,929,870 8,193,692

500 FMGFD3 44000
18 18 0.175996 0.062676 27,325,474 16,121,412
24 24 1.500222 0.244327 25,366,620 15,019,192
28 28 1.033181 0.185804 24,526,648 14,546,544

500 FMGFD3 88000
33 33 1.258652 0.111416 48,967,984 29,066,848
6 6 1.245058 0.224350 26,431,436 15,773,080
7 7 2.065287 0.208663 13,829,944 8,152,176

500 FMGFD4 22000
8 8 0.403180 0.240375 13,422,792 7,941,520
12 12 5.189911 0.109908 25,892,698 15,384,628
14 14 2.222264 0.163833 13,929,870 8,193,692

500 FMGFD4 44000
18 18 0.853834 0.062767 27,325,474 16,121,412
24 24 0.450447 0.244974 25,366,620 15,019,192
28 28 1.059172 0.185607 24,526,648 14,546,544

500 FMGFD4 88000
33 33 0.670270 0.111178 48,967,984 29,066,848
6 6 477.922349 0.218929 141,304,060 82,049,784
7 7 522.907829 0.206698 73,809,616 42,820,000

500 2DCS 22000
8 8 543.668976 0.243241 71,950,752 41,714,752
12 12 268.733374 0.109960 67,624,872 39,163,216
14 14 269.279843 0.167318 35,432,552 20,562,640

500 2DCS 44000
18 18 266.148526 0.065335 72,227,776 41,799,552
24 24 115.251124 0.244812 68,913,712 39,863,904
28 28 112.199927 0.185861 67,490,508 390,29,656

500 2DCS 88000
33 33 106.784758 0.112195 66,196,364 38,269,208

Table 3. Test Results

Notes:
FB = Filter Bank
FM = Fine Mode
FMG = Fine Mode Generic
FMGFD = Fine Mode Generic Frequency Domain
2DCS = 2-D Cross Spectra
1 Filter used for test case was designed using Matlab fir1 command
2 Filter used for test case was designed using Matlab Filter Design Tool
3 Window used for test case was a Tukey window
4 Filter used for test case was same one as for FMG
5 Filter designed using Matlab Filter Design Tool, same as for FMG
 Good accuracy

 Degraded accuracy

 Bad accuracy

All of the methods with the exception of the Filter Bank method were executed for three decima-

tion rates (low, medium, and high), for each bandwidth (narrow, medium, and wide) for each frequency

(HF, VHF, and UHF). There were a total of 216 tests. When executing the �Fine-Mode�, �Fine-Mode�

 84

Generic, and �Fine-Mode� Generic Frequency Domain methods the filter/window lengths (L) were set

equal to decimation rate (D). For the 2-D Cross Spectra method the window length for s1 was set equal to

the decimation rate. The purpose of doing this was to provide a common link between all the methods

(same decimation). Though this was inefficient in terms of accuracy for some of the methods (�Fine-

Mode� Generic, �Fine-Mode� Generic Frequency Domain, and 2-D Cross Spectra have their worst accu-

racy when L = D), it was made up in terms of computational complexity.

The �Fine-Mode� Generic, �Fine-Mode� Generic Frequency Domain, and 2-D Cross Spectra

methods were all re-run for the HF frequency test cases with decimation rates such that L > D and better

filters for the �Fine-Mode� Generic and �Fine-Mode� Generic Frequency Domain methods. This was

executed in order to observe the effects of having a better filter and thus trying to observe better accuracy

(trading computational complexity vs. accuracy). As mentioned in Chapter 3 Section 3.3, the optimum

value of L for the 2-D Cross Spectra method is L = D/0.88 was chosen because this reduces the aliasing

caused by decimation and windowing (allows for all the nulls from the spectral replicas to line up at one

point when the true time-delay (τ) ≠ 0). The value of L for the 2-D Cross Spectra method was run at L=D

and then at L >D, so that it could be better compared to the �Fine-Mode� Generic and �Fine-Mode� Ge-

neric Frequency Domain methods (common link between all the methods was the decimation and fil-

ter/window lengths). Doing this for the 2-D Cross Spectra test set was intuitive because since there was

no time-delay imparted to the signal data, all the nulls from the decimation and windowing would line up.

As can be seen in Table 3, for the 2-D Cross Spectra method, when L > D accuracy did improve, but not

to the desired amount (< 1 us of error).

As can be seen from Table 3, the Filter Bank method produced the best accuracy among all the

methods at the cost that it was the most computationally complex overall when L=D for all the other

methods. This makes sense because the Filter Bank method is a �brute-force� method that does not have

any decimation. Without decimation, very good accuracy is expected.

Overall, when L=D, the �Fine-Mode� method was the least computationally complex followed

closely by the �Fine-Mode� Generic. The �Fine-Mode� Generic Frequency Domain and then the 2-D

 85

Cross Spectra methods were the next best computationally complex methods, respectively, with the 2-D

Cross Spectra method being the 2nd worst to the Filter Bank Method in terms of computational complex-

ity. When viewing all the methods for L > D, the 2-D Cross Spectra method became the most computa-

tionally complex with the �Fine-Mode� Generic Frequency Domain and Filter Bank methods being the

next closest (toss-up between the two) with the �Fine-Mode� Generic and �Fine-Mode� being the 2nd and

1st least computationally complex methods. For all cases (L=D and L > D), the �Fine-Mode� method was

the least computationally complex.

After the Filter Bank method, in terms of accuracy, depending upon the test case, the results var-

ied as to which method was best. Table 4 through Table 30 are the results of extracted the data from

Table 3 and examining them on a case-by-case basis to determine the best method overall. For each test

case, the best method for TDOA and FDOA were selected when L=D. The selection was based on the

lowest errors with some small range. These methods have their errors highlighted in yellow. For the HF

test cases, those test cases for L>D were also examined and the best methods when considering both L>D

and L=D where selected. These methods have their errors highlighted in light green. In the special case

that the L=D error or the L=D and L>D examinations yielded the same number, the errors are highlighted

in teal. The notes for Table 4 through Table 30 as well as the color codes are listed after Table 30.

Frequency Bandwidth
(Hz)

Method L D TDOA
error (µs)

FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 5,000 FM 6 6 0.203434 0.113341 20,076,504 12,335,664
HF 5,000 FMG1 6 6 0.028005 0.113360 20,252,520 16,912,080
HF 5,000 FMG1 100 6 0.188807 0.113383 53,266,344 82,939,728
HF 5,000 FMG2 6 6 0.040020 0.113359 20,252,520 16,912,080
HF 5,000 FMG2 100 6 0.199295 0.113379 53,266,344 82,939,728
HF 5,000 FMGFD4 6 6 1.877667 0.113341 26,431,436 15,773,080
HF 5,000 FMGFD4 100 6 0.202034 0.113372 489,609,908 296,056,168
HF 5,000 FMGFD5 6 6 1.670361 0.113342 26,431,436 15,773,080
HF 5,000 FMGFD5 100 6 0.198511 0.113371 489,609,908 296,056,168
HF 5,000 FMGFD3 6 6 1.961396 0.113341 26,431,436 15,773,080
HF 5,000 FMGFD3 100 6 0.203715 0.113371 489,609,908 296,056,168
HF 5,000 2DCS 6 6 471.928694 0.119615 141,304,060 82,049,784

 86

Frequency Bandwidth
(Hz)

Method L D TDOA
error (µs)

FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 5,000 2DCS 100 6 19.82028 0.113386 1,347,144,896 799,152,512

Table 4 HF Narrow Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

Error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 5,000 FM 12 12 0.403557 0.113305 11,032,536 12
HF 5,000 FMG1 12 12 12.655625 0.113340 11,120,544 12
HF 5,000 FMG1 100 12 0.290949 0.113380 26,576,184 100
HF 5,000 FMG2 12 12 0.446975 0.113305 11,120,544 12
HF 5,000 FMG2 100 12 0.371750 0.113378 26,576,184 100
HF 5,000 FMGFD4 12 12 10.892650 0.113327 25,892,698 12
HF 5,000 FMGFD4 100 12 0.408525 0.113367 232,239,912 100
HF 5,000 FMGFD5 12 12 0.522479 0.113301 25,892,698 12
HF 5,000 FMGFD5 100 12 0.419154 0.113367 232,239,912 100
HF 5,000 FMGFD3 12 12 0.398849 0.113367 232,239,912 12
HF 5,000 FMGFD3 100 12 12.587743 0.113326 25,892,698 100
HF 5,000 2DCS 12 12 536.071746 0.114210 67,624,872 12
HF 5,000 2DCS 100 12 39.655814 0.113382 648,435,340 100

Table 5 HF Narrow Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

Error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 5,000 FM 700 700 73.750255 0.264644 3,240,408 2,148,912
HF 5,000 FMG1 700 700 52.517265 0.262709 3,241,920 6,385,536
HF 5,000 FMG1 700 100 1.463614 0.045306 16,410,696 31,740,048
HF 5,000 FMG2 700 700 11.643097 0.263071 3,241,920 6,385,536
HF 5,000 FMG2 700 100 0.901442 0.045704 16,410,696 31,740,048
HF 5,000 FMGFD4 700 700 53.583883 0.262675 23,884,290 13,960,196
HF 5,000 FMGFD4 700 100 0.729742 0.043614 215,076,764 128,278,328
HF 5,000 FMGFD5 700 700 6.320595 0.262803 23,884,290 13,960,196
HF 5,000 FMGFD5 700 100 3.462016 0.043476 215,076,764 128,278,328
HF 5,000 FMGFD3 700 700 28.659983 0.262602 23,884,290 13,960,196
HF 5,000 FMGFD3 700 100 0.504922 0.043591 215,076,764 128,278,328
HF 5,000 2DCS 700 700 271.531861 0.262251 36,531,484 21,346,872
HF 5,000 2DCS 700 100 38.572067 0.043617 320,122,532 189,562,184

Table 6 HF Narrow Band High Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

Error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 10,000 FM 12 12 0.438876 0.245003 11,032,536 6,830,640
HF 10,000 FMG1 12 12 5.969105 0.245018 11,120,544 11,231,040
HF 10,000 FMG1 200 12 0.433369 0.244906 44,057,568 77,105,088
HF 10,000 FMG2 12 12 0.434742 0.244995 11,120,544 11,231,040
HF 10,000 FMG2 200 12 0.436841 0.244948 44,057,568 77,105,088

 87

HF 10,000 FMGFD4 12 12 4.937427 0.245023 25,892,698 15,384,628
HF 10,000 FMGFD4 200 12 0.429230 0.245094 480,964,674 290,281,604
HF 10,000 FMGFD5 12 12 0.624674 0.245005 25,892,698 15,384,628
HF 10,000 FMGFD5 200 12 0.441033 0.245082 480,964,674 290,281,604
HF 10,000 FMGFD3 12 12 5.772418 0.245024 25,892,698 15,384,628
HF 10,000 FMGFD3 200 12 0.428097 0.245093 480,964,674 290,281,604
HF 10,000 2DCS 12 12 267.974226 0.244162 67,624,872 39163216
HF 10,000 2DCS 200 12 9.521413 0.245123 1,368,745,920 8,132,647,68

