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Abstract: This paper presents a data compression method that can achieve a very large compression 

ratio for radar pulse trains that are to be used for time-difference-of-arrival/frequency-difference-of-
arrival (TDOA/FDOA) multiple-platform emitter location; this method exploits pulse-to-pulse redun-
dancy to get a compression ratio much higher than possible using standard compression methods.  We 
show how to use (i) the ability of the singular value decomposition (SVD) to exploit redundancy between 
radar pulses, and (ii) a Fisher information-based distortion criterion to enable elimination of pulses that 
are negligible to the FDOA estimation tasks.  To enable the SVD to effectively remove the redundancy it 
is necessary to first optimally gate the pulses and place them in the rows of a matrix and then align the 
pulses to arrive at a matrix that is close to having rank of one.  Finally, we suggest reasonable coding 
schemes for the information to be sent and assess the achievable compression level. 

The Fisher information-based removal of pulses is shown to have negligible impact on the FDOA ac-
curacy but does degrade the TDOA accuracy from that achievable using the SVD-based compression 
without pulse elimination.  However, we demonstrate that the SVD method includes an inherent de-
noising effect (common in SVD-based signal processing) that provides an improvement in TDOA accu-
racy over the case of no compression processing; thus, the overall impact on TDOA/FDOA accuracy is 
negligible while providing compression ratios up to 100:1 for typical radar signals. 
 
Keywords: data compression, singular value decomposition, emitter location, time-difference-of-arrival, 
TDOA, frequency-difference-of-arrival, FDOA 

mfowler
Text Box
Submitted to IEEE Transactions on Aerospace and Electronic Systems



 2

I. Introduction 

A common way to locate electromagnetic emitters is to measure the time-difference-of-arrival 

(TDOA) and the frequency-difference-of-arrival (FDOA) between pairs of signals received at geographi-

cally separated platforms  [1], [2].  The measurement of TDOA/FDOA between these signals is done by 

coherently cross-correlating the signal pairs  [3], [4].  This requires that the signal samples of the two sig-

nals are available at a common platform, which is accomplished by transferring the signal samples over a 

data link from one platform to the other.   

An important aspect of this processing that was not widely addressed in the literature until recently is 

that the available data link rate often is insufficient to accomplish the transfer within the time requirement 

unless some form of lossy data compression is employed.  To mitigate this, we have developed data com-

pression methods tailored specifically for TDOA/FDOA emitter location systems which can be grouped 

into two main categories of approach: (i) exploiting redundancy between pulses when the emitter to be 

located is a radar  [5], [6], [7] and (ii) a more general approach of exploiting the relative importance of spe-

cific time-frequency components of general signals (i.e. communication or radar signals) through the use 

of a Fisher information-based distortion measure  [8], [9], [10].  

In  [5], [6], [7] we showed how to compress radar signals by “gating” around the detected pulses, put-

ting the gated pulses into the rows of a “pulse matrix”, and then using the singular value decomposition 

(SVD) to compress the signal; this approach employed a purely MSE distortion criterion.  In  [8], [9], [10] 

we have developed a method that uses Fisher information as a distortion measure that captures the true 

impact of compression on the TDOA/FDOA accuracy.  This paper ties together the separate results we 

have obtained in those two areas.  We apply the Fisher information-based distortion measure for FDOA 

accuracy  [8], [9], [10] to find the optimal set of pulses to remove from the pulse matrix and then use the 

SVD for transform-based compression.  The removal of pulses is shown to have negligible impact on the 

FDOA accuracy but does degrade the TDOA accuracy from that achievable using the SVD-based com-

pression without pulse elimination.  However, we demonstrate that the SVD method includes an inherent 
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de-noising effect (common in SVD-based signal processing) that provides an improvement in TDOA ac-

curacy over the case of no compression processing; thus, the overall impact on TDOA/FDOA accuracy is 

negligible while providing compression ratios up to 100:1 for some typical radar signals. 

In Section II we provide an overview of the compression method.  In Section III we provide the de-

tails of the method: in Section III-A we describe an optimal method for gating the pulses and placing 

them into the pulse matrix so as to minimize the amount of side information that needs to be sent; in Sec-

tion III-B we describe how to align the pulses to reduce the rank of the matrix; in Section III-C we show 

how to use the SVD to extract a prototype pulse and a set of complex amplitudes that allow reconstruction 

of the pulse train; in Section III-D we provide an analysis of the achievable compression ratio; in Section 

III-E we show how to use Fisher information to eliminate pulses that are negligible for the FDOA estima-

tion.  Section IV provides illustrative simulation results. 

