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ABSTRACT 
 

The location of an emitter is estimated by intercepting its signal and sharing the data among several platforms to measure 
the time-difference-of-arrival (TDOA) and the frequency-difference-of-arrival (FDOA).  Doing this in a timely fashion 
requires effective data compression.   

A common compression approach is to use a rate-distortion criterion where distortion is taken to be the mean-square 
error (MSE) between the original and compressed versions of the signal.  However, in this paper we show that this MSE-only 
approach is inappropriate for TDOA/FDOA estimation and then define a more appropriate, non-MSE distortion measure.  
This measure is based on the fact that in addition to the dependence on MSE, the TDOA accuracy also depends inversely on 
the signal’s RMS (or Gabor) bandwidth and the FDOA accuracy also depends inversely on the signal’s RMS (or Gabor) 
duration.  We discuss how the wavelet transform is a natural choice to exploit this non-MSE criterion.  These ideas are shown 
to be natural generalizations of our previously presented results showing how to determine the correct balance between 
quantization and decimation. 

We develop a MSE-based wavelet method and then incorporate the non-MSE error criterion.  Simulations show the 
wavelet method provides significant compression ratios with negligible accuracy reduction.  We also make comparisons to 
methods that don’t exploit time-frequency structure and see that the wavelet methods far out-perform them. 

 
Keywords: data compression, emitter location, time-difference-of-arrival (TDOA), frequency-difference-of-arrival (FDOA),  
wavelet transform, RMS bandwidth, Gabor bandwidth 
 

1. INTRODUCTION 
A common way to locate electromagnetic emitters is to measure the time-difference-of-arrival (TDOA) and the 

frequency-difference-of-arrival (FDOA) between pairs of signals received at geographically separated sites1,2,3.  The 
measurement of TDOA/FDOA between these signals is done by coherently cross-correlating the signal pairs,2,3 and  requires 
that the signal samples of the two signals are available at a common site, which is generally accomplished by transferring the 
signal samples over a data link from one site to the other.  An important aspect of this that is not widely addressed in the 
literature is that often the available data link rate is insufficient to accomplish the transfer within the time requirement unless 
some form of lossy data compression is employed.  For the case of white Gaussian signals and noises, Matthiesen and Miller4 
established bounds on the rate-distortion performance for the TDOA problem and compared them to the performance 
achievable using scalar quantizers, where distortion is measured in terms of lost SNR due to the mean square error (MSE) of 
lossy compression. However, these results are not applicable when locating radar and communication emitters because the 
signals encountered are not Gaussian.  A method using block adaptive scalar quantization was proposed5 and analyzed6 to 
show that it was marginally effective for various signal types.  Wavelet-based methods have been proposed7 and 
demonstrated8 to give compression ratios on the order of 4 to 7 for some radar signals.  A method that optimally trades 
between decimation and quantization has been developed for flat spectrum signals and shown to perform better than either 
method alone.9  Some preliminary results10 have shown the potential for fusing together the ideas of joint decimation-
quantization and wavelet-based methods; here we improve those results and show that they give a feasible means to improve 
the performance of wavelet-based compression methods. 

The two signals to be correlated are the complex envelopes of the received RF signals. The two noisy received signals to 
be processed are notated as 
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where s(k) and d(k) are the complex baseband signals of interest and n(k) and v(k) are complex white Gaussian noises.  The 
signal d(k) is a delayed and doppler shifted version of s(k).  The signal-to-noise ratios (SNR) for these two signals are 
denoted SNR and DNR, respectively‡.  To cross correlate these two signals one of them (assumed to be  here) is 
compressed, transferred to the other platform, and then decompressed before cross-correlation, as shown in  
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Figure 1.   
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Figure 1: System Configuration for Compression 

 
Signal  has SNR of  after lossy compression/decompression, and the output SNR after cross-

correlation is given by 
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where WT is the time-bandwidth product (or coherent processing gain), with W  being the noise bandwidth of the receiver 
and T  being the duration of the received signal and is a so-called effective SNReffSNR 3.  From (2) it is clear that the 
correlator’s output SNR is set by the lower of SNRc and DNR: when one is smaller than the other we have  
 

},min{ DNRSNRWTSNR co ×≈ . 
 