Table 7 HF Medium Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

Error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 10,000 FM 24 24 0.902120 0.245004 6,806,040 4,274,736
HF 10,000 FMG1 24 24 1.468118 0.244926 6,850,056 8,588,304
HF 10,000 FMG1 200 24 0.859447 0.244909 22,266,696 39,421,584
HF 10,000 FMG2 24 24 0.706200 0.244941 6,850,056 8,588,304
HF 10,000 FMG2 200 24 0.873686 0.244948 22,266,696 39,421,584
HF 10,000 FMGFD4 24 24 1.635516 0.244922 25,366,620 15,019,192
HF 10,000 FMGFD4 200 24 0.877294 0.245086 227,919,852 136,765,400
HF 10,000 FMGFD5 24 24 0.828785 0.244940 25,366,620 15,019,192
HF 10,000 FMGFD5 200 24 0.893065 0.245073 227,919,852 136,765,400
HF 10,000 FMGFD3 24 24 0.421330 0.244913 25,366,620 15,019,192
HF 10,000 FMGFD3 200 24 0.869259 0.245084 227,919,852 136,765,400
HF 10,000 2DCS 24 24 233.660125 0.244917 68,913,712 398,63,904
HF 10,000 2DCS 200 24 19.060423 0.245110 659,270,656 389,896,192

Table 8 HF Medium Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

Error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 10,000 FM 1400 1400 279.987817 0.125448 3,235,608 2,127,408
HF 10,000 FMG1 1400 1400 201.766702 0.125538 3,236,376 6,429,744
HF 10,000 FMG1 1400 200 0.500552 0.025317 15,786,024 31,080,528
HF 10,000 FMG2 1400 1400 1.450071 0.125611 3,236,376 6,429,744
HF 10,000 FMG2 1400 200 1.273246 0.022203 15,786,024 31,080,528
HF 10,000 FMGFD4 1400 1400 200.623807 0.125516 23,690,944 13,827,456
HF 10,000 FMGFD4 1400 200 0.126728 0.021616 209,209,764 124,425,032
HF 10,000 FMGFD5 1400 1400 341.533573 0.126409 23,690,944 13,827,456
HF 10,000 FMGFD5 1400 200 0.335380 0.021781 209,209,764 124,425,032
HF 10,000 FMGFD3 1400 1400 193.979748 0.125223 23,690,944 13,827,456
HF 10,000 FMGFD3 1400 200 0.081991 0.021598 209,209,764 124,425,032
HF 10,000 2DCS 1400 1400 348.710958 0.126381 37,458,688 21,964,288
HF 10,000 2DCS 1400 200 19.085851 0.021597 324,376,272 192,408,992

Table 9 HF Medium Band High Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

Error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 20,000 FM 24 24 0.314139 0.178531 6,806,040 4,274,736

 88

HF 20,000 FMG1 24 24 0.181176 0.178517 6,850,056 8,588,304
HF 20,000 FMG1 400 24 0.301804 0.178684 39,642,504 74,173,200
HF 20,000 FMG2 24 24 0.067634 0.178515 6,850,056 8,588,304
HF 20,000 FMG2 400 24 0.256963 0.178709 39,642,504 74,173,200
HF 20,000 FMGFD4 24 24 0.194307 0.178514 25,366,620 15,019,192
HF 20,000 FMGFD4 400 24 0.209519 0.178701 471,946,204 284,288,952
HF 20,000 FMGFD5 24 24 0.117422 0.178512 25,366,620 15,019,192
HF 20,000 FMGFD5 400 24 0.213101 0.178698 471,946,204 284,288,952
HF 20,000 FMGFD3 24 24 1.259093 0.178523 25,366,620 15,019,192
HF 20,000 FMGFD3 400 24 0.208732 0.178702 471,946,204 284,288,952
HF 20,000 2DCS 24 24 116.021828 0.178514 68,913,712 39,863,904
HF 20,000 2DCS 400 24 4.075161 0.178760 1,389,658,280 827,105,616

Table 10 HF Wide Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

Error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 20,000 FM 48 48 0.620008 0.178579 4,839,960 3,095,088
HF 20,000 FMG1 48 48 0.910654 0.178509 4,861,968 7,364,640
HF 20,000 FMG1 400 48 0.613012 0.178686 20,221,032 38,082,768
HF 20,000 FMG2 48 48 0.523144 0.178527 4,861,968 7,364,640
HF 20,000 FMG2 400 48 0.503396 0.178697 20,221,032 38,082,768
HF 20,000 FMGFD4 48 48 0.872296 0.178512 24,844,766 14,664,124
HF 20,000 FMGFD4 400 48 0.445662 0.178679 223,480,084 133,812,776
HF 20,000 FMGFD5 48 48 0.577472 0.178529 24,844,766 14,664,124
HF 20,000 FMGFD5 400 48 0.386859 0.178674 223,480,084 133,812,776
HF 20,000 FMGFD3 48 48 0.852090 0.178508 24,844,766 14,664,124
HF 20,000 FMGFD3 400 48 0.435327 0.178676 223,480,084 133,812,776
HF 20,000 2DCS 48 48 95.916826 0.178476 70,268,488 40,687,760
HF 20,000 2DCS 400 48 8.137236 0.178749 669,733,976 396,822,704

Table 11 HF Wide Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

Error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

HF 20,000 FM 2801 2801 333.138259 0.061644 3,219,480 2,118,192
HF 20,000 FMG1 2801 2801 171.796572 0.061644 3,219,864 6,421,296
HF 20,000 FMG1 2801 400 0.212516 0.018019 15,194,712 30,168,240
HF 20,000 FMG2 2801 2801 2.527392 0.065953 3,219,864 6,421,296
HF 20,000 FMG2 2801 400 0.293661 0.012058 15,194,712 30,168,240
HF 20,000 FMGFD4 2801 2801 171.373295 0.061655 23,305,856 13,581,568
HF 20,000 FMGFD4 2801 400 1.103619 0.010625 201,729,600 119,557,248
HF 20,000 FMGFD5 2801 2801 11.362605 0.065900 23,305,856 13,581,568
HF 20,000 FMGFD5 2801 400 0.762588 0.010871 201,729,600 119,557,248
HF 20,000 FMGFD3 2801 2801 174.374113 0.061878 23,305,856 13,581,568
HF 20,000 FMGFD3 2801 400 0.980649 0.010554 201,729,600 119,557,248
HF 20,000 2DCS 2801 2801 186.022185 0.061972 38,252,352 22,503,040
HF 20,000 2DCS 2801 400 9.867400 0.010686 327,326,964 194,427,368

Table 12 HF Wide Band High Decimation Test Case Results

 89

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 5,000 FM 6 6 0.013189 0.007319 20,076,504 12,335,664
VHF 5,000 FMG1 6 6 0.166738 0.007340 20,252,520 16,912,080
VHF 5,000 FMGFD4 6 6 1.809923 0.007331 26,431,436 15,773,080
VHF 5,000 FMGFD3 6 6 1.896360 0.007329 26,431,436 15,773,080
VHF 5,000 2DCS 6 6 472.101980 0.013532 141,304,060 82,049,784

Table 13 VHF Narrow Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 5,000 FM 12 12 0.000647 0.007128 11,032,536 6,830,640
VHF 5,000 FMG1 12 12 12.430606 0.007234 11,120,544 11,231,040
VHF 5,000 FMGFD4 12 12 10.579849 0.007169 25,892,698 15,384,628
VHF 5,000 FMGFD3 12 12 12.262696 0.007161 25,892,698 153,84,628
VHF 5,000 2DCS 12 12 536.056858 0.008140 67,624,872 39,163,216

Table 14 VHF Narrow Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 5,000 FM 83 83 1.806011 0.220343 3,933,384 2,554,416
VHF 5,000 FMG1 83 83 8.083229 0.221603 3,946,128 6,810,912
VHF 5,000 FMGFD4 83 83 7.854864 0.221589 25,588,420 15,058,312
VHF 5,000 FMGFD3 83 83 7.169745 0.221698 25,588,420 15,058,312
VHF 5,000 2DCS 83 83 349.286349 0.221732 34,554,672 20,037,216

Table 15 VHF Narrow Band High Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 10,000 FM 12 12 0.546796 0.301155 11,032,536 6,830,640
VHF 10,000 FMG1 12 12 5.907726 0.301125 11,120,544 11,231,040
VHF 10,000 FMGFD4 12 12 4.853693 0.301159 25,892,698 15,384,628
VHF 10,000 FMGFD3 12 12 5.685575 0.301164 25,892,698 15,384,628
VHF 10,000 2DCS 12 12 267.971858 0.300257 67,624,872 39,163,216

Table 16 VHF Medium Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 10,000 FM 24 24 1.232829 0.301164 6,806,040 4,274,736
VHF 10,000 FMG1 24 24 1.772533 0.300911 6,850,056 8,588,304
VHF 10,000 FMGFD4 24 24 1.920431 0.300903 25,366,620 15,019,192
VHF 10,000 FMGFD3 24 24 0.127705 0.300841 25,366,620 15,019,192
VHF 10,000 2DCS 24 24 233.948641 0.300885 68,913,712 39,863,904

 90

Table 17 VHF Medium Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 10,000 FM 166 166 14.029722 0.108862 3,519,576 2,308,656
VHF 10,000 FMG1 166 166 7.230216 0.109366 3,525,960 6,560,400
VHF 10,000 FMGFD4 166 166 7.291491 0.109390 25,257,780 14,835,304
VHF 10,000 FMGFD3 166 166 8.201645 0.109351 25,257,780 14,835,304
VHF 10,000 2DCS 166 166 158.616845 0.109118 35,351,316 20,545,064

Table 18 VHF Medium Band High Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 20,000 FM 24 24 0.242958 0.151487 6,806,040 4,274,736
VHF 20,000 FMG1 24 24 0.109891 0.151560 6,850,056 8,588,304
VHF 20,000 FMGFD4 24 24 0.126921 0.151559 25,366,620 15,019,192
VHF 20,000 FMGFD3 24 24 1.190068 0.151592 25,366,620 15,019,192
VHF 20,000 2DCS 24 24 116.091211 0.151565 68,913,712 39,863,904

Table 19 VHF Wide Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 20,000 FM 48 48 0.444009 0.151745 4,839,960 3,095,088
VHF 20,000 FMG1 48 48 0.720542 0.151645 4,861,968 7,364,640
VHF 20,000 FMGFD4 48 48 0.653187 0.151652 24,844,766 14,664,124
VHF 20,000 FMGFD3 48 48 0.612315 0.151666 24,844,766 14,664,124
VHF 20,000 2DCS 48 48 96.019831 0.151576 70,268,488 40,687,760

Table 20 VHF Wide Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

VHF 20,000 FM 333 333 3.936305 0.001778 3,525,960 2,308,656
VHF 20,000 FMG1 333 333 5.585045 0.000779 3,529,152 6,566,784
VHF 20,000 FMGFD4 333 333 5.569979 0.000857 41,164,064 24,042,048
VHF 20,000 FMGFD3 333 333 7.218809 0.000776 41,164,064 24,042,048
VHF 20,000 2DCS 333 333 64.265958 0.000459 67,061,472 38,882,752

Table 21 VHF Wide Band High Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 5,000 FM 6 6 0.419396 0.224765 20,076,504 12,335,664
UHF 5,000 FMG1 6 6 0.671609 0.224621 20,252,520 16,912,080
UHF 5,000 FMGFD4 6 6 1.245058 0.224350 26,431,436 15,773,080

 91

UHF 5,000 FMGFD3 6 6 1.313849 0.224241 26,431,436 15,773,080
UHF 5,000 2DCS 6 6 477.922349 0.218929 141,304,060 82,049,784