 

II. Overview of Compression Method 

The emitter location system consists of three or more platforms, each outfitted with identical receiv-

ing and processing equipment.   Once signal data is collected at all of the platforms, the SNR is estimated 

at each platform and the one with the highest SNR is chosen as the one to transmit its data to the others 

for subsequent correlation processing; this platform is called the transmitting platform (Tx platform) and 

the other platforms are called the correlating platforms (Cx platforms).  The Tx platform is required to be 

at a high enough SNR to allow standard radar intercept signal processing to be done  [11], [12].  Because 

modern radars can change modes we assume that preliminary subtrain-extraction (de-interleaving) proc-

essing has grouped the signal of interest into one or more subtrains, each having pulses from the same 

mode of operation – such processing is a standard part of typical electronic warfare systems (this process-

ing also removes pulses from other emitters)  [11], [12].  Here we consider compressing one such subtrain.   

As part of this interception processing, the Tx platform detects the individual pulses of the emitter of 

interest, gates around them, and keeps only the signal samples that lie inside the pulse gates; the numbers 
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of samples removed between the pulses is sent as side information.  The gated signal samples and num-

bers of samples removed are transmitted to each of the Cx platforms where this broadcast data is used to 

reconstruct the gated pulse train (zeros are inserted between pulses according to the side information). 

The reconstructed signal is then cross-correlated with the signal received locally at the Cx platform to 

allow ML estimation (via cross-correlation) of the TDOA/FDOA values  [3].  The sets of TDOA/FDOA 

estimates from the various Cx platforms are then combined to estimate the emitter location  [1].  This is 

one particular scenario although other related scenarios can also be handled.  

We focus on the transferal from the Tx platform to one Cx platform as shown in Figure 1.  The data 

from the Tx platform is compressed before transmitting via a data link where the two signals are cross-

correlated to obtain the ML estimate of TDOA/FDOA.  The two noisy intercepted signals are modeled as 

)()()(ˆ

)()()(ˆ
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knksks
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                                                                  (1) 

where s(k) and d(k) are the complex baseband signals of interest and n(k) and v(k) are complex white 

Gaussian noises.  The signal d(k) is a delayed and doppler shifted version of s(k).  The signal-to-noise 

ratios (SNR) for these two signals are denoted SNR and DNR, respectively‡.  The Tx Platform signal is 

compressed, transferred to the other platform, and then decompressed before cross-correlation.  After 

lossy compression/decompression the signal  has SNR of . )(ˆ ksc cSNR

Once the signal  has been intercepted, it undergoes data compression/de-compression as outlined 

in 

)(ˆ ks

Figure 2.  The first step in the data compression is to remove the unwanted samples between pulses by 

using pulse gating; all compression ratios stated here take the gated signal as the original, non-compressed 

signal (i.e., the reduction due to gating out the “dead spaces” is not included as part of the compression 

ratio).   Pulse gating and pulse matrix formation are illustrated in Figure 3.  In order to minimize the 

amount of side information that must be sent, the pulse gating method optimally chooses the integers G, 

                                                           
‡ SNR (non-italic) represents an acronym for signal-to-noise ratio; SNR (italic) represents the SNR for and DNR (italic) 

represents the SNR for . 
)(ˆ ks

)(ˆ kd
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W and T in units of “samples” (see Section III-A).  After the Pulse Matrix is formed, the pulses in the 

rows are aligned using either fractional delay FIR filters or DFT-based processing in order to obtain an 

Aligned Pulse Matrix that has rank of nearly one (see Section III-B).  The amount of alignment imparted 

to each pulse is sent as side information in the sequence Δ1, Δ2, Δ3, … as shown in Figure 2. Because W is 

typically larger than the true pulse width, after alignment any excess columns outside the pulse width can 

be trimmed.  If desired, the Aligned Pulse Matrix can be reshaped in two ways (i) by putting multiple 

pulses per row – proper reshaping is shown to maximize the compression ratio (see Section III-D) and (ii) 

by removing pulses deemed to be negligible via a Fisher information-based distortion measure (see Sec-

tion III-C).  The resulting matrix is close to being rank one so it is then decomposed using the SVD to 

extract the most significant left and right singular vectors, u1 and v1 (see Section III-C), which are then 

efficiently coded and transmitted to the Cx platform where the process is reversed to reform an approxi-

mation to the original pulse train (where zeros have been inserted between the reconstructed pulses). 
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Figure 1: System Configuration for Compression 
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Figure 2: Overview of Compression and De-Compression Method 
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Figure 3: Pulse Gating  and Pulse Matrix Formation 
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III. Details of Compression Method 

A. Pulse Gating and Pulse Matrix Formation 

In our original formulation of this method  [5] the spacing between pulse gates was allowed to vary 

rather than having the constant G value shown in Figure 3; this required that a stream of Gi values needed 

to be sent as side information, which increased the amount of side information to be sent and hence de-

creased the achievable compression ratio.  This section describes how to choose a single G value that re-

duces the amount of side information to be sent. 

The gating method developed here constrains the gate width W and the gate interval G to be constants 

and gives an effective way to choose a minimal gate width W and the corresponding gate interval G; for 

maximum flexibility and performance we also include an initial gate offset T, thus the first gate starts at 

index T.  We wish to find a minimal gate width to reduce the size of the resulting Pulse Matrix to achieve 

an effective level of compression.   

