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ABSTRACT 

 
This paper derives the Cramer-Rao lower bound (CRLB) on 
estimates of the frequency of a coherent pulse-train pas-
sively intercepted at a moving antenna. Such estimates are 
used to locate the transmitting radar.  Although frequency 
estimation algorithms for pulse trains have been proposed, 
no results were previously available for the CRLB; thus, it 
has been impossible to assess the complete potential of loca-
tion.  The derived CRLB is compared to previously pub-
lished algorithm accuracy results. A general rule of thumb is 
found that the CRLB depends inversely on pulse on-time, 
number of pulses, variance of pulse times, and the product 
of signal-to-noise-ratio and sampling frequency; pulse shape 
and modulation have negligible impact on the result.  When 
K pulses are equally spaced by the pulse repetition interval 
(PRI), then the CRLB decreases as 1/PRI2 and as 1/K3. 
 

Index Terms— Source Location, Frequency Estima-
tion, Doppler Measurements 
 

1. INTRODUCTION 
 

Frequency-based passive location of a coherent, sta-
tionary radar with unknown frequency from a single moving 
platform has been investigated [1] – [5]. The approach is to 
estimate the Doppler-shifted frequency of an intercepted 
radar pulse train at a set of times and use them to estimate 
the emitter’s location.  Thus, to evaluate the location accu-
racy it is necessary to evaluate the accuracy of the frequency 
estimation. No results have been available for the Cramer-
Rao lower bound (CRLB); thus, it has been impossible to 
assess the complete potential of this location method.  The 
only accuracy results previously available were: simulation 
results in [7], experimentally obtained accuracy levels re-
ported by corporations developing actual systems [2], and 
an approximate accuracy analysis [6].  This paper derives 
the CRLB for estimating the frequency of a received coher-
ent pulse train and compares the bound to published accu-
racy results; this shows that the existing algorithm in [7] 
does not meet the CRLB and that the reported experimental 
accuracy [2] also does not meet the CRLB.   

Note that the CRLB for estimating Doppler with a 
matched filter in a radar processor is known (e.g., see [8]); 
in contrast, the result given here is for a passive system that 
can not exploit a matched filter. 
 

2. DERIVATION OF THE CRLB 
 

Many modern radars emit so-called coherent pulse 
trains where there is a single underlying sinusoid that is 
turned on and off by a multiplicative baseband pulse train 
[6], [7].  It is the coherency that can be exploited to yield 
frequency estimates accurate enough for use in locating the 
emitter [7].  A complex-valued coherent pulse train consist-
ing of K pulses received from an emitter can be modeled by 
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where  is a single  pulse (possibly complex), ( )p t ω  is the 
Doppler-shifted frequency,φ  is a phase offset, and the  
are called the pulse times.  Without loss of generality we 
can model the complex p(t) as  
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no constant phase is included because it is consumed within 
φ  in (1).  Using (2) in (1) gives  

 
1

[( ) ( )] ( )

0

( ) ( )p p pk

K
kj t jj t T

k
k

r t e A t T e eω ω φ φ ωφ
−

+ + + −−

=

= −∑ T , (3) 

from which we see that in order for (3) to reduce to (1) with 
a shifted pulse inside the summation, albeit with ω in (1) 
replaced by ω+ωp, we need that 2 /p k kl Tω π=  for all k 
where each lk is an integer.  We take as our fundamental 
definition of a coherent pulse train the forms in (1) and (2) 
together with this constraint on ωp.  So in other words, the 
definition of coherence places a strict constraint on the fre-
quency offset ωp of the pulse p(t).  In practice, the pulse p(t) 
is generated as a baseband pulse and therefore assuming that 

0pω = is generally valid and we assume that here; this is 
consistent with Class III in [6] and describes modern pulse 
Doppler radars.  These conditions ensure the decomposition 



in (1) is unique and yields a well-posed frequency estima-
tion problem for the parameter ω in (1). 