Table 22 UHF Narrow Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 5,000 FM 7 7 0.635383 0.209007 11,032,440 6,830,640
UHF 5,000 FMG1 7 7 3.563571 0.208471 11,183,304 11,356,560
UHF 5,000 FMGFD4 7 7 2.065287 0.208663 13,829,944 8,152,176
UHF 5,000 FMGFD3 7 7 2.165415 0.208630 13,829,944 8,152,176
UHF 5,000 2DCS 7 7 522.907829 0.206698 73,809,616 42,820,000

Table 23 UHF Narrow Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 5,000 FM 8 8 0.150217 0.240312 11,032,344 6,830,640
UHF 5,000 FMG1 8 8 2.172152 0.239282 11,164,344 11,318,640
UHF 5,000 FMGFD4 8 8 0.403180 0.240375 13,422,792 7,941,520
UHF 5,000 FMGFD3 8 8 1.258024 0.240476 13,422,792 7,941,520
UHF 5,000 2DCS 8 8 543.668976 0.243241 71,950,752 41,714,752

Table 24 UHF Narrow Band High Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 10,000 FM 12 12 0.052927 0.109282 11,032,536 6,830,640
UHF 10,000 FMG1 12 12 6.235831 0.110565 11,120,544 11,231,040
UHF 10,000 FMGFD4 12 12 5.189911 0.109908 25,892,698 15,384,628
UHF 10,000 FMGFD3 12 12 5.895590 0.109808 25,892,698 15,384,628
UHF 10,000 2DCS 12 12 268.733374 0.109960 67,624,872 39,163,216

Table 25 UHF Medium Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 10,000 FM 14 14 0.822300 0.163491 6,805,368 4,274,736
UHF 10,000 FMG1 14 14 2.857153 0.163854 6,880,800 8,649,792
UHF 10,000 FMGFD4 14 14 2.222264 0.163833 13,929,870 8,193,692
UHF 10,000 FMGFD3 14 14 2.098840 0.163774 13,929,870 8,193,692
UHF 10,000 2DCS 14 14 269.279843 0.167318 35,432,552 20,562,640

Table 26 UHF Medium Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 10,000 FM 18 18 1.157910 0.064482 6,805,752 4,274,736

 92

UHF 10,000 FMG1 18 18 1.586039 0.063606 6,864,432 8,617,056
UHF 10,000 FMGFD4 18 18 0.853834 0.062767 27,325,474 16,121,412
UHF 10,000 FMGFD3 18 18 0.175996 0.062676 27,325,474 16,121,412
UHF 10,000 2DCS 18 18 266.148526 0.065335 72,227,776 41,799,552

Table 27 UHF Medium Band High Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 20,000 FM 24 24 0.983472 0.247195 6,806,040 4,274,736
UHF 20,000 FMG1 24 24 0.681083 0.245018 6,850,056 8,588,304
UHF 20,000 FMGFD4 24 24 0.450447 0.244974 25,366,620 15,019,192
UHF 20,000 FMGFD3 24 24 1.500222 0.244327 25,366,620 15,019,192
UHF 20,000 2DCS 24 24 115.251124 0.244812 68,913,712 39,863,904

Table 28 UHF Wide Band Low Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 20,000 FM 28 28 0.355426 0.183001 6,806,040 4,274,736
UHF 20,000 FMG1 28 28 0.957560 0.185293 6,843,768 8,575,728
UHF 20,000 FMGFD4 28 28 1.059172 0.185607 24,526,648 14,546,544
UHF 20,000 FMGFD3 28 28 1.033181 0.185804 24,526,648 14,546,544
UHF 20,000 2DCS 28 28 112.199927 0.185861 67,490,508 390,29,656

Table 29 UHF Wide Band Medium Decimation Test Case Results

Frequency Bandwidth

(Hz)
Method L D TDOA

error (µs)
FDOA
error
(Hz)

Real Adds Real Mul-
tiplies

UHF 20,000 FM 33 33 0.958216 0.112369 6,806,328 4,274,736
UHF 20,000 FMG1 33 33 1.142923 0.111754 6,838,344 8,564,880
UHF 20,000 FMGFD4 33 33 0.670270 0.111178 48,967,984 29,066,848
UHF 20,000 FMGFD3 33 33 1.258652 0.111416 48,967,984 29,066,848
UHF 20,000 2DCS 33 33 106.784758 0.112195 66,196,364 38,269,208

Table 30 UHF Wide Band High Decimation Test Case Results

Notes:
FB = Filter Bank
FM = Fine Mode
FMG = Fine Mode Generic
FMGFD = Fine Mode Generic Frequency Domain
2DCS = 2-D Cross Spectra
1 Filter used for test case was designed using Matlab fir1 command
2 Filter used for test case was designed using Matlab Filter Design Tool
3 Window used for test case was a Tukey window
4 Filter used for test case was same one as for FMG
5 Filter designed using Matlab Filter Design Tool, same as for FMG
 Best accuracy for L=D only

 93

 Best accuracy for both L=D and L > D

 When Best accuracy when L=D is the same as for both L=D and L > D

 As noted in Chapter 3 and from the results displayed in Table 4 through Table 12, accuracy

tends to improve for methods when L>D as opposed to when L=D. However from the results obtained

from the test cases, it is clear that filter/window used plays an important role in determining the accuracy

of the correlation. An observation made from the results shows that what were considered �better� fil-

ters/windows from Chapter 4 Section 4.2 in some of the HF test cases were not the �better� fil-

ters/windows after all. Some of the other filters/windows performed significantly better, in some of the

test cases.

In terms of accuracy regarding the methods with data reduction (e.g. decimation) there was no

clear-cut best method. However, the 2-D Cross Spectra method performed the poorest in TDOA accu-

racy. TDOA accuracy improved for this method when L>D, but it was still the worst method in TDOA

accuracy. It is unclear as to why. An analysis was performed on select cases using this method to verify

the correctness of the coding of the algorithm. A visual examination of the TDOA dimension of the CAF

surface showed that in all the cases, the surface looks fine, but upon zooming in around the peak, the peak

is not close to the expected value of 0 ns. From this information, it was believed that the Matlab fftshift

applied to the DFT in order to center the DFT at zero frequency was re-ordering the data incorrectly and

thus creating an incorrect surface. This hypothesis was tested by examining the code and running a test

where DFTs followed by the fftshifts were taken on the individual columns of the CS and rows of the

ADoppler matrices instead of the matrices themselves, the same results were produced as when DFTs fol-

lowed by fftshifts were taken on the entire matrices. Further study is suggested to determine why the

TDOA accuracy is grossly different from the other methods. It is believed that the method has been

coded correctly in Matlab.

It is clear from Table 4 - Table 30 that the results are dependent upon the bandwidth over the

sampling rate. In order to put the results from Table 4 - Table 30 into perspective, the Cramer-Rao lower

 94

bounds (CRLB) were computed for TDOA and FDOA for each of the test frequencies (HF, VHF, and

UHF). The plots for the CRLB for TDOA and FDOA are shown in Figure 39 and Figure 40, respec-

tively.

-20 -10 0 10 20 30 40
10-3

10
-2

10
-1

10
0

10
1

TDOA CRLB

Effective SNR (dB)

σ
TD
O
A (µ

s
)

BW = 5 kHz, T = 2 sec
BW = 10 kHz, T = 1 sec
BW = 20 kHz, T = 0.5 sec

Figure 39 Cramer-Rao Lower Bounds for TDOA

 95

-20 -10 0 10 20 30 40
10-5

10
-4

10
-3

10
-2

10
-1

FDOA CRLB

Effective SNR (dB)

σ
FD
O
A (H

z
)

BW = 5 kHz, T = 2 sec
BW = 10 kHz, T = 1 sec
BW = 20 kHz, T = 0.5 sec

Figure 40 Cramer-Rao Lower Bounds for FDOA

 96

-20 -10 0 10 20 30 40
10-4

10-3

10-2

10-1

100

101 TDOA CRLB

Effective SNR (dB)

σ
TD
O
A (µ

s
)

BW = 5 kHz, T = 2 sec
BW = 10 kHz, T = 1 sec
BW = 20 kHz, T = 0.5 sec
Best test results for BW = 5 kHz, T = 2 sec
Best test results for BW = 10 kHz, T = 1 sec
Best test results for BW = 20 kHz, T = 0.5 sec

Effective SNR = 1.3345 dB

Figure 41 Cramer-Rao Lower Bounds for TDOA with Best Test Result Values from Tables 4 -30

 97

-20 -10 0 10 20 30 40
10-5

10-4

10-3

10-2

10-1

100
FDOA CRLB

Effective SNR (dB)

σ
FD
O
A (H

z
)

BW = 5 kHz, T = 2 sec
BW = 10 kHz, T = 1 sec
BW = 20 kHz, T = 0.5 sec
Best test results for BW = 5 kHz, T = 2 sec
Best test results for BW = 10 kHz, T = 1 sec
Best test results for BW = 20 kHz, T = 0.5 sec

Effective SNR = 1.3345 dB

Figure 42 Cramer-Rao Lower Bound for FDOA with Best Test Result Values from Tables 4 - 30

The equations used to compute the CRLB were 7 and 8 from [1]. When calculating the CRLB the noise

bandwidth was assumed to be flat (rectangular) and was set equal to the signal bandwidth and the as-

sumptions made in equations 11b and 12b from [1] were also applied. Equation 13 from [1] was used to

calculate the effective signal-to-noise-ratio (SNR). As mentioned in Chapter 4 Section 4.2, the SNR on

each stream was assumed to be the same since no fading effects were simulated on the data. Therefore,

when calculating the CRLBs, only cases where γ1=γ2 were considered. Since the CRLB is a measure of

the best possible accuracy, from comparing the results obtained from Table 4 - Table 30 and the CRLB

from Figure 39 and Figure 40, it is clear that the results obtained best match the effective SNR range from

≤ 15 dB. Given that there was no noise added to the test signals and that there was ~40 dB of processing

gain, the results obtained for the data reduction methods are not as expected. The highlighted best values

 98

obtained from the test results for TDOA and FDOA from Table 4 - Table 30 are superimposed on the

CRLB plots in Figure 41- Figure 42. Some values are below the CRLB. Given that there was no noise

present, this is expected. However, these are just the best values. All of the test result values should be at

or below the CRLBs. The effective SNR calculated from the data was approximately 1.33 dB. The effec-

tive SNR was calculated by taking the average power of both signal streams and then applying them to

equation 13 from [1].

 The results obtained from the Filter Bank method are better than the CRLB results, as expected.

The majority of the results obtained from the data reduction methods are not. For the data reduction meth-

ods, with the exception of the 2-D Cross Spectra method, visual confirmation of the CAF surfaces look

reasonable and upon zooming in around the peak of the CAF surfaces, many cases look are good, but not

as good as is expected with no noise! After the analysis, no errors were determined in relation to what

was expected. As with the 2-D Cross Spectra method, it is believed that the methods were coded cor-

rectly in Matlab. Further analysis is suggested to determine why the results are not better than what was

obtained.