The coding of T can be absorbed into the overhead that exists whether compression is used or not – 

namely that there is some minuscule amount of header information that describes the platform clock time 

of the first sample sent, which would be the time of the sample at index T.  To send G would require no 

more than 32 bits to handle realistic pulse spacings at typical sampling rates; similarly, W could likely be 

coded with no more than 16 bits.  In fact, fewer bits could be used for most systems, but allocating an ex-

cessive number of bits to this side information has a negligible impact on the resulting compression ratio.  

An implicit assumption has been made in the above analysis: there are no missing pulses (i.e., undetected 

due to low SNR, for example).  The impact of this on the amount of side information must be addressed.  

While there are perhaps more efficient ways, we propose here to use a bit mask to indicate where there 

are missing pulses: the bit mask would have a “1” to indicate a pulse is present and a “0” to indicate that a 

pulse is missing; the occurrence of a missing pulse can be recognized from largely irregular spacing be-

tween leading edge times.  Thus, for a given number of intercepted pulses p, the length of this bit mask 

will depend on the probability of a missing pulse Pmp.  If there are p intercepted pulses, then the expected 
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number of transmitted pulses (and hence the length of the bit mask) is p/(1 – Pmp) bits.  Thus, if we con-

sider a some-what worst case scenario, with a value of Pmp = 0.5, then the expected number of bits in the 

bit mask would be 2p bits.  Thus, we will use 2p + 32 + 16 bits as a rough upper bound on the number of 

bits needed for the gating side-information.  

The inputs to the gating algorithm are the stream of detected pulse leading edges and widths; these are 

parameters typically found as part of the standard processing of a typical electronic warfare system.  Let tk 

and wk be the measured leading edge time and pulse width (integers in units of “samples”), respectively, 

for pulse k; here, it is assumed that within the algorithm these values are adjusted to give conservative 

values that ensure that tk lies before the true start of the pulse and tk +wk lies after the true stop of the 

pulse.  This leads to specifying the following optimization problem: 

integers,,

0,

:}1,1,0{for   that such

)(:minimize

WGT

WG

wtWTkG

tTkG

pk

WT,G,Wf

kk

k

≥

+≥++

≤+

−=

=

…

                                                              (2) 

To get a better perspective of this minimization problem,  Figure 4 shows tk and (tk+wk)  vs. k along with 

two lines of slope G that bound these two sets of points.  On the left side of the figure the corresponding 

pulse gates are represented by shaded rectangles.  Thus, the minimization problem to be solved is to pick 

integers T, G, W (with G and W non-negative) so that the two lines enclose the two sets of points while 

minimizing the vertical distance between the lines.  From the above problem formulation we see that we 

have reduced this problem to a traditional constrained linear optimization problem  [13].  

It is possible to modify the above problem so as to apply standard optimization methods  [13], [14] 

such as simplex, simplex with convex hull, dual simplex, dual simplex with convex hull, and  dual sim-

plex with convex hull and cutting planes (see  [6] for details).  However, these standard methods are less 

efficient than the problem-specific approach described below. 
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We start by fixing G to some constant value, an integer. As stated above, the line t = kG +T must pass 

though at least one of the leading edge points. If it did not, then W could be reduced by incrementing T 

until the line did pass through one of the leading edge points. From this, we find that if G is fixed, then T 

can be chosen such that this condition holds. In fact, it leads to this equation for selecting T, given G: 

 

[ ]kGtT k
k

−= min                                                                                     (3) 

A similar argument shows that for fixed G and T, W can be optimally chosen as: 

 

[ )()(max TkGwtW kk
k

]+−+=                                                                       (4) 

 

Note that in  (3) and  (4), if G is an integer, then so are T and W (since tk and wk are integers).  Now it's a 

matter of finding the value of G that minimizes W.  

It can easily be seen that W as a function of G is unimodal – where T is considered to take on its op-

timal value for each G as defined in  (3).  This arises from  (2) as follows.  Imagine the three dimensional 

space with axes W, G, and T.  The first constraint in  (2) specifies a series of vertical planes (i.e., parallel 

to the W axis) and Figure 5 shows the intersection of these constraint planes with the G-T plane; the 

shaded area identifies the region satisfying these constraints.  From our previous considerations we know 

that the solution must lie on one of the lines forming the constraint region.  The second constraint in  (2) 

places a series of tilted planes above the G-T plane, each of which has a slope of –1 with respect to the T 

axis and the kth plane has a slope of –k with respect to the G axis.  The conglomeration of these constraints 

plane creates a convex downward surface.  Thus, W as a function of G is the values on this convex 

downward surface as traversed along the conglomeration of the constraint lines in Figure 5, which creates 

a unimodal function with a single minimum.  A property of a unimodal function is that if a local mini-
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mum is located, it will be the global minimum. Various well-known algorithms (such as bisection 

method, golden section search, etc.) can now be used to solve the optimization problem. 
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Figure 4: Pulse Leading and Trailing Edge Times vs. Pulse Index k 

 

There are several different methods that can be used to select the initial trial value for G. The non-

integer simplex method may be used. This tends to locate the optimal value for G within a fraction, but 

the method is complicated. (This method also places a lower bound on W). A least-square fit to the slope 

of the leading edge sample points may be used to estimate G. The method is simple, but may require more 

trials to reach the optimal G. A simple slope calculation between the leading edges of the first and last 

pulse may also be useful.  