Let be the total pulse “on-time” with p(t) time-
limited to  with .  The received signal 
is corrupted by noise and sampled at interval  to result in 
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where w[n] is complex zero-mean white Gaussian noise 
with variance 2σ .   From the signal data x[n] we wish to 
estimate [ ]0 1 1KT T Tω φ −=θ , but the key pa-
rameter to be estimated is ω , with the others as nuisance 
parameters.  Note that pulse p(t) is generally unknown; 
however, the CRLB will, in general, depend on the form of 
p(t) so numerical results for the CRLB might depend on the 
specific pulse p(t) assumed to have been intercepted. 

The elements of the Fisher Information Matrix (FIM), 
, for this case can be found using J [9]
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where .  For later use, de-
fine: 
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Then the FIM is found to be 
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where the 2×2 matrix A is given by 
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and the 2×K matrix C is given by 
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Using results for inverting symmetric partitioned matrices 
yields the 2×2 CRLB matrix for frequency and phase as 
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and then finding the 1,1-element of this 2×2 inverse gives 
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the units for and 2R 2DΔ are sec2.  Note that D  is a “mean-
normalized” measure of the pulse duration and is a 
“mean-normalized” measure of the time spread of the pulse 
times. These mean-normalized measures ensure that the 
choice of time origin has no effect on the CRLB for the 
Doppler estimate.  The Sm quantities defined previously are 
replaced here by alternatives that now include the effect of 
the so-called skew measures given by C0 and C1. 

2R

The CRLBω above depends on C0, which is evaluated 
here using an integral approximation given by 
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Clearly, C0 is zero if p(t) is real; that is if the pulse has no 
phase/frequency modulation on it.  But C0 is zero or at least 
small in most if not all other cases.  Converting from (2) 
with 0pω = gives 
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where A(t) is the real-valued envelope function and φ(t) is 
the real-valued phase function gives 
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which after some manipulation gives 
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ω  is the instantaneous frequency.   where 
Thus, for any pulse for which the instantaneous fre-

quency varies symmetrically around zero then (19) implies 
that C0 will be zero if A(t) is symmetric around its time cen-



ter; this includes typical linear FM pulses.  Although it is 
difficult to make a wide-sweeping general conclusion here, 
it is also likely that most if not all typical phase modulations 
will give a small value of C0 because the pulse’s instantane-
ous frequency typically varies uniformly (at least approxi-
mately) above and below zero.  Also, it should be noted that 
the effect of any non-zero value of C0 will be deemphasized 
through the division in .  Thus, the parame-
ter C0 has little effect and the CRLB on Doppler-shifted 
frequency can be approximated as 
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where NΔ = TOT (the pulse on-time) and Fs = 1/Δ.  
 
 

3. DISCUSSION 
 

Notice that the CRLB result in (20) depends inversely 
on .  Thus, doubling TOT halves the CRLB.  It 
may also appear that doubling the sampling rate Fs will also 
halve the CRLB but this is likely not true.  Increasing Fs 
would require either (i) a commensurate increase in front-
end bandwidth to maintain whiteness for w[n], which will 
increase the noise power but not increase the signal power, 
or (ii) would correlate the noise samples and invalidate the 
result, which was derived under white noise conditions.  
The decreased SNR perfectly counters the increased Fs so 
that the product 

2 OT sT SNR F

sSNR F remains the same.  In case (i), 
changes in Fs will cause changes in Δ2D (and other similar 
terms) but those changes will be small for all Fs above the 
Nyquist rate.   

The CRLB in (20) depends on the factor , which is a 
measure of the temporal spread of the pulse times, and the 
factor , which is a measure of the temporal spread of 
the pulse; both are in units of sec2.  More widely spaced 
pulses increases  which adds to  to decrease the 
CRLB.  Because  is a measure of pulse duration and 

 is a measure of pulse train duration,  will be much 
larger than  and that leads to the following approxima-
tion: 
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This shows that in addition to the negligible effect of C0 as 
discussed above, the approximation in (21) shows that C1 
also has negligible impact. Thus, the skew factors C0 and C1 
have negligible impact on the CRLB for frequency. 