Another observation made for all the cases with data reduction is that when D is particularly large

(> 100), TDOA accuracy for all the methods becomes poorer than when D is < 100. This is more evident

in the HF cases when the decimation, D goes above 100. However for the VHF test cases, the TDOA

error is on the order of 5-10 times worse for the high decimation levels, compared to the medium decima-

tion rates. This is not so evident in the UHF cases, most likely because of the decimation rates do not go

above 100 because they are restricted to be ≤ the filter length, L. To examine this phenomenon the HF

medium bandwidth test case with L=D was examined. The case for the �Fine-Mode� was selected be-

cause since all the other methods are based off of the �Fine-Mode� method, if any method was to provide

insight into what was happening, the �Fine-Mode� method would be the one. The lag product for the first

TDOA shift was examined. This lag product was plotted in the frequency domain with the �all-ones�

filter and its frequency shifted replicas super-imposed. This was done for each filter length and decima-

tion for this test case (L=D=12, L=D=24, L=D=1400). The plots are in Figure 43 through Figure 45. As

 99

can be seen from Figure 43 through Figure 45, there is aliasing for the low and the medium decimation

rates. The aliasing that occurs in for these two rates does not effect the Doppler range of interest (-5 Hz to

5 Hz). Though it can not be seen from Figure 45, there is aliasing present. A zoomed in view is available

in Figure 46. The Aliasing for the high decimation rates does occur over the Doppler range of interest

and seems to be the major contributing factor to the poor accuracy for the high decimation rates (> 100).

-10 -5 0 5 10 15
-120

-100

-80

-60

-40

-20

0

Frequency (kHz)

M
a
gn
itu
de
 (d
B
)

Lag-Product with Filter overlap for HF Medium Bandwidth Low Decimation Test Case for FM and 1st Lag Product

Lag Product
"All Ones Filter" and Frequency Shifted Replicas

Figure 43 PSD of Lag Product for Filter Low Decimation, FM Method, DFT Size = 128

 100

-10 -5 0 5 10 15
-120

-100

-80

-60

-40

-20

0

Frequency (kHz)

M
a
gn
itu
de
 (d
B
)

Lag-Product with Filter overlap for HF Medium Bandwidth Med Decimation Test Case for FM and 1st Lag Product

Lag Product
"All Ones Filter" and Frequency Shifted Replicas

Figure 44 PSD of Lag Product with Filter Medium Decimation, FM Method DFT Size = 128

 101

-10 -5 0 5 10 15
-120

-100

-80

-60

-40

-20

0

Frequency (kHz)

M
a
gn
itu
de
 (d
B
)

Lag-Product with Filter overlap for HF Medium Bandwidth High Decimation Test Case for FM and 1st Lag Product

Lag Product
"All Ones Filter" and Frequency Shifted Replicas

Figure 45 PSD of Lag Product with Filter High Decimation, FM Method, DFT Size = 128

 102

-8 -6 -4 -2 0 2 4 6 8

x 10-3

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Frequency (kHz)

M
a
gn
itu
de
 (d
B
)

Lag-Product with Filter overlap for HF Medium Bandwidth High Decimation Test Case for FM and 1st Lag Product

Lag Product
"All Ones Filter" and Frequency Shifted Replicas

Figure 46 Zoomed in View of Aliasing for HF Med BW, High Decimation Test Case

 103

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 105

0

1

2

3

4

5

6

7

8
x 10

4

τ (µsec)

C
A
F
M
a
gn
itu
de

CAF Surface at Doppler Peak Index for HF Medium Bandwidth High Decimation FM Test Case (L=D=1400)

Figure 47 CAF Plot in TDOA Dimension for HF Medium Band High Decimation FM Test Case

In order to see what effect the aliasing had on the surface, the CAF in the TDOA dimension was

plotted for the Doppler value that resulted in the highest peak in the Doppler dimension. This plot is in

Figure 47. The CAF in the TDOA dimension looks like it is centered at 0 micro-seconds. However, after

the curve-fit is applied, the TDOA is computed to be 279.987817 micro-seconds (see Table 9). It appears

that though there is aliasing, it is not seem to affect the CAF much at all. In fact it is not the major error

but curve-fit error that causes the large TDOA error. However, after examining x-axis in Figure 47, it

was determined that the x-axis is in tens of micro-seconds. To get an accurate TDOA estimate, there

should be five points around 0 micro-seconds. This indicates that the Tau-spacing used for this test case

is too coarse. By increasing the sampling rate, TDOA accuracy will improve. This test case was exe-

cuted again with increased sampling rates (better Tau-spacing), and the results are in.Table 31. With each

 104

running, the TDOA results did improve. Since for all the high decimation rates over 100, the accuracy

degraded significantly, large oversampling rates appear to be required. Further study is needed to verify

this result and to determine an optimal oversampling value that will yield a balance between accuracy and

computational complexity.

Frequency
(MHz)

Sampling
Rate (kHz)

L D TDOA Er-
ror (µs)

FDOA
Error
(Hz)

Real Adds Real Mults

5 11 1400 1400 1159.855401 0.036731 3,211,416 2,114,352
5 44 1400 1400 279.987817 0.125448 3,235,608 2,127,408
5 110 1400 1400 111.995127 0.264527 3,274,008 2,148,912
5 220 1400 1400 49.892726 0.096647 3,360,024 2,198,064
5 330 1400 1400 33.261817 0.194150 3,550,488 2,308,656
5 440 1400 1400 24.946363 0.194150 3,550,488 2,308,656
5 550 1400 1400 19.957090 0.194150 3,550,488 2,308,656
5 110000 1400 1400 0.101601 0.198817 166,784,280 102,775,344

Table 31 Results From Increased Oversampling

Examining the results in Table 4 through Table 30, the �Fine-Mode� Generic and �Fine-Mode�

Generic Frequency Domain methods when using the same filter/window were about the same in accuracy

for the majority of the test cases. This makes sense because the implementation for both methods is the

same, except one is implemented in the time domain and the other in the frequency domain [2]. The

FDOA accuracy discrepancy between both methods based on Table 4 through Table 30 is on the order of

~ 1 MHz. This is quite good accuracy and support the claim made in [2] that these two methods produce

the same results. Most of the test case results display TDOA accuracy discrepancies between these two

methods of ~1us. Notable exceptions are the HF medium and wide bandwidth high decimation test cases

with L=D and using the filters designed using the Matlab filter design tool (Table 9 and Table 12). A

contributing factor to this discrepancy was discovered to be because of curve-fit error. The Matlab polyfit

command was used to perform the curve-fit. Upon examining the cross-ambiguity function (CAF) for the

TDOA curve-fit for the HF wide bandwidth high decimation test case from Table 12, the values for both

the methods were the same to 0.01 numerical precision, yet two different curve-fits were produced and

 105

thus two different TDOA values. The CAF values used for the curve-fit for both methods are shown in

Table 32.

FMG Method
CAF Values

FMGFD Method
CAF Values

20.16231456739720 20.18102705010027
25.91042656222847 25.93185268724099
28.01950169363270 28.01429643250628
25.91145176432027 25.92680221576133
20.16334521420673 20.17662377051057

Table 32 CAF Values for TDOA Curve Fit for HF Wide Bandwidth High Decimation Test

For the HF medium bandwidth high decimation test case from Table 9, the CAF values between the two

methods for the TDOA curve-fit were off by about 1. The discrepancy between the two methods was lar-

ger than the one for the HF wide bandwidth high decimation test case, but given the values it was ex-

pected that the results would be more similar. The CAF values used for the curve-fit for both methods for

this test case are shown in Table 33.

FMG Method
CAF Values

FMGFD Method
CAF Values

39.18582718831557 40.78948949752790
50.83887011809706 52.69312488560406
55.10254091606012 55.14852592401184
50.82277097553202 52.49065539932252
39.19567053020109 40.48488978636797

Table 33 CAF Values for TDOA Curve Fit for HF Medium Bandwidth High Decimation Test Case

Upon further review, the curve-fit for the HF medium bandwidth high decimation test case from Table 9

was plotted using the �Fine-Mode� Generic Frequency Domain method. Another curve-fit plot was su-

per-imposed on the first plot using the same CAF values but with several microseconds of perturbation in

the time-delay values. The curve-fit was not noticeably changed. It was concluded that the curve-fit er-

rors were in a relative sense rather than an absolute sense. This is analogous to a 20,000 foot view where

 106

10,000 cars are lined up in a row. If 2,000 of these cars are moved one foot forward, the cars will still

appear to be lined up in a row.

After examining several other test cases with the TDOA accuracy discrepancies between the

�Fine-Mode� Generic and �Fine-Mode� Generic Frequency Domain methods, the curve-fit error was

again concluded to be the major contributing factor for the discrepancy. It is not known why the CAF

values are not identical. It was hypothesized that the �Fine-Mode� Generic Frequency Domain method

had errors because since the number of TDOAs for this method was based on the DFT size and were al-

ways the next highest power of two (and in some cases much larger than the number of TDOAs for the

�Fine-Mode� Generic method) many small errors could be adding up over time and result in a large

TDOA error. This was disproved when the minimum DFT size for TDOA was used. The same exact

TDOA value resulted. It was also thought that not enough TDOAs were being used and resulting in a

poor surface in the TDOA direction and that by adding more TDOAs accuracy would improve. This the-

ory was also disproved because when using a larger DFT size, again the same TDOA resulted. This made

sense in that the TDOA computed for the minimum DFT size, the normal DFT size based, and the larger

DFT size all produced the same result. The normal and larger DFT size only had more zeros to deal with

during the computation than the minimum DFT size. Ultimately, these zeros would be thrown away and

the same TDOA result will be produced, which it was. Further analysis is needed to determine why the

CAF values for the �Fine-Mode� Generic and �Fine-Mode� Generic Frequency Domain methods were

not identical in the TDOA direction of the CAF.

Tolimieri and Winograd in [2] claim that the �Fine-Mode� Generic Frequency Domain method is

more computationally efficient than the �Fine-Mode� Generic method when L is sufficiently large. From

examining the number of computations in Table 4 through Table 30, it is clear that was not the case, es-

pecially when L was large (L=1400 in Table 9 and L = 2801 in Table 12). After analysis, it was con-

cluded that perhaps the zero-padding used for the �Fine-Mode� Generic Frequency Domain method

(zero-padding to 2L-1 so as to get linear correlation instead of circular correlation [see Chapter 3 Section

3.1]) was more than what was needed. In [2], Tolimieri and Winograd propose a method for obtaining

 107

linear correlation via circular correlation. Instead of zero-padding each correlation input block to 2L-1,

the first correlation input block (fm[n]) is zero padded to a length L+T, where T is the number of time-

delays. The second correlation input block (s2[n]) is always, L+T samples long. By not zero-padding to a

length 2L-1 and taking a DFT of length 2L-1, the number of computations needed to compute the �Fine-

Mode� Frequency Domain method should be reduced to a level such that it is computationally efficient.

This was tested for all the cases that used the fir1 filter and the results appear in Table 34. Comparing the

results from Table 4 through Table 30 with the results in Table 34, it is clear that the larger amount of

zero-padding as is consistent with the frequency domain implementation of filters has much better accu-

racy. The computational complexity is about the same for both zero-pad implementations.