 11

 

T

G k=0

k=1

k=2

k=3

t0

t1, t2, t3,… tp

W axis 
(points out of page)

 
Figure 5: Example of constraints in the T-G plane 

 
 

Our gating method (called “unimodal method”) thus consists of finding an initial estimate for G (call 

it G1) using any one of the methods mentioned in the previous paragraph and then updating to G2 = G1 + 

1, solving  (3) and  (4) for each of these G estimates to get W1 and W2, from this information the unimodal-

ity can be used to determine the direction to the minimum of W(G); G is then incremented in unit steps 

until W(G) – checked using  (3) and  (4) – starts to increase, at which point the optimal G, T, and W have 

been found.  The efficiency of this method depends on the accuracy of the initial estimate of G, but we 

have shown (see  [6] for details) that it executes rapidly (about 2 orders of magnitude faster than the stan-

dard methods) and its run time grows very slowly with the number of pulses. 
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B. Pulse Matrix Alignment 

The goal here is to yield a matrix that is as close to rank one as possible to enable compression via the 

SVD.  Because the radar’s PRI and the platform’s sampling interval T are generally incommensurate (i.e., 

there is no integer k such that PRI = kT ) the needed time alignment is not an integer number of samples.  

Therefore we need a method of shifting pulses by a fraction of a sampling interval.   

Let Pna be the matrix whose rows hold the non-aligned pulses that are extracted by the gating proce-

dure, as shown in Figure 3.  Let  be the jth pulse so that matrix Pna has its j,k element given by 

.  We choose the pulse with the largest energy as the reference pulse, to which all the 

other pulses will be aligned; let this pulse be denoted as .  Then to find the time alignment needed 

for the jth
  pulse (j ≠ m) we cross-correlate it with the reference pulse to give 

)(kp j

)(),( kpkj jna =P

)(kpm

mjklplpkC
l

jmj ≠−=∑ ,)()()( *                                                                      (5) 

and then interpolate Cj(k) to find the location of its peak, which is then taken as the time shift Δj to be ap-

plied to  to align it with .  The time shift Δj can be written as  where  is an 

integer and .   The time shift Δj values are coded for transmission using 8 bits each. 

)(kp j )(kpm jjj D δ+=Δ jD

10 <δ≤ j

The integer part of the alignment can be handled separately according to )()(~
jjj Dkpkp += .  Now 

)(~ kp j must be shifted by an amount that is less than a single sample.  There are several ways to impart a 

fractional delay to a signal  [5], [7], [15].  Which one is used depends partly on whether the signal to be de-

layed is available in its entirety as one block or is available sequentially, either sample-by-sample or on a 

subblock-by-subblock basis; that is, it depends on the level of latency that is acceptable. Other considera-

tions are accuracy and complexity.  Here we consider four different methods and assess them on these 

merits.  The methods are (i) a full-block DFT method based on the delay property of the DFT  [7], (ii) a 

subblock-based version of the DFT method  [7], (iii) fixed FIR filters designed for fractional delay  [15], 

and an adaptive FIR filter for fractional delay  [7]. Zhou  [5], [7] compared the accuracy on the basis of 
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magnitude vs. frequency, delay vs. frequency, and SNR vs. delay value.  Because in this application the 

signals to be delayed (the individual pulses) can be quite short the adaptive FIR method is not suitable.  

The fixed FIR methods are also not the best choice because (i) the signals can be short,  (ii) the signals are 

wideband so the frequency-specific characteristic is a major disadvantage, and (iii) the worst-case accu-

racy vs. delay may not be acceptable.  That leaves the subblock DFT and the full-block DFT methods.  

For the current application there is no penalty in having to wait for an entire pulse to become available 

because the front-end processing must first identify all the pulses before any subsequent processing is 

done; furthermore, the required fractional delay can’t be determined until the entire pulse is available.  

Therefore, for this application we use the full-block DFT approach  [7].  

To give a delay of requires passing the signal through a system with frequency response given 

by  where 

)1,0(∈δ

),[,)( ππ−∈Ω=Ω δΩ− jeH fTπ=Ω 2 is the discrete-time frequency for a sampling interval of T.  