The accuracies of the TDOA/FDOA  estimates are governed by the Cramer-Rao bound (CRB) for TDOA/FDOA given 
by3 
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where  is the signal’s RMS (or Gabor) bandwidth in Hz given by Brms

                                                           
‡ SNR (non-italic) represents an acronym for signal-to-noise ratio; SNR (italic) represents the SNR for . )(ˆ ks
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with being the Fourier transform of the signal and is the signal’s RMS duration in seconds given by )( fS )(ks rmsD
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The denominators in (4) and (5) can be considered as normalizing factors on | and | , respectively, so that these 
equations have the form identical to the equation for variance; thus, the root-mean-squared (RMS) terminology. 

2|)( fS 2|)(ts

 
2. NON-MSE DISTORTION CRITERIA 

To ensure maximum performance it is necessary to employ a compression method that is designed specifically for this 
application.  However, much of the past effort in developing general lossy compression methods has focused on minimizing 
the MSE due to compression; furthermore, even compression schemes specifically developed for TDOA/FDOA applications 
have also limited their focus to minimizing the MSE4,5,6,7.  But when the goal is to estimate TDOA/FDOA, the minimum 
MSE criterion is likely to fall short because it fails to exploit how the signal’s structure impacts the parameter estimates.  In 
such applications it is crucial that the compression methods minimize the impact on the TDOA/FDOA estimation 
performance rather than stressing minimization of MSE as is common in many compression techniques.  Achieving 
significant compression gains for the emitter location problem requires exploitation of how signal characteristics impact the 
TDOA/FDOA accuracy.  For example, the CRBs in (3) show that the TDOA accuracy depends on the signal’s RMS 
bandwidth and that the FDOA accuracy depends on the signal’s RMS duration.  Thus, compression techniques that can 
significantly reduce the amount of data while negligibly impacting the signal’s RMS widths have potential.  We have shown9 
that it is possible to exploit this idea for TDOA-only estimation through simple filtering and decimation together with 
quantization to meet requirements on data transfer time that can’t be met through quantization-only approaches designed to 
minimize MSE.  These results provide the motivation for the method proposed here. 

Looking at the expressions for TDOA/FDOA accuracies it is clear that we should take as measures to maximize for a 
given desired rate the following weighted “RMS-distortion” SNRs: 
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So the general goal is the following, expressed as transform coding11,12 with a non-MSE distortion.  Given some signal 
decomposition  
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of the signal to be compressed, we wish to select which coefficients should be coded and transmitted to achieve a desired 
rate-distortion goal where distortion is measured using (6) and (7).  For example, we may wish to find a subset Ω of indices 
such that the signal given by  
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maximizes (6) and (7) while the set { can be coded using rate R.  In general this selection process is quite difficult 
because of (i) the nonlinear, nonmonotonic relationship between the coefficients and the RMS widths, and (ii) the fact that 
removing a coefficient from Ω effects both the RMS widths and SNR

}| Ω∈ncn

o.  Furthermore, the simultaneous maximization of  (6) 
and (7) can be difficult, especially given that there may be a different acceptable level of degradation on TDOA than there is 
on FDOA; this issue is not considered here. 