Frequency Bandwidth
(Hz)

Method L D TDOA
error

FDOA
error

Real Adds Real Mul-
tiplies

HF 5,000 FMGFD 6 6 41.037224 0.113341 54,843,052 32,690,264
HF 5,000 FMGFD 100 6 0.880685 0.113372 237128372 143915368
HF 5,000 FMGFD 12 12 13.423914 0.113327 25,892,698 15,384,628
HF 5,000 FMGFD 100 12 1.836173 0.113367 112,280,616 67,768,400
HF 5,000 FMGFD 700 700 69.164339 0.262675 11,405,826 6,681,604
HF 5,000 FMGFD 700 100 1.449117 0.043614 103,843,740 62,082,872
HF 10,000 FMGFD 12 12 7.248036 0.245023 25,892,698 15,384,628
HF 10,000 FMGFD 200 12 0.961954 0.245094 232,811,586 141,015,172
HF 10,000 FMGFD 24 24 11.629854 0.244922 25,366,620 15,019,192
HF 10,000 FMGFD 200 24 1.946362 0.245086 110,123,500 66,319,320
HF 10,000 FMGFD 1400 1400 208.842095 0.125516 11,300,544 6,610,304
HF 10,000 FMGFD 1400 200 1.145049 0.021616 100,960,676 60,183,368
HF 20,000 FMGFD 24 24 4.784969 0.178514 25,366,620 15,019,192
HF 20,000 FMGFD 400 24 0.069797 0.178701 228,328,412 138,024,888
HF 20,000 FMGFD 48 48 3.639283 0.178512 11,940,958 7,073,468
HF 20,000 FMGFD 400 48 0.090013 0.178679 107,913,492 64,844,328
HF 20,000 FMGFD 2801 2801 175.245943 0.061655 11,107,968 6,487,296
HF 20,000 FMGFD 2801 400 1.576495 0.010625 97,322,560 57,805,952
VHF 5,000 FMGFD 6 6 41.146000 0.007331 54,843,052 32,690,264
VHF 5,000 FMGFD 12 12 13.742184 0.007169 25,892,698 15,384,628
VHF 5,000 FMGFD 83 83 28.049687 0.221589 12,228,164 7,212,680
VHF 10,000 FMGFD 12 12 7.334231 0.301159 25,892,698 15,384,628
VHF 10,000 FMGFD 24 24 11.918662 0.300903 25,366,620 15,019,192
VHF 10,000 FMGFD 166 166 18.209960 0.109390 12,060,980 7,098,984
VHF 20,000 FMGFD 24 24 4.854528 0.151559 25,366,620 15,019,192
VHF 20,000 FMGFD 48 48 3.856381 0.151652 11,940,958 7,073,468
VHF 20,000 FMGFD 333 333 1.400821 0.000857 20,013,856 11,701,824
UHF 5,000 FMGFD 6 6 42.140362 0.224350 54,843,052 32,690,264
UHF 5,000 FMGFD 7 7 39.963089 0.208663 29,344,536 17,259,824
UHF 5,000 FMGFD 8 8 32.386288 0.240375 28,308,584 16,697,040

 108

UHF 10,000 FMGFD 12 12 6.651027 0.109908 25,892,698 15,384,628
UHF 10,000 FMGFD 14 14 8.864003 0.163833 13,929,870 8,193,692
UHF 10,000 FMGFD 18 18 10.792366 0.062767 13,009,922 7,693,956
UHF 20,000 FMGFD 24 24 4.281872 0.244974 25,366,620 15,019,192
UHF 20,000 FMGFD 28 28 5.747670 0.185607 24,526,648 14,546,544
UHF 20,000 FMGFD 33 33 5.228732 0.111178 23,763,632 14,117,216

Table 34 FMGFD Results with fir1 filter, L=D, and Reduced Zero-Padding

An analysis was also conducted to determine why the �Fine-Mode� Generic Frequency Domain

method was not as computationally efficient as the �Fine-Mode� Generic method. As mentioned previ-

ously, Tolimieri and Winograd in [2] mentioned for large L, the �Fine-Mode� Generic Frequency Domain

method is more computationally efficient. This analysis was performed from a different persepective. In

[2], Tolimieri and Winograd have large number of Taus; in some cases the number of Taus is equal to the

number of signal samples. For many applications, that is probably far too many time-delays to process.

However, for this analysis, the decimation (D), filter length (L), DFT size for the Doppler calculations

were fixed with values representative of what was used in the test cases conducted. The hypothesis was

that for not only must the filter length be sufficiently larger than the decimation, but also the number of

Taus must be sufficiently large as well. A plot was made to test this hypothesis and is show in Figure

 109

48.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

2

2.5

3

3.5

Taus (log2T)

(#
C
om
pu
ta
tio
ns
 F
M
G
)/(

C
om
pu
at
io
ns
 F
M
G
FD
)

Normalized Number of Computations vs. # Taus

D=10, M=4351
D=100, M=436
D=250, M=175
D=400, M=110
D=500, M=88

N = 44,000
L = 500
K = 8192

Figure 48 Plot Comparing Computational Complexity of FMG and FMGFD

For the plot in Figure 48, the number of complex computations for the �Fine-Mode� Generic (denoted

FMG in Figure 48) and �Fine-Mode� Generic Frequency Domain (denoted FMGFD in Figure 48) were

used. For the �Fine-Mode� Generic Frequency Domain method the equation for the number of complex

computations used was

)12)()(1()12)12(3(++++−+−+= KMDFTTLLDFTLMFMGFDcomp ,

(86)

 110

where M is the number of blocks as computed in (46), L is the decimation filter length, K is the number of

Dopplers, and T is the number of Taus. The number of computations used for DFT was taken as the sum

of equations 5.23a and 5.23b from Section 5.3 of [9]. The number of complex computations used for the

�Fine-Mode� Generic method was

)12)()(1(+++++= KMDFTMLNTFMGcomp , (87)

where , again, M is the number of blocks as computed in (46), L is the decimation filter length, K is the

number of Dopplers, and T is the number of Taus, and N is the number of signal samples. As for the

�Fine-Mode� Frequency Domain method computations, number of computations used for DFT was taken

as the sum of equations 5.23a and 5.23b from Section 5.3 of [9]. The equations in (86) and (87), are es-

sentially equations 3.3 and 3.6 from [2], with the exception that the number of computations used for the

FFT in 3.3 and 3.6 differ from that used for DFT in (86) and (87) and there is an ML multiplication in

(87) versus just an L in equation 3.3 from [2]

 For this analysis, N was set to 44000, L was set to 500, K was set to 8192. Each method was cal-

culated for 23 to 28 number of Taus for decimation rates of D = 10, 100, 250, 400 and 500. The point in

Figure 48 that the �Fine-Mode� Generic Frequency Domain method becomes more computationally effi-

cient than the �Fine-Mode� Generic method is when the value of the curve becomes greater than one. It

is clear from Figure 48 that the number of Taus plays a role in determining when one method is more

computationally complex versus the other, thus confirming the hypothesis. For the test cases conducted,

Figure 48 also indicates that for the number of Taus used for the �Fine-Mode� Generic Method (11), the

�Fine-Mode� Generic method would always be more computationally efficient than the �Fine-Mode� Ge-

neric Frequency Domain method. This was the case for the testing conducted. If the number of used in

the testing was > 32 then, the �Fine-Mode� Generic Frequency Domain method would have been more

efficient.

 111

For all of the tests, the Filter Bank method was clearly the best in accuracy. This is due to a lack of data

reduction methods (e.g. decimation) in the algorithm. This method has significantly more total computa-

tions than any of the other methods (order of 106 more computations than the next computationally ineffi-

cient method). Unless there is no regard for computational complexity, this method should be avoided

due to this large drawback.

For computational complexity, the �Fine-Mode� method ranks the best for all the tests. The

�Fine-Mode� Generic, �Fine-Mode� Generic Frequency Domain, 2-D Cross Spectra, and Filter Bank

methods in the order given, are how the remaining methods ranked in terms of computational complexity

overall.

The �Fine-Mode� Generic and �Fine-Mode� Generic Frequency Domain methods had the same

accuracy for all the tests. One possible reason for this result was because the same filter was used for

both the methods. Even though the filter was applied in a different order for the methods, essentially, the

multiplication of s1, s2, and the filter h[n] was always occurring.

After the Filter Bank method, to quantify which methods were better for a particular frequency,

bandwidth, and decimation, tables blah through blay were generated to highlight the best method(s).

There was no �clear-cut� best overall method. However, most often for the high decimation rates, the

�Fine-Mode� Generic and �Fine-Mode� Generic Frequency Domain methods had the best Tau and Dop-

pler accuracy. For the low and medium decimation rates, the �Fine-Mode� method most often had the

best Tau accuracy. The 2-D Cross Spectra method seemed to perform decently for the HF and VHF fre-

quencies, but performed portly for the UHF frequency. The terminology used to represent the methods in

the tables is as follows �Fine-Mode� method = FM, �Fine-Mode� Generic method = FMG, �Fine-Mode�

Generic Frequency Domain method = FMGFD, and 2-D Cross Spectra method = 2DCS.

 112

Chapter 5 Conclusion

From the testing, there is no best overall method that has the best accuracy and lowest computa-

tional complexity. For all the methods there is a trade-off in accuracy vs. computational complexity. For

example, the Filter Bank method has the best accuracy at the cost of being one of the most computation-

ally complex. The best method in terms of accuracy and complexity varies given a particularly fre-

quency, sampling rate, and decimation rate.

The five methods examined have many advantages (data reduction techniques) and limitations.

Some of these are summarized in Table 35.

Method Advantage Disadvantage

FB • Best accuracy among all methods
examined

• Not able to select number of Taus to
use din computation

• Not able to select number of Dopplers
to be used in computation

• Computationally complex
FM • Most computationally efficient

method
• Able to select number of Taus to be

used in computation

• Not able to select number of Dopplers
to be used in computation

• Limited by use of �all-ones� filter
• Upper limit placed on L

FMG • Ability to use any filter
• Accuracy dependent upon filter used
• Able to select number of Taus to be

used in computation
• Computationally efficient at low

number of Taus
• Ability to have L > D

• Not able to select number of Dopplers
to be used in computation

• Accuracy dependent upon filter used
• Upper limit placed on L

FMGFD • Ability to use any filter
• Accuracy dependent upon filter used
• Not able to select number of Dop-

plers to be used in computation
• Computationally efficient at high

number of Taus
• Ability to have L > D

• Not able to select number of Taus to
used in computation

• Not able to select number of Dopplers
to be used in computation

• Accuracy dependent upon filter used
• Computationally complex at low num-

ber of Taus
• Upper and lower limit placed on L

 113

Method Advantage Disadvantage

2DCS • Ability to excise interference
• Ability to use window of any shape

that meets requirements
• Accuarcy dependent upon win-

dow(s) used
• Ability to have L > D
•

• Computationally complex
• Poor Tau accuracy
• Not able to select number of Taus to

used in computation
• Not able to select number of Dopplers

to be used in computation
• Upper and lower limit placed on L

Table 35 Breakdown of Method Advantages and Disadvantages

Notes:
FB = Filter Bank
FM = Fine Mode
FMG = Fine Mode Generic
FMGFD = Fine Mode Generic Frequency Domain
2DCS = 2-D Cross Spectra

Some of the limitations are based on the design of the algorithm. The Filter Bank, �Fine-Mode� Generic

Frequency Domain and 2-D Cross Spectra methods do not allow the user to select the number of Taus to

use in computing the correlation surface. They provide an excessive amount of Taus. To limit this, for

the Filter Bank method, the user of the algorithm would have to design a specific convolution/correlation

routine that would select the Taus of interest. This may not be an easy task. An attempt can be made to

limit the number of Taus for the �Fine-Mode� Generic Frequency Domain and 2-D Cross Spectra meth-

ods using extra care in picking the decimation (D), filter/window lengths (L), Doppler spacing, and/or the

number of blocks (M) to provide DFT sizes that are as close to the desired number of Taus as possible. In

some applications, this may not be possible. The user must be able to determine if he/she is able to live

with the extra Taus and then attempt to try and limit the excess, before using these methods.