This can be implemented using DFT properties as follows: (i) Compute the DFT of the signal using zero-

padding to ensure the time shift is not circular; (ii) Multiply the DFT by evaluated at the DFT fre-

quencies; (iii) Compute the inverse DFT of the result. 

δΩ− je

The effectiveness of the fractional delay method for this application can be seen by assessing its abil-

ity to reduce the effective rank of the pulse matrix.  The effective rank of a matrix is best assessed via the 

SVD  [16].  Let P be the matrix that is obtained from Pna after aligning its pulses as described above.  If 

the alignment method is effective at creating a matrix with effective rank one, then all but the first singu-

lar value of  P should be insignificant.  Because the sum of the squares of the singular values gives the 

energy of the signal it makes more sense to plot the squares of  the singular values; for each case, normal-

izing by the largest singular value improves the comparison between various cases (e.g., nonaligned, 

aligned, etc.).  Figure 6 shows the squares of the normalized singular values as a function of singular 

value index for the unaligned matrix, the aligned matrix using only integer alignment, and also using frac-

tional alignment; the case shown here is for a simulated linear FM radar signal sampled at an interval that 
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is incommensurate with the PRI.  From this we see the effectiveness of the fractional alignment method – 

the effective rank of the fractionally aligned matrix can be seen to be close to one.  This is the basis of the 

compression method developed here: compression is achieved because the fractionally-aligned matrix can 

be closely approximated in terms of a rank one matrix. 
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Figure 6: Squared Normalized Singular Values for Aligned and Unaligned Matrices 

 

 

C. SVD-Based Extraction 

In the actual processing the next step would be reshaping of the aligned pulse matrix; although it is 

optional, it is typically desirable to perform the reshaping step.  However, we postpone discussion of this 

step until later for ease of discussion. 

If we denote the p×n aligned pulse matrix by P, its SVD is 

∑
=
σ=

r

i

H
iii

1
vuP ,                                                                                 (6) 
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where p is the number of pulses, n is the number of samples retained per pulse after alignment, r is the 

rank of P,  is the ith left singular vector,  is Hermitian transpose of the ith right singular vector, and 

is the ith singular value, ordered such that 

iu H
iv

iσ 1+σ≥σ ii .  Each term in the sum in  (6) is a rank-one matrix.  

In general, truncating this sum to only k < r  terms we get a rank-k matrix Pk that best approximates P in 

the sense that the sum of the squares of the elements of P – Pk is smaller than for any other rank-k matrix 

 [16].  Note that in our case the matrix contains the pulses and therefore this approximation gives the 

smallest mean square error (MSE) between the original pulse train and the approximate pulse train 

formed by concatenating the de-aligned rows of Pk.  This minimum MSE property is the basis for using 

the SVD here.  We limit our focus to the case of k = 1; the pulse alignment is done to enable this (see 

Figure 6).  The effect of the noise on the singular values is uniformly spread across all the singular values 

– this is in fact a known result that is exploited in many applications of the SVD to signal processing 

problems  [17].  Thus, SVD truncation reduces the noise. This simultaneous compression and noise reduc-

tion will be demonstrated in the simulations. 

In particular, the approximating matrix P1 is formed from , from which it is clear that 

each row in P1 is a complex-valued scalar multiple of , where the complex scalar for the ith row is the 

ith element in times ; it is also clear that 

H
1111 vuP σ=

H
1v

1u 1σ 1σ  does nothing more than amplitude scale the entire re-

constructed pulse train and can therefore be omitted. Thus, we can use  

H
111

~ vuP = ,                                                                                    (7) 

from which we see that  holds the reconstruction magnitudes and phases.  We can interpret vector  as 

a single prototype pulse that has been extracted from the original pulse train and the vector u1 holds the complex 

amplitudes that are multiplied by the prototype pulse to create the pulses in the reconstructed pulse train.   

1u H
1v

 



 16

D. Coding and Compression Ratio Analysis 

As discussed above, the gating parameters can be sent using 48 bits and we assume roughly 2p bits 

are needed for a bit mask to handle the effect of missing pulses.  Thus, the side information coming from 

the pulse gating step in Figure 2 is 2p + 48 bits.  The rest of the data that must be coded consists of three 

parts: (i) the complex-valued right singular vector (RSV), (ii) the complex-valued left singular vector 

(LSV), and (iii) the time-shifts of the pulses.   