Before discussing the application of the wavelet transform to this problem we first relate this general viewpoint to the 
simple method reported previously9 for balancing the effect of decimation and quantization for the TDOA-only case.  This 
method is based on a simple form of two-band subband coding11, which can be thought of as a form of transform coding, that 
completely discards the upper band.  The structure of the method is shown in Figure 2 where the received signal is shown to 
be sampled with an analog-to-digital converter (ADC) and then applied to a lowpass filter (LPF) that reduces the signal’s 
bandwidth by a factor of M to Wf Hz, after which the signal can be decimated by a factor of M.  Finally the signal is quantized 
to b bits, which is a coarser level than was done by the ADC.  Both the decimation and the quantization act to reduce the rate 
and the optimal trade-off between them was determined for a flat-spectrum signal; the flat-spectrum assumption simplified 
the problem by making SNReff  in (6) independent of the filtering/decimation operation.  Thus, the correlator output SNR can 
be written in the separable form 
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Likewise, the effect on the flat-spectrum signal’s RMS bandwidth depends only on the filtering and is given by 
 

222 )2/8.1( frms WB π=                                                                              (11) 
Assuming that the signal duration T is a fixed system parameter, maximizing (6) for this case is equivalent to maximizing 

, which can be maximized under a rate constraint.)(3 bSNRW efff
9  Under this maximization it was shown that the joint 

decimation/quantization scheme outperformed quantization-only and decimation-only methods, demonstrating the usefulness 
of the RMS width approach.  This result motivates our search for a more general way to exploit the RMS width ideas; for this 
we turn to the wavelet transform. 
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Figure 2: Compression via Combined Decimation and Quantization 

 
 

3. WAVELET TRANSFORM METHODS 
The wavelet transform has been found to be very useful for signal and image compression in general11,12.  It is an 

extension of the Fourier transform in the sense that it provides a decomposition of a signal in terms of a set of component 
signals, as in (8).  However, the wavelet transform decomposes a signal into a weighted sum of component signals that are 
localized in time as well as in frequency; this allows them to provide a more efficient representation of signals with time 
varying spectra.  Accordingly, each wavelet coefficient conveys how much of the signal’s energy is in a specific time-
frequency cell.  A simple example of such cells are shown in Figure 3.  The rectangles in Figure 3 represent where each of 
the wavelet coefficients is positioned in the time-frequency plane.  A particular characteristic of the wavelet transform is that 
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it yields broad frequency resolution and narrow time resolution at high frequencies while giving narrow frequency resolution 
and broad time resolution at low frequencies. Thus, the highest frequency wavelet coefficients contain information about the 
content of the signal in the upper half of the signal’s bandwidth; the lowest frequency wavelet coefficients contain 
information about the content of the signal over its entire duration.  We first review a recently proposed method7,8 for using 
the wavelet transform for the MSE-based compression for emitter location, and then show how to modify it to exploit the 
RMS width ideas discussed above; we will consider only the exploitation of the RMS bandwidth idea. 
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Figure 3: Wavelet Time-Frequency Cells 

 
 
1. MSE-Based Wavelet Method 

Wavelet-based compression based on a MSE criterion exploits the fact that a signal may be concentrated in the time-
frequency plane.  Signals typically have their energy concentrated in specific areas of the time-frequency plane, while large 
regions of the time-frequency plane may contain only very little or none of the signal’s energy.  A small number of bits is 
then spent encoding these small energy time-frequency regions, while a large number of bits is spent encoding the regions 
that exhibit large energy concentrations.  

The MSE-based wavelet transform compression algorithm7 consists of breaking the signal into blocks of 
samples, applying an L-level wavelet transform to each block for L<p (i.e., stopping the cascade of wavelet 

transform filter bank stages at the level where the filter outputs have  elements

pN 2=
L

B NN 2/= 12), grouping the resulting N 

wavelet coefficients into LK 2=  subblocks of  samples each, and adaptively quantizing each of these subblocks.  
For the complex baseband signals used here, this procedure is applied independently to the real and the imaginary 
components.   

Lp
BN −= 2

The subblocks of the wavelet coefficients are formed within wavelet scale levels as follows: the N/2 wavelet transform 
coefficients from the first filter bank stage are grouped into 2  subblocks of coefficients each, the N/4 wavelet 
transform coefficients from the second filter bank stage are grouped into  subblocks of coefficients each, . . ., and 
finally the  wavelet transform coefficients from the last filter bank stage form a single subblock, and the   scaling 
coefficients from the last stage also form a single subblock.  