For Doppler the �Fine-Mode�, �Fine-Mode� Generic, �Fine-Mode� Generic Frequency Domain

and 2-D Cross Spectra methods provide an excess number of Dopplers. This also is due to the DFT sizes

being ≥ the number of samples used for the DFTs being taken. Again, this can be attempted to be con-

trolled by carefully choosing D, L, Doppler spacing, and M. As mentioned above, this may not be possi-

ble for some cases.

 114

Another limitation observed is that D is limited by the sampling rate and the maximum expected

Doppler frequency for all the methods that make use of data reduction techniques. This limits the amount

of decimation that may be performed in certain scenarios, thus requiring more data for calculations than is

desired. There is also a limit established on how large L may be. For the �Fine-Mode� and �Fine-Mode�

Generic methods, only an upper bound exists. A lower bound and upper bound exist for the �Fine-Mode�

Generic Frequency Domain and 2-D Cross Spectra methods. No limit exists for the Filter Bank method.

Before using the �Fine-Mode� Generic Frequency Domain and 2-D Cross Spectra methods, it must be

determined if the desired filter length, L, does not fall below the lower limit. In cases where a small L is

desired, the �Fine-Mode� Generic Frequency Domain and 2-D Cross Spectra methods may not be suit-

able.

As noted in Chapter 4 Section 4.3, further study is needed to determine why the 2-D Cross Spec-

tra method has poor Tau accuracy and to why the methods, with the exception of the Filter Bank method,

did not perform as well as expected when comparing the results of the data with no perturbations to the

Cramer-Rao lower bound. One path of examination that could yield a more accurate curve-fit result

would be to use the results produced in this study for a coarse estimate. Then one could refine the coarse

estimate by using a smaller subset of the data to along with the coarse estimate to produce a fine estimate

for the emitter location as is proposed in [2]. Further testing using these methods should also be con-

ducted to determine the results with perturbations. The tests conducted here did not include any interfer-

ing signals or added environmental noise because the purpose of the tests was to determine under certain

circumstances the best method from a computational perspective with accuracy being a secondary

benchmark. Accuracy of all the methods must be examined more thoroughly with modeling of real-life

perturbations in order to correlate the accuracy with the computation complexity more realistically.

 115

 References

[1] S. Stein, �Algorithms for ambiguity function processing,� IEEE Trans. Acoust., Speech, and Signal

Processing, vol. ASSP-29, pp. 588 - 599, June 1981.

[2] R. Tolimieri and S. Winograd, �Computing the ambiguity function,� IEEE Trans. Acoust., Speech,

and Signal Processing, vol. ASSP-33, pp. 1239 - 1245, October 1985.

[3] L. Auslander and R. Tolimieri, �Computing decimated finite cross-ambiguity functions,� IEEE

Trans. Acoust., Speech, and Signal Processing, vol. ASSP-36, pp. 359 - 363, March 1988.

[4] L. Auslander, I. C. Gertner, and R. Tolimieri, �The discrete Zak transform application to time-

frequency analysis and synthesis of nonstationary signals,� IEEE Trans. Signal Processing, vol. 39,
pp. 825 - 835, April 1991.

[5] G. A. Desjardins, �Frequency selective TDOA/FDOA cross-correlation,� US Patent #5874916, held

by Lockheed Martin Corp., Feb. 23, 1999.

[6] J. W. Cooley and S. Winograd, �A limited range discrete Fourier transform algorithm,� Proc. IEEE

Int. Conf. Acoust., Speech, Signal Processing, April 1980, pp. 213 � 217.

[7] L. H. Sibul and M. L. Fowler, �Optimum Array Processing In Inhomogeneous Random Fields,� (In-

vited Paper), Special Issue on Statistical Signal Processing, J. Instn. Electronics and Telecom.
Engrs., vol. 35, no. 2, pp. 98-104,1989.

[8] F. J. Harris, �On the use of windows for harmonic analysis with the discrete Fourier transform,�

Proc. IEEE, vol. 66, pp. 51 � 83, January 1978.

[9] P. Porat. A Course In Digital Signal Processing. John Wiley & Sons, Inc. New York. 1997.

[10] M. L. Fowler, �Correlation Processing,� Lecture Notes. Binghamton University.

http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE521_files/IV-
10%20Correlation%20Processing_2003.pdf.

[11] M. L. Fowler, �Cross-Spectrum-Based Interference Excision for TDOA/FDOA Estimation.� Unpub-

lished Notes. Binghamton University.

[12] �Data Bandplans.� FCC: Industrial/Business Bandplans website.

http://wireless.fcc.gov/services/ind&bus/data/bandplans.html.

 116

Appendix A Matlab Code for Main Driver Script

% This script acts as the main driver to carry out a test case for all
% freqs, bandwidths, decimation rates
clear all;

% Set variables and arrays
tukey_win = 0; % 1 = use Tukey window for FMGFD, 0 = fir1 filter
bw_to_run = 1; % 1 = narrow, 2 = medium, 3 = wide
freq_to_run = 1; % 1 = HF, 2 = VHF, 3 = UHF
method_to_run = 1; % 1 = filter bank, 2 = FM, 3 = FMG, 4 = FMGFD, 5 = 2DCS
fhf = 5e6; % Frequency of HF signal
fvhf = 50e6; % Frequency of VHF signal
fuhf = 500e6; % Frequency of UHF signal
f0 = [fhf fvhf fuhf]; % Vector of frequencies
c = 299792458; % Speed of light constant
vel = 250; % 250 m/s velocity for collection platforms
num_tau = 11; % Number of time-delays

dec_hf = [6,12,700;12,24,1400;24,48,2801];
%dec_hf = [6,12,100;12,24,200;24,48,400];
dec_vhf = [6,12,83;12,24,166;24,48,333;];
dec_uhf = [6 7 8;12 14 18;24 28 33];
dopp_space = [0.2,0.4,0.5;0.2,0.4,0.5;0.2,0.4,0.5];
sampling_rate = [5.5e3,11e3,22e3;5.5e3,11e3,22e3;5.5e3,11e3,22e3];
dopp_freq = [3 16 -322];

% Set the state of the randn
randn('state',2);

% Set variables for test cases
freq = f0(freq_to_run);
fs = sampling_rate(freq_to_run,bw_to_run);
doppler_spacing = dopp_space(freq_to_run,bw_to_run);
doppler_freq = dopp_freq(freq_to_run);

% Create complex noise sequence
x = randn(1,11000) + j.*randn(1,11000);

% Determine the maximum doppler shift
max_doppler = ceil(freq*vel/c);

% Calculate the number of dopplers
num_dopplers = ceil(2*max_doppler/doppler_spacing);

% Create and apply filter to create s1 (pseudo-voice signal)
cut_off_freq = ((fs - .1*fs)/2)/(fs/2);
h = fir1(24, cut_off_freq);
s1 = filter(h,1,x);

% Apply Doppler shift to s2 signal
s2 = freq_shift(doppler_freq,0,s1,fs);

% Interpolate both streams to 4x
s1 = resample(s1,4,1);
s2 = resample(s2,4,1);

% Update fs
fs = fs * 4;

 117

for ii = 1:3 % {
 % Determine decimation
 if (freq == fhf) % { HF freq
 D = dec_hf(bw_to_run,ii);
 elseif (freq == fvhf) % } VHF Freq {
 D = dec_vhf(bw_to_run,ii);
 else % } UHF Freq {
 D = dec_uhf(bw_to_run,ii);
 end % } if HF freq

 switch (method_to_run)
 case 1 % { Filter Bank - No decimation
 % Get Dopplers of interest
 if (freq == fhf) % {
 dopplers = -max_doppler:doppler_spacing:max_doppler;
 num_dopplers = length(dopplers);
 elseif (freq == fvhf) % } VHF Freq {
 dopplers = (doppler_freq-10):doppler_spacing:(doppler_freq+10);
 num_dopplers = length(dopplers);
 else % } UHF Freq {
 dopplers = (doppler_freq-10):doppler_spacing:(doppler_freq+10);
 num_dopplers = length(dopplers);
 end % } if HF Freq

 % Compute CAF
 [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fb(s1,s2,fs,num_tau,num_dopplers,doppler_spacing,dopplers);

 % Compute RMS error
 tau_error = sqrt(tau^2);
 doppler_error = sqrt((doppler)^2);
 fprintf(1,'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n',...
 tau_error/1e-6,doppler_error,ceil(num_comp(1)),ceil(num_comp(2)));
 if (ii == 1) % {
 break; % Only need to one this case once for each bandwidth since no decima-
tion
 end %}
 case 2 % } Stein's Fine Mode {
 % Get number of samples
 N = length(s1);

 % Calculate filter length and decimation rate
 L = D;

 % Calculate the number of blocks
 M = ceil(abs((N-L))/D)+1;

 % Compute the cross-ambiguity function
 [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fmg(s1,s2,fs,ones(1,L),D,M,num_tau,doppler_spacing,max_doppler,0);

 % Compute RMS error
 tau_error = sqrt(tau^2);
 doppler_error = sqrt((doppler)^2);
 fprintf(1,'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n',...
 tau_error/1e-6,doppler_error,ceil(num_comp(1)),ceil(num_comp(2)));
 case 3 % } FMG
 % Calculate filter cut-off frequency for filter
 cut_off_freq = max_doppler/(fs/2);

 % Get the number of samples

 118

 N = length(s1);

 % Determine L
 L=D;

 % Create Generic filter
 h1 = fir1(L-1,cut_off_freq);

 % Calculate the number of blocks
 M = ceil((N-L)/D)+1;

 % Compute the cross-ambiguity function
 [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fmg(s1,s2,fs,h1,D,M,num_tau,doppler_spacing,max_doppler,1);

 % Compute RMS error
 tau_error = sqrt(tau^2);
 doppler_error = sqrt((doppler)^2);
 fprintf(1,'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n',...
 tau_error/1e-6,doppler_error,ceil(num_comp(1)),ceil(num_comp(2)));
 case 4 % FMGFD
 % Get the number of samples
 N = length(s1);

 % Determine L
 L = D;

 % Get filter to use
 if (tukey_win == 0) % { fir1 filter
 cut_off_freq = max_doppler/(fs/2);
 win1 = fir1(L-1,cut_off_freq);
 else % } use Tukey Window {
 % Design filter for stream 1 - use Tukey window
 P = 0.80;
 win1 = tukeywin(L,P).';
 end % } if fir1 filter

 % Calculate the number of blocks
 M = ceil((N-L)/D)+1;

 % Compute the cross-ambiguity function
 [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fmgfd_old(s1,s2,fs,win1,D,M,num_tau,doppler_spacing,max_doppler);

 % Compute RMS error
 tau_error = sqrt(tau^2);
 doppler_error = sqrt(doppler^2);
 fprintf(1,'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n',...
 tau_error/1e-6,doppler_error,ceil(num_comp(1)),ceil(num_comp(2)));
 case 5 % } 2DCS {
 % Get the number of samples
 N = length(s1);

 % Get length L.
 L = D;

 % Compute the cross-ambiguity function
 [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
twodcs(s1,s2,fs,L,D,num_tau,doppler_spacing,max_doppler);