To code the prototype pulse contained in the RSV we recognize that each of its samples is a complex 

number having magnitude and phase, both of which are changing from sample to sample.  The cross-

correlation processing will be much less sensitive to errors in the magnitude than in the phase, so we 

should ensure that the phase is coded with high accuracy whereas the magnitude can be coded with lower 

fidelity.  We propose to code the phase of the prototype pulse using 8 bits/sample and to use a 1-bit dif-

ferential PCM approach for the magnitudes of the prototype pulse. Thus, we use BRSV = 8+1 = 9 bits to 

code each element of the RSV.  It should be noted that this approach provides a fairly general approach 

that should work for virtually all cases; however, when the acquisition system identifies the radar as being 

a linear FM signal, the phase of the prototype should have fairly constant sample-to-sample phase differ-

ences, and then it may make more sense to use some form of differential coding there, too.  To code the 

pulse magnitudes and phases contained in the LSV we again should allocate more bits to the phases than 

to the magnitudes.  We use 4 bits per magnitude in the LSV and 8 bits per phase in the LSV. Thus, we use 

BLSV = 8+4 = 12 bits to code each element of the LSV.  Finally, each time shift is coded using BTS = 8 bits. 

How much compression can we get from this scheme?  If no compression is used (other than gating) 

there are np complex samples to be sent and we use 8 bits/sample for the real part and 8 bits/sample for 

the imaginary part; thus, including the bits used to code the numbers of zeros to be inserted due to gating, 

the original signal is coded using 

48216  DataOriginal ++= ppn                                                                  (8) 
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Here we consider the case where a single pulse is put into each row of p×n P, but we will see later that it 

is usually better to reshape the matrix to put multiple pulses per row.  Given the number of bits used to 

code the SVD compressed data, the total number of bits used for the compressed data is summarized in 

Table 1.  Therefore, when using one pulse per row we get a compression ratio of 

40922
48216

subopt ++
++

=
np
ppnCR ,                                                                      (9) 

which is labeled as suboptimum because we will see below that putting multiple pulses per row can im-

prove the compression ratio. 

 

Table 1: Total Compressed Data with One Pulse per Row 

Quantity to Code General Form of Coding Specific Form of Coding
n×1 RSV (n × BRSV) (8+1)n = 9n
p×1 LSV (p × BLSV) (8+4)p = 12p
(p-1)×1 time shifts (p-1) × BTS 8(p – 1) = 8p  –  8 
Gating Side Information 2p + 48 2p + 48
Compressed Data      9n + 22p + 40

 

As mentioned above, it is possible to improve this compression ratio by putting more than one pulse 

per row (after alignment) such that we get an r×c matrix. This will require a few modifications, namely, 

we will need to normalize all the pulses so that even if we have significant pulse-to-pulse fading we will 

still be able to get a near rank one matrix.  Thus, we won’t have to code the magnitudes of the LSV, but 

we will now need p magnitude normalizers that can be coded using BMN = 2 bits each.  The r×1 LSV now 

only needs to have its phase coded, using Bφ = 8 bits per element.  This changes the results in Table 1 to 

those shown in Table 2. 
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Table 2: Total Compressed Data with Multiple Pulses per Row 

Quantity to Code General Form of Coding Specific Form of Coding
(c×1) RSV Phases  (c × BLSV) (8+4)c = 12c 
(r×1) LSV  (r × Bφ) 8r
(p×1) Magnitude Normalizers (p × BMN) 2p
(p-1)×1 time shifts (p-1) × BTS 8(p – 1) = 8p  –  8 
Gating Side Information 2p + 48 2p + 48
Compressed Data 8r + 12c + 12p + 40

 

The goal here is to find the optimal values of c and r. As a means of exploring this, for now assume 

that we can make any size pulse matrix for a given collection of pulses as long as the total number of 

elements equals the total number of samples np in the pulse train.  Consider an r×c matrix with r and c 

chosen such that CR is maximized under the constraint that rc = np (or equivalently that r = np/c).  For 

this case the compression ratio becomes  

 

,
4012128

48216

4012128
48216

+++

++
=

+++
++

=

p
r
npr

ppn

pcr
ppnCR

                                                                       (10) 

 

which should be maximized as a function of r for a given np.  Thus, we must minimize the function 

 

4012128)( +++= p
r
nprrf ,                                                                     (11) 

 

which is minimized when 2/3npr = or equivalently when 3/2npc = ; this is equivalent to making the 

pulse matrix such that c = 2r/3.  From plots of CR vs. c, this peak is fairly broad so that hitting the exact 

value is not real crucial, so restricting r and c to be integers will not drastically reduce the CR from the 

theoretical maximum.  Thus, we should put multiple pulses in a row in order to make the pulse matrix as 
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close as possible to having two-thirds as many rows as columns.  Using these results in  (10), the optimal 

compression ratio is  

61268
16216

opt
++

++
=

pnp
ppnCR                                                                        (12) 

which is plotted in Figure 7 as a function of n and p.  From this plot we see that for low to medium num-

ber of samples per pulse that the optimal compression ratio becomes effectively independent of the num-

ber of pulses as the number of pulses gets large.  As both n and p increase, the compression ratio increases 

without bound; thus, we see that the compression ratio increases as the number of samples increases – that 

is, larger compression ratios are achieved when more compression is needed.  Specific compression ratio 

results for typical practical scenarios are given in Table 3; the pulse width (PW), pulse repetition interval 

(PRI), and bandwidth (BW) values are for typical radars; the samples-per-pulse values are dictated by 

practical sampling theory; the ranges of number-of-pulses is dictated by the need to achieve sufficient 

TDOA/FDOA accuracy under expected conditions.  It should be noted that these compression ratio re-

sults are much lower than some preliminary results  [18] because those earlier results did not consider the 

impact of coding the side information; nonetheless, even including the effect of the side information, as 

we have here, the compression ratios achieved are still very good. 