1−L Lp−2
22 −L Lp−2

Lp−2 Lp−2
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Each one of these subblocks is quantized with a quantizer designed to achieve the desired level of quantization noise.  
The choice of these quantizers is made easy by the fact that the wavelet transform preserves energy; this property can be used 
to show that the proper choice of the quantizer cell width is given by 
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where SQR is the desired signal-to-quantization noise ratio and  is the power of the input signal   (in this case, either  
the real or imaginary part of ).  Thus, to obtain a desired SQR, the quantizers  {  should each have a 
quantization step size given by ∆. Then the number of bits   used by the k

Px x(n)
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kB th quantizer is chosen to assure that the resulting 
quantizer covers the range of the kth subblock.  This leads to the rule  
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where the maximum is taken over the wavelet coefficients in the kth block and the operator   means “the smallest 
integer not less than 0 that is larger than ;” this means that when the expression in parentheses in the equation for  is 
negative we set  . 

)(0 a
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In addition to sending the quantized wavelet coefficients, this scheme requires sending side information to the receiver 

about the number of bits used for each quantizer as well as the step size used.  If the maximum number of bits used by any of 
the subblocks is , then the allowable quantizers are those that use between 0 and   bits, for a total of   
different quantizers; the number of bits required to specify which of these is used for a specific subblock is    
bits.  Since this must be done for each of the K subblocks, we require   bits of side information; side 
information on the quantizer step size also must be sent, which will be no more than the number of bits to which the original 
signal is quantized (we have assumed 8 bits here).  So the total amount of side information is 

maxB maxB
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Simulations have shown that it is possible to limit  to 7 bits. maxB

In this approach, the wavelet transform is used together with bit allocation to provide a means of reducing the number of 
bits per (real or imaginary) sample with negligible degradation of the TDOA/FDOA accuracy.  This scheme accepts a 
specific desired signal-to-quantization ratio (SQR) and strives to minimize the number of bits needed to achieve that SQR 
value.  In practice, the desired SQR can be set either (i) to be roughly equal to the estimated SNR of the signal to ensure that 
the impact of the compression on the TDOA/FDOA accuracy is negligible, or (ii) to some fixed a priori value.   

The compression is achieved by assigning small numbers of bits to time-frequency regions where the signal has 
negligible energy as measured by the wavelet coefficients.  Because signals that occur in practice have spectra that decay as 
frequency increases, the high frequencies tend to be allocated few bits – in fact, it is likely that the highest frequencies in a 
signal will have zero bits allocated to them.  However, this contradicts the RMS bandwidth based distortion measure in (6), 
where it was seen that the highest frequencies contribute highly to the RMS bandwidth because of the  weighting in (4).  
Conversely, the low frequency coefficients will be allocated a large number of bits even though they are less important from 
an RMS bandwidth viewpoint, again due to the  weighting in (4).  Thus, we seek a way to emphasize the higher 
frequencies and de-emphasize the lower frequencies. 

2f
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2. RMS-Based Wavelet Method 

Consider two cases:  and .  For each of these cases we will examine how to select wavelet 
coefficients in order to maximize the RMS-width-based  measures of (6) and (7). 

DNRSNR > DNRSNR <

If   , then  is independent of SNR at least as long as SNR remains significantly greater 
than DNR.  Then the process of retaining only those coefficients in some set Ω will not effect the value of SNR as long as the 
selection of Ω doesn’t reduce SNR below DNR.  Similarly, assume that the quantization of the retained coefficients does not 
further reduce SNR such that it is below DNR.  Then in (6) and (7) we need only focus on  and and therefore we 

DNRSNR > DNRWTSNRo ×≈

2
rmsB 2

rmsD
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would want to compress the signal in such a way that  and  are left unaffected.  Doing this is an open issue at this 
time. 
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so that 
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and  
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Thus if  we only have to consider the square-weighted spectrum and the square-weighted signal, each 

weighted by the noise power, as our RMS-distortion measures.  In the rest of the paper we consider only the  
case and use only (16) as a guide for modifying the wavelet-based method given above to include the effect of RMS 
bandwidth.  Now the goal is to retain some subset Ω of wavelet coefficients and subsequently quantize them according to 
some allocation of the bits budgeted so as to maximize the last line (16). 