As a general rule of thumb the CRLB depends inversely 
on: (i) the pulse on-time TOT, (ii) the number of pulses K, 
(iii) the variance of pulse times , and (iv) the product 
SNR×Fs; the pulse shape and pulse modulation seem to have 

little or no impact on the frequency accuracy.  As a special 
case consider the scenario where the intercepted pulses are 
equally spaced by TPRI, the pulse repetition interval (PRI), 
then it is easily shown that and the ap-
proximation in 
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from which we see that the frequency CRLB varies as 
2(1 / )PRIO T and as .  Thus, for all other parameters 

fixed, doubling the number of equally spaced pulses de-
creases the CRLB by 1/8th, whereas doubling the pulse on-
time only decreases the CRLB by ½.  

3(1 / )O K

Numerically computing the CRLB for typical values of 
pulse train parameters shows that it is possible to achieve 
frequency accuracy much lower than 1 Hz (1 Hz is the accu-
racy that is claimed experimentally in [2] and the accuracy 
for the simulation results in [7] are on the order of a few 
Hz).  Thus, it is clear that the existing algorithms, while 
achieving quite good accuracies, are still far from achieving 
the CRLB.  For comparison, Table 1 presents some simula-
tion accuracy results published in [7] side-by-side with the 
corresponding coherent CRLB results computed using (22).  
Note that the results in [7] were given for the case of stag-
gered PRI values within each pulse train (but each PRI ap-
proximately 1 ms); however, the computed results given in 
Table 1 were computed without the stagger for conven-
ience; the stagger was slight and would not significantly 
change the computed CRLB values.  The computed CRLB 
values are much smaller than the reported simulation accu-
racies. Also note that the discrepancy between simulation 
results and CRLB are worse at higher SNR; the algorithm’s 
variance does not drop inversely with SNR as the CRLB 
result does (note that classic CRLB results for frequency 
estimation of a sinusoid also exhibit this inverse SNR de-
pendence).  

Table 1: Comparison to simulation results for rectangu-
lar pulses of width 1 µs with PRI of approximately 1 ms, 
and Fs = 100 MHz. 

K 
 

SNR
(dB)

/ 2CRLBω π  
(Hz) 

fσ in [7]
(Hz) 

23 0.36 2.3 4 
37 0.07 1.5 
23 0.25 2.1 5 
37 0.05 1.1 
23 0.19 1.7 6 
37 0.04 1.0 

 
Note that in (9), the lower-right corner shows that the 

Fisher information for the pulse times depends on B – a 
measure of pulse bandwidth that shows up in time-of-arrival 



estimation analyses [9]; pulses with large bandwidth admit 
more accurate estimation of time-of-arrival.  It would seem 
that the accuracy with which one can estimate the pulse 
times should have a significant impact on the accuracy to 
which one can estimate the frequency of a coherent pulse 
train.  Thus, it comes as unexpected that the parameter B 
that impacts the accuracy of the pulse time estimates does 
not show up in the CRLB for frequency in (21); recall, 
however, that it does show up (see (13) - (15)) but its negli-
gible effect was shown to lead to (21).   

However, the frequency estimate and the pulse time es-
timates are correlated.  The full CRLB matrix is 
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where 2×2 matrix ,ω φCRLB  is as defined in (12) and  the 

K×K matrix  is found below.  Using a 
standard result for the inverse of partitioned symmetric ma-
trix we get that  
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which then gives the cross-CRLB term between ω and Tk as 
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where we have used C0 = 0.   
Thus, there is correlation between the frequency esti-

mate and the pulse time estimates; but notice that the corre-
lation becomes closer to zero as B increases.   However, as 
B changes, the CRLB result for frequency in (21) shows no 
(or at least very little) change.  Such a situation is shown in 
the illustrative (i.e., not numerically computed for this case) 
results in Figure 1, which shows three error ellipses that 
change tilt due to changes in correlation while maintaining 
the same individual CRLB on ω (i.e., projection onto the ω 
axis – see [5] for more on projections of error ellipses).   

In summary, we’ve shown that for a coherent pulse 
train the CRLB on the variance of the frequency estimate:  

• varies inversely with pulse on-time 
• does not depend on pulse shape or modulation  
• varies inversely with “variance” of pulse times me-

asured by  2R
• varies inversely with SNR 
• varies as 2(1 / )PRIO T and as  for equally-

spaced pulses 
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Figure 1: Illustrative error ellispses showing changing 
correlation between ω and Tk but constant CRLB on ω. 
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