E. Pulse Matrix Reshaping 

Once the matrix is aligned it may be possible to reshape the matrix in two ways: (i) remove rows (i.e., 

pulses) that have negligible contribution to TDOA/FDOA accuracy and/or (ii) combine multiple pulses 

into a single row.  The former reshaping is done on the basis of the fact that the Fisher information for 

FDOA estimation shows that pulses near the middle of the pulse train contribute less toward FDOA accu-

racy than do pulses at the beginning or end.  The latter reshaping is done on the basis of the analysis given 

in the previous subsection showing that the compression ratio can be improved by properly putting multi-

ple pulses per row in some cases.  In this section we will focus on pulse removal via the Fisher informa-

tion measure.  
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Figure 7: Contour plot showing optimal compression ratio as a function of the number of pulses 
and the number of samples per pulse. 

 
 

Table 3: Compression Ratios for Typical Practical Scenarios 

PW 
(μs) 

PRI 
(μs) 

BW 
(MHz) 

# of Pulses 
p 

Samples/Pulse
N 

CRsubopt CRopt 

0.5 600 4.0 80 – 300 6  4.3 – 4.4  5.6 – 6.6 
1.5 10 2.0 1,500 – 14,000 8   5.9 – 5.9   9.7 – 10.4 
6.5 70 2.5 250 – 1,500 24 16.9 – 17.4 21.3 – 26.7 
9.0 240 2.8 60 – 400 38 22.0 – 26.7 22.0 – 33.8 

 
 

To choose an appropriate distortion criterion for compression for TDOA/FDOA applications it is im-

portant to understand the impact of compression on the TDOA/FDOA accuracies rather than its impact on 

the signal fidelity (e.g., MSE) as is commonly done in compression algorithms.  We have used the Fisher 

information (FI) for TDOA/FDOA estimates to gain insight into what signal characteristics can be ex-
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ploited when compressing signals for TDOA/FDOA estimation  [8] [9], [10].  As we have derived in  [8], 

the FI measure for the data at the Tx platform for TDOA and FDOA are, respectively, 

( ) 12/,,12/,2/,
][ˆ2

ˆ
2

222

−+−−== NNNk
N
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sJTDOA …

σ

π
.                           (13) 

and 
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][ˆ2

ˆ
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σ

π
.                                (14) 

where σ2 is the noise variance of the data and are the DFT coefficients of the received signal data 

.  Note that the FI measure for TDOA depends on a measure of the frequency spread of the signal’s 

DFT and that the FI measure for FDOA depends on a measure of the time spread of the signal itself.  

Thus, removal of pulses would reduce JFDOA;  but due to the quadratic temporal weighting in 

][ˆ kS

][ˆ ks

 (14) some 

pulses will cause less reduction in JFDOA than other pulses.  While it is possible to apply the DFT to each 

pulse row and apply  (13) across each row and apply  (14) over the pulses, we consider only the later case 

here; namely, this is because it is common to have fairly few samples per pulse and the frequency resolu-

tion would then be too poor to reliably apply (6).  From the structure of the FI for FDOA given in  (14) 

one can see what parts of the signal are most important for estimating FDOA and use that as a guide for 

eliminating pulses. From  (14) we see that the pulses that are near the ends of the collected signal interval 

are more important than those in the center of the data, since the pulses near t = 0 have little contribution 

to Fisher information.  This insight motivates the following processing steps: 

1. Choose the number of pulses, η, to be deleted (based on how much compression is desired).  

2. Compute ∑
∈

=Ω
setindex  pulse 

22 ][
thin

ii npn for each pulse. 

3. Delete the η pulses having the smallest . iΩ

Note that the index n for the whole pulse train should run over a set that is symmetric around 0. 
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To get a rough idea of the impact of pulse removal we analyze the effect under an equal-amplitude 

pulse assumption so we can write the pulse train of p pulses as 
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,                                                                 (15) 

where so(t) is the prototype pulse, ti is the time position of the ith pulse, and φi is the phase of the ith pulse.  

Using this in the form for CRLB for FDOA  [4] when DNRSNR ≈  and  we get 1>>SNR
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for some appropriately chosen constant C1.  This shows that under the equal pulse amplitude assumption, 

pulses should be eliminated starting with the center pulse and working bi-directionally outward. 