 % Compute RMS error

 119

 tau_error = sqrt(tau^2);
 doppler_error = sqrt((doppler_freq)^2);
 fprintf(1,'TAU ERROR= %6.6f us\tDOPPLER ERROR= %f Hz\t# REAL ADDS = %.0f\t# REAL
MULTIPLIES = %.0f\n',...
 tau_error,doppler_error,ceil(num_comp(1)),ceil(num_comp(2)));
 otherwise
 fprintf(1,'ERROR: UNDEFINED METHOD\n');
 end % } switch
end %} for ii = 1 all decimation rates for this sampling rate

 120

 Appendix B Matlab Code for freq_shift Function

function y = freq_shift(fnew,fold,x,fs);
% syntax: y = freq_shift(fnew,fold,x,fs);
%
% The function freq_shift takes the input data stream x and frequency
% shifts it by the amount (fnew-fold)/fs. The shifted frequency stream y
% is returned
%
% INPUTS:
% fnew - desired frequency to shift data in stream x to
% fold - frequency that data in x is currently at
% x - complex signal data stream (1 X N) to frequency shift
% fs - sampling rate of signal stream x
%
% OUTPUTS:
% y - frequency shifted complex signal data stream
%
% ASSUMPTIONS:
% This function assumes that all the inputs have been entered, thus no
% checking is done on the number of inputs
%
% AUTHOR:
% C. Yatrakis

% Calculate the difference in frequency between fnew and fold and normalize
% by fs
delta_f = (fnew-fold)./fs;

% Get the length of the signal stream x
N = length(x);

% Apply frequency shift
y = x.*exp(-j*2*pi*delta_f*(0:(N-1)));

 121

Appendix C Matlab Code for curve_fit Function

function [tau,doppler] = curve_fit(A,tau_vec,dopp_vec);
% SYNTAX: [tau,doppler] = curve_fit(A,tau_vec,dopp_vec);
%
% DESCRIPTION:
% The function curve_fit takes a cross-ambiguity surface
% and applies a curve fit in the Tau direction and Doppler direction
% to obtain Tau and Doppler from the surface. The Tau and Doppler
% are returned.
%
% INPUTS:
% A - cross-ambiguity surface (Tau X Doppler)
% tau_vec - vector of time-delays used in computing surface (1xTau)
% dopp_vec - vector of Doppler frequenices used in computing surface
% (1xDoppler)
%
% OUTPUTS:
% tau - Tau measured off the surface (scalar)
% doppler - Doppler measured off the surface (scalar)
%
% ASSUMPTIONS:
% There is enough room to the right and left of the surface peak
% to be able to pick points (e.g. surface peak not at edge)
%
% Interpolation to peak has already been taken care of
%
% AUTHOR:
% C. Yatrakis

% Get peak indices
[j1,dopp_pk_index] = max(max(A));
[j2,tau_pk_index] = max(max(A,[],2));

% Get Tau values to apply curve fit to
tau_values = A(tau_pk_index-2:tau_pk_index+2,dopp_pk_index);

% Get Tau curve fit coefficients
[tau_cf_coefs] = polyfit([tau_vec(tau_pk_index-2:tau_pk_index+2)],tau_values.',2);

% Get Doppler values to apply curve fit to
dopp_values = A(tau_pk_index,dopp_pk_index-2:dopp_pk_index+2);

% Get Doppler curve fit coefficients
[dopp_cf_coefs,s,mu] = polyfit([dopp_vec(dopp_pk_index-
2:dopp_pk_index+2)],dopp_values,2);

% Calculate Tau and Doppler from the surface peak
tau = -tau_cf_coefs(2)/(2*tau_cf_coefs(1));
doppler = -dopp_cf_coefs(2)/(2*dopp_cf_coefs(1));

 122

Appendix D Matlab Code for fmg Function

function [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fmg(s1,s2,fs,h,D,M,T,doppler_spacing,max_doppler,fm_fmg_flag);
% SYNTAX: [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fmg(s1,s2,fs,h,D,M,T,doppler_spacing,max_doppler,fm_fmg_flag);
%
% DESCRIPTION:
% The function fmg performs the cross correlation of
% 2 signal streams using Seymour Stein's "Fine-Mode"
% method with a generic filter. The implementation
% uses a polyphase filter approach. The cross-ambiguity
% function is returned along with vectors of the time-delays
% and Dopplers for plotting. The time-delay and Doppler measured
% off the surface, and the number of computations it
% took to compute [computed using EQN 3.3 from Tolimieri &
% Winograds "Computing the Ambiguity Surface" paper are also returned
%
% INPUTS:
% s1 - complex signal data stream 1 (1xN)
% s2 - complex signal data stream 2 (1xN)
% fs - complex sampling rate of both signal streams in Hz (scalar)
% h - filter to be applied to the lag-product (1xL)
% D - decimation to be applied during correlation (scalar)
% dec - decimation to use during correlation (scalar)
% M - number of inner sums to apply in correlation(scalar)
% T - number of time-delays to use during correlation processing (scalar)
% doppler_spacing - Doppler spacing for correlation surface (scalar)
% max_doppler - maximum expected Doppler frequency (scalar)
% fm_fmg_flag - flag that tells if this is for fm or fmg mode (scalar).
% Used for determining the number of computations
%
% OUTPUTS:
% A - complex cross-correlation function output (Tau X Dopplers)
% tau_vec - vector of taus used for plots (1 X Tau)
% dopp_vec - vector of Dopplers used for plots (1 X Doppler)
% tau - Tau measured off the surface (scalar)
% doppler - Doppler measured off the surface (scalar)
% num_comp - number of computations used to compute the cross-correlation
% function (2x1) vector where the first row is real adds and
% the second row is real multiplies
% LIMITATIONS:
% The size of both input streams must be the same
%
% AUTHOR:
% C. Yatrakis

% Get the number of samples in each stream
N = length(s1);

% Get the length of the filter
L = length(h);

% Zero pad s1 and s2 so they are divisible by L
num_zeros = L+D*(M-1)-N;
s1 = [s1 zeros(1,num_zeros)];

% Setup Tau range
if (mod(T,2) == 0) % { even

 123

 min_tau = -T/2;
 max_tau = T/2 -1;
else % } odd {
 min_tau = -(T-1)/2;
 max_tau = (T-1)/2;
end % } if T is even

% Determine amount to zero-padding to get correct Doppler spacing
num_w_zp = ceil((fs/D)/doppler_spacing);

% Determine DFT size
dft_size = 2^(ceil(log2(num_w_zp)));

% Cross Correlate s1 and s2
for ii = min_tau:max_tau % { 0 to Num Taus - 1
 % Apply time-delay to s2
 if (ii >= 0) % {
 s2_star = conj([zeros(1,ii) s2(1,1:N-ii) zeros(1,num_zeros)]);
 else % } ii < 0 {
 s2_star = conj([s2(1,1-ii:N) zeros(1,-ii) zeros(1,num_zeros)]);
 end % } for ii >= 0

 % Form lag-product
 r_tau = s1.*s2_star;

 % Filter and decimate lag-product
 r_tau_tilda = upfirdn(r_tau,h,1,D);

 % Take DFT via FFT algorithm
 A(ii-min_tau+1,:) = fftshift(fft(r_tau_tilda,dft_size));

 % clear out filtered and decimated lag-product
 clear('r_tau_tilda','r_tau','s2_star');
end % } for ii = min_tau to max_tau

% Get Tau spacing
tau_spacing = inv(fs/D);

% Set tau_vec
tau_vec = [min_tau:max_tau]*tau_spacing;

% Calculate new doppler spacing for dopp_vec
fs_after_dec = fs/D;
dopp_space_after_dec = fs_after_dec/dft_size;

% Set dopp_vec
dopp_vec = [(-dft_size/2):((dft_size/2)-1)]*dopp_space_after_dec;

% Get tau and Doppler measurements from surface peak
[tau,doppler] = curve_fit(abs(A),tau_vec,dopp_vec);

% Get the number of computations needed for this method
if (fm_fmg_flag == 0) % { Stein's FM method
 real_mults = (T+1)*(4*N+2*dft_size*(log2(dft_size)-2)+4);
 real_adds = (T+1)*(2*N+2*M*2*L+3*dft_size*log2(dft_size)-2*dft_size+2);
 num_comp = [real_adds;real_mults];
else % } FMG method {
 real_mults = (T+1)*(4*N+4*M*(2*L+1)+2*dft_size*(log2(dft_size)-2)+4);
 real_adds = (T+1)*(2*N+2*M*(2*L+1)+3*dft_size*log2(dft_size)-2*dft_size+2);
 num_comp = [real_adds;real_mults];
end % } if FM method

return;

 124

Appendix E Matlab Code for fmgfd Function

function [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fmgfd(s1,s2,fs,h,D,M,T,doppler_spacing,max_doppler);
% SYNTAX: [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fmgfd(s1,s2,fs,h,D,M,T,doppler_spacing,max_doppler);
%
% DESCRIPTION:
% The function fmgfd performs the cross correlation of
% 2 signal streams using Tolimieri and Winograd's "Fine-Mode"
% Generic Freqeuncy domain method.The cross-ambiguity
% function is returned along with vectors of the time-delays
% and Dopplers for plotting. The time-delay and Doppler measured
% off the surface, and the number of computations it
% took to compute [computed using EQN 3.2 from Tolimieri &
% Winograds "Computing the Ambiguity Surface" paper are also returned
%
% INPUTS:
% s1 - complex signal data stream 1 (1xN)
% s2 - complex signal data stream 2 (1xN)
% fs - complex sampling rate of both signal streams in Hz (scalar)
% h - window to be applied to the lag-product (1xL)
% D - decimation to be applied during correlation (scalar)
% dec - decimation to use during correlation (scalar)
% M - number of inner sums to apply in correlation(scalar)
% T - number of time-delays to use during correlation processing (scalar)
% doppler_spacing - Doppler spacing for correlation surface (scalar)
% max_doppler - maximum expected Doppler frequency (scalar)
%
% OUTPUTS:
% A - complex cross-correlation function output (Tau X Dopplers)
% tau_vec - vector of taus used for plots (1 X Tau)
% dopp_vec - vector of Dopplers used for plots (1 X Doppler)
% tau - Tau measured off the surface (scalar)
% doppler - Doppler measured off the surface (scalar)
% num_comp - number of computations used to compute the cross-correlation
% function (2x1) vector where the first row is real adds and
% the second row is real multiplies
%
% LIMITATIONS:
% The size of both input streams must be the same
%
% AUTHOR:
% C. Yatrakis

% Get the number of samples in each stream
N = length(s1);

% Get the length of the filter
L = length(h);

% Zero pad s1 and s2 so they are divisible by L
num_zeros = L+D*(M-1)-N; %
s1 = [s1 zeros(1,num_zeros)];
s2 = [s2 zeros(1,num_zeros)];

% Setup Tau range
if (mod(T,2) == 0) % { even
 min_tau = -T/2;
 max_tau = T/2 -1

 125

else % } odd {
 min_tau = -(T-1)/2;
 max_tau = (T-1)/2;
end % } if T is even

% Determine DFT size
dft_size1 = 2^(ceil(log2(2*L-1)));

for mm = 0:M-1 % { 0 to Number of Blocks - 1
 % Get f_m and zero pad to length L+T
 f_mm= s1(mm*D+1:mm*D+L).*h;

 % Get s2_m, and zero pad both to 2L-1
 s2_mm = s2(mm*D+1:mm*D+L);

 % Take DFT of both streams
 F_mm = fftshift(fft(f_mm,dft_size1));
 S2_mm = fftshift(fft(s2_mm,dft_size1));

 % Multiply DFT of streams together
 W_mm = F_mm.*conj(S2_mm);

 % Take IDFT of both streams
 w_tilda(mm+1,:) = fftshift(ifft(W_mm,dft_size1));

 % Clear variables for next pass
 clear('W_m','f_mm','s2_mm','F_mm','S2_mm');
end % } for mm = 0 to Number of Blocks - 1

% Determine amount to zero pad columns of w_tilda_m to get correct Doppler
% spacing
num_w_zp = ceil((fs/D)/doppler_spacing);

% Determine DFT size
dft_size2 = 2^(ceil(log2(num_w_zp)));

% Get the number of Taus
[row,num_taus] = size(w_tilda);

% Compute correlation surface
A= fftshift(fft(w_tilda.',dft_size2,2),2);

% Calculate Tau spacing
tau_spacing = inv(fs/D);

% Set tau_vec
if (mod(num_taus,2) == 0) % { even
 tau_vec = [(-num_taus/2):(num_taus/2)-1].*tau_spacing;
else % } odd {
 tau_vec = [-((num_taus-1)/2):((num_taus-1)/2)].*tau_spacing;
end % } if num_taus is even

% Calculate new doppler spacing for dopp_vec
fs_after_dec = fs/D;
dopp_space_after_dec = fs_after_dec/dft_size2;

% Set dopp_vec
dopp_vec = [(-dft_size2/2):((dft_size2/2)-1)]*dopp_space_after_dec;

% Get tau and Doppler measurements from surface peak
[tau,doppler] = curve_fit(abs(A),tau_vec,dopp_vec);

% Get the number of computations needed for this method

 126

% Get the number of computations needed for this method
real_mults = M*(4*L+6*dft_size1*(log2(dft_size1)-2)+12+4*dft_size1)+...
 dft_size1*(2*dft_size2*(log2(dft_size2)-2)+4);
real_adds = M*(2*L+9*dft_size1*log2(dft_size1)-6*dft_size1+6+2*dft_size1)+...
 dft_size1*(3*dft_size2*log2(dft_size2)-2*dft_size2+2);
num_comp = [real_adds;real_mults];

return;

 127

Appendix F Matlab Code for fb Function

function [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fb(s1,s2,fs,T,num_dopplers,doppler_spacing,fdopp);
% SYNTAX: [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
fb(s1,s2,fs,T,num_dopplers,doppler_spacing,fdopp);
%
% DESCRIPTION:
% The function fb performs the cross correlation of
% 2 signal streams using the Filter Bank method.
% The implementation is a brute force approach.
% The cross-ambiguity function is returned along with
% vectors of the time-delays and Dopplers for plotting.
% The time-delay and Doppler measured off the surface,
% and the number of computations it took to compute [computed
% using EQN 2.3 from Tolimieri & Winograds "Computing the
% Ambiguity Surface" paper are also returned
%
% INPUTS:
% s1 - complex signal data stream 1 (1xN)
% s2 - complex signal data stream 2 (1xN)
% fs - complex sampling rate of both signal streams in Hz (scalar)
% T - number of time-delays to use during correlation processing (scalar)
% num_dopplers - number of doppler frequencies to use for correlation
% surface (scalar)
% doppler_spacing - Doppler spacing for correlation surface (scalar)
% fdopp - Doppler frequencies of interest (1 x num_dopplers)
%
% OUTPUTS:
% A - complex cross-correlation function output (Num Taus X Num Dopplers)
% tau_vec - vector of time-delays used in computing correlation function
% dopp_vec - vector of frequencies used in computing the correlation
% function
% tau - Tau measured off the surface (scalar)
% doppler - Doppler measured off the surface (scalar)
% num_comp - number of computations used to compute the cross-correlation
% function (2x1) vector where the first row is real adds and
% the second row is real multiplies
%
% LIMITATIONS:
% The size of both input streams must be the same
%
% AUTHOR:
% C. Yatrakis

% Get number of samples
N = length(s1);

% Get the tau spacing
tau_spacing = 1/fs;

for mm = 1:num_dopplers % { Dopplers of interest
 comp_exp = exp(-j.*2.*pi.*fdopp(mm).*[0:N-1]./fs);
 h_mm = s1.*comp_exp;

 % Compute the cross-ambiguity function
 A(:,mm) = xcorr(h_mm,s2).';
end % } for mm = Dopplers of interest

clear('s1','s2','h_mm','comp_exp');

 128

% Get the number of taus used in computing the ambiguity function
[num_taus,col] = size(A);

% Set tau_vec
if (mod(num_taus,2) == 0) % { even
 tau_vec = [(-num_taus/2):(num_taus/2)-1].*tau_spacing;
else % } odd {
 tau_vec = [-((num_taus-1)/2):((num_taus-1)/2)].*tau_spacing;
end % } if num_taus is even

% Set dopp_vec
dopp_vec = [(-num_dopplers/2):((num_dopplers/2))].*doppler_spacing;

% Get tau and Doppler measurements from surface peak
[tau,doppler] = curve_fit(abs(A),tau_vec,dopp_vec);

% Get the number of computations needed for this method
real_mults = (num_dopplers+1)*(4*N + 4*(N+num_taus) + ...
 4*(N+num_taus)*(log2(N+num_taus)-2) +8) + ...
 2*(N+num_taus)*(log2(N+num_taus)-2) + 4;
real_adds = (num_dopplers+1)*(2*N + 2*(N+num_taus) + ...
 6*(N+num_taus)*log2(N+num_taus) - 4*(N+num_taus) + 4) + ...
 3*(N+num_taus)*log2(N+num_taus) - 2*(N+num_taus) + 2;
num_comp = [real_adds;real_mults];

return;

 129

Appendix G Matlab Code for twodcs Function

function [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
twodcs(s1,s2,fs,L,D,T,doppler_spacing,max_doppler);
% SYNTAX: [A,tau_vec,dopp_vec,tau,doppler,num_comp] =
twodcs(s1,s2,fs,D,T,doppler_spacing,max_doppler);
%
% DESCRIPTION:
% The function fmgfd performs the cross correlation of
% 2 signal streams using Desjardin's 2-D Cross Spectra
% method.The cross-ambiguity function is returned along
% with vectors of the time-delays and Dopplers for plotting.
% The time-delay and Doppler measured off the surface, and the
% number of computations it took to compute are also returned
%
% INPUTS:
% s1 - complex signal data stream 1 (1xN)
% s2 - complex signal data stream 2 (1xN)
% fs - complex sampling rate of both signal streams in Hz (scalar)
% L - length of window for first stream (scalar)
% D - decimation to be applied during correlation (scalar)
% T - number of time-delays to use during correlation processing (scalar)
% doppler_spacing - Doppler spacing for correlation surface (scalar)
% max_doppler - maximum expected Doppler frequency (scalar)
%
% OUTPUTS:
% A - complex cross-correlation function output (Tau X Dopplers)
% tau_vec - vector of taus used for plots (1 X Tau)
% dopp_vec - vector of Dopplers used for plots (1 X Doppler)
% tau - Tau measured off the surface (scalar)
% doppler - Doppler measured off the surface (scalar)
% num_comp - number of computations used to compute the cross-correlation
% function (2x1) vector where the first row is real adds and
% the second row is real multiplies
%
% LIMITATIONS:
% The size of both input streams must be the same
%
% AUTHOR:
% C. Yatrakis

 % Get the number of samples
 N = length(s1);

 % Setup the tau range
 if (mod(T,2) == 0) % { even
 min_tau = -T/2;
 max_tau = T/2 -1;
 else % } odd {
 min_tau = -(T-1)/2;
 max_tau = (T-1)/2;
 end % } if T is even

% Create Tukey window for stream s2. Use 80% Tukey window - arbitrary P
P = 0.80;
Lw2 = ceil((L+2*max_tau)/P);
win2 = tukeywin(Lw2,P).';

% Calculate the number of blocks
M = ceil((N-Lw2)/D)+1;

 130

% Zero pad s1 and s2 so they are divisible by length Lw2
num_zeros = Lw2+D*(M-1)-N; %%% REVISIT THIS

s1 = [s1 zeros(1,num_zeros)];
s2 = [s2 zeros(1,num_zeros)];

% Design window for stream 1 - use another Tukey window
win1 = tukeywin(L,P).';

% zero pad win1 so it is length Lw2
num_zeros = Lw2-L;
win1 = [win1 zeros(1,num_zeros)];

% Compute DFT size
dft_size1 = 2^(ceil(log2(2*Lw2-1)));

for m = 0:M-1 % { 0 to Num Blocks - 1
 % Form the mth signal block
 s1mo_tilda = s1(m*D+1:m*D+Lw2);
 s2mo_tilda = s2(m*D+1:m*D+Lw2);

 % window both streams and zero pad to 2*Lw2 - 1
 S1mow1_tilda = fft(win1.*s1mo_tilda,dft_size1);
 S2mow2_tilda = fft(win2.*s2mo_tilda,dft_size1);

 % Form CS matrix and zero pad
 CS(m+1,:) = S1mow1_tilda.*conj(S2mow2_tilda);
 clear('s1mo_tilda','s2mo_tilda','S1mow1_tilda','S2mow2_tilda');
end % } for mm = 0 to Num Blocks - 1

% Determine the amount of zero padding to perform on columns of CS
% matrix to get correct Doppler spacing
num_w_zp_dopp = ceil((fs/D)/doppler_spacing);

% Determine the amount of zero padding to perform on rows of Adoppler
% matrix to get correct Tau spacing
num_w_zp_tau = max(dft_size1,T);

% Determine DFT size & compute CAF
dft_size_dopp = 2^(ceil(log2(num_w_zp_dopp)));
dft_size_tau = 2^(ceil(log2(num_w_zp_tau)));
Adoppler= fft(CS,dft_size_dopp,1);
clear('CS','s1','s2');
A = fftshift(ifft(Adoppler,dft_size_tau,2).');
clear('Adoppler');

% Set tau_vec
[num_taus,num_dopplers] = size(A);
tau_spacing = inv(fs/D);
if (mod(num_taus,2) == 0) % { even
 tau_vec = [(-num_taus/2):(num_taus/2)-1].*tau_spacing;
else % } odd {
 tau_vec = [-((num_taus-1)/2):((num_taus-1)/2)].*tau_spacing;
end % } if num_taus is even

% Calculate new doppler spacing for dopp_vec
fs_after_dec = fs/D;
dopp_space_after_dec = fs_after_dec/dft_size_dopp;

% Set dopp_vec
dopp_vec = [(-num_dopplers/2):((num_dopplers/2)-1)]*dopp_space_after_dec;

 131

% Get tau and Doppler measurements from surface peak
[tau,doppler] = curve_fit(abs(A),tau_vec,dopp_vec);

% Get the number of computations needed for this method
real_mults = M*(8*Lw2+4*dft_size1*(log2(dft_size1)-2)+8+4*dft_size1)+...
 dft_size1*(2*dft_size_dopp*(log2(dft_size_dopp)-2)+4)+...
 dft_size_dopp*(2*dft_size_tau*(log2(dft_size_tau)-2)+4);
real_adds = M*(4*Lw2+6*dft_size1*log2(dft_size1)-2*dft_size1+4+2*dft_size1)+...
 dft_size1*(3*dft_size_dopp*log2(dft_size_dopp)-2*dft_size_dopp+2)+...
 dft_size_dopp*(3*dft_size_tau*log2(dft_size_tau)-2*dft_size_tau+2);
num_comp = [real_adds;real_mults];
return;