We’d also like a result that allows us to understand the effect that pulse elimination has on the accu-

racy of the TDOA estimate.  The CRLB for TDOA  [4] when DNRSNR ≈  and  is 1>>SNR
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From  (15) and properties of the Fourier transform we have that 
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where we have used the inequality YXYX +≤+ .  Using this result in  (17) then gives 
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This shows that eliminating l of the N pulses would increase the bound in  (18) to 
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This analysis gives some motivation to expect that the TDOA estimation error’s standard deviation is 

likely to vary with l as .  Note that the effect on TDOA shown in )/(1 lN −  (19) does not depend on which 

pulses are eliminated and the effect in  (19) is simply due to the loss of processing gain due to elimination 

of pulses.  On the other hand, the loss in FDOA accuracy does depend on which pulses are removed and 

that by choosing them carefully (via the FI-based measure used above) we would expect the loss in 

FDOA accuracy to be small. 

IV.  Simulation Results 

To illustrate the potential of SVD-based compression with and without FI-based pulse elimination we 

present some simulation results using a simulated radar signal (complex baseband) chosen to satisfy the 

assumptions made above.  The signal is a train of pulses having linear FM modulation within each pulse.  

The simulated signal had the following parameters: 80 pulses, pulse width (PW) of 40μsec, a pulse repeti-

tion interval (PRI) of 70μsec, a maximum FM frequency deviation of ±2 MHz, and a sampling rate of 

4.92346 MHz.  The PRI was set low for convenience to reduce the total number of samples used in the 

processing; this ensures that the time necessary to run simulations is not unreasonably long. The sampling 

rate was chosen so the sampling interval was incommensurate with the PRI to ensure that the sampled 

pulses were not perfectly aligned. Monte Carlo simulations were performed to evaluate the standard de-

viation of the TDOA/FDOA estimation errors, where 400 runs were done for each evaluation.  The com-

pression ratios stated here exceed those given by the rough estimate given by  (9) because we did not con-

sider the effect of missing pulses and we used better coding methods than were assumed in the develop-

ment of  (9). 

The first set of simulation runs were performed to establish the baseline performance of the SVD-

based compression method without pulse elimination.  The results are shown in Figure 8 where the esti-

mation accuracy is assessed as a function of SNR (with SNR = DNR) both with and without SVD-based 

compression.  Surprisingly, even though the compression ratio is very high, the compressed signal actu-



 24

ally yields better TDOA/FDOA accuracy at the lower SNR values (and equivalent accuracy at the higher 

SNR values).  This is due to the fact that the SVD provides and inherent de-noising property; however, 

surprisingly the de-noising seems to have less effect on the FDOA accuracy – an effect we currently do 

not understand. 

 

 

Figure 8: Simulation results showing standard deviation of TDOA/FDOA estimation error for a 
simulated radar signal when compressed 89:1 using SVD-based compression of the full pulse ma-
trix (i.e., without pulse elimination); in each plot the SNRs of the two cross-correlated signals are 
set equal to each other as they are varied over a range.  For comparison, results are shown for the 
case of no compression. 

 

As we noted above, if pulses are eliminated according to the guidance of the Fisher information then 

we expect negligible degradation in the FDOA accuracy up to a point; however, we would expect the 

TDOA estimation error standard deviation to increase according to  (19).  Fortunately, the results in Figure 

8 indicate that, due to the de-noising, we have TDOA accuracy to “spare”; this, then is a perfect setting 

for applying pulse elimination.  To first see how many pulses can be eliminated we ran simulations at the 

point SNR = DNR = 10 dB and evaluated the error standard deviation after SVD compression with pulse 

elimination, as shown in Figure 9, where the standard deviation values are presented relative to the value 

achieved without compression.  For this case we see that we can eliminate half of the 80 pulses without 
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suffering degradation in the FDOA accuracy, but there is some degradation of the TDOA when half of the 

pulses are eliminated.  It should be noted that the shapes of the curves using “partial” compression 

roughly match the shapes predicted by  (16) and  (19). 

Finally, for the case of eliminating half of the 80 pulses, we present results in Figure 10 that show 

how the TDOA/FDOA accuracy varies with SNR.  Through elimination of half the pulses the compres-

sion ratio increases from 89:1 to 105:1 but the TDOA/FDOA accuracy is, remarkably, still roughly the 

same as when no compression is used. 

 

 

 

Figure 9: Simulation results showing the effect that discarding pulses has on the TDOA/FDOA 
estimation error standard deviation.  The term “partial comp” means that SVD compression was 
done on a partial pulse matrix, after pulse elimination. For comparision, results are shown for the 
case without compression and pulse elimination. 
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Figure 10: Simulation results showing standard deviation of TDOA/FDOA estimation error for a 
simulated radar signal when compressed using SVD-based compression.  The three curves compare 
the cases (i) without compression, (ii) full SVD-based compression (i.e., no pulse elimination) with 
compression ratio of 89:1, and (iii) SVD-based compression where half of the pulses are eliminated 
to give a compression ratio of 105:1. 
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