DNRSNR <
DNRSNR <

These considerations lead to the following (suboptimal) algorithm.  The first step of the algorithm is to remove wavelet 
coefficients that correspond to components that have little impact on the numerator of (16).  This is done by weighting the 
squared wavelet coefficients by the square of their equivalent frequency, which is taken as the center frequency of the time-
frequency cell corresponding to the coefficient.  From Figure 3 it can be seen that these frequencies are (in descending order) 
0.75Fs×2−1, 0.75Fs×2−2, 0.75Fs×2−3, 0.75Fs×2−4, ….  Thus, we can eliminate the common factor of 0.75Fs and just use the 
negative powers of two as our weights.  The weighted  coefficients are grouped into blocks of eight in the same way as in the 
MSE-based WT method and groups whose largest magnitude weighted coefficient fall below a user specified threshold are 
set to zero.  This eliminates coefficients that are insignificant on the basis of RMS bandwidth.  Then bits are allocated to the 
remaining groups on the basis of the unweighted coefficients, as was done for the MSE-based WT method; this step attempts 
to minimize the increase in the denominator of (16) due to the quantization. 
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4. SIMULATION RESULTS 
Although this method is general and applicable to all varieties of signals we focus here on radar signals.  Two different 

linear FM (LFM) radar signals were used to illustrate the operation of the method and compare its performance to the MSE-
based WT method.   Signal #1 has a pulse width of PW = 40 µsec with an LFM frequency deviation of ∆f =2 MHz; Signal #2 
has a pulse width of  PW = 5 µsec with an LFM frequency deviation of ∆f =1 MHz.  The pulse repetition interval (PRI) is not 
relevant since it is assumed that the radar signals have been gated prior to the compression processing.  The compressing 
platform detects the individual pulses of the emitter of interest, gates around them, and keeps only the signal samples that lie 
inside the pulse gates; the numbers of samples removed between the pulses are also kept as side information; this process is 
called pulse gating and is a form of compression itself.  Figure 4 shows the spectra of the two simulated signals; notice that 
Signal #2 has a spectrum that falls off more rapidly.  In all cases the SNR of the signal not compressed was set at DNR = 40 
dB.  The SNR of the compressed signal was varied over the range 10 dB to 40 dB. 

Each signal was processed by the MSE-based and RMS-based WT methods and were compared to the case where no 
compression is performed.  A previously proposed5 post-compression correction method was used.  The TDOA/FDOA 
standard deviations were measured using 200 Monte Carlo runs at each SNR value.  The compression ratios were measured 
by averaging over the values obtained over the Monte Carlo runs, and include the necessary side information.  For Signal #1 
both compression methods achieved TDOA/FDOA accuracies that were very close to that achieved without compression and 
very close to each other, but – as expected – the RMS-based method achieved a higher compression ratio.  For Signal #2 both 
compression methods achieve higher compression ratios but have more difficulty achieving the no-compression accuracy at 
low SNR values.  The higher compression ratio arises because of this signal’s decaying spectrum.  None the less, the RMS-
based method still achieves an improvement in compression ratio.  It should be noticed that the RMS-based method performs 
better on TDOA accuracy than does the MSE-based method; for FDOA accuracy the case is reversed – the MSE method does 
better than the RMS method.  However, due to the fact that the geolocation accuracy’s sensitivity to TDOA and FDOA 
accuracies is not a straightforward relation, it is difficult to tell which of these scenarios is better without knowing the 
geometry of the platforms and the emitter; it is likely thought that their geolocation accuracy would be similar in many 
scenarios. 
 
 
 

-2 -1 0 1 2
-50

-40

-30

-20

-10

0

Frequency (MHz)

Signal #1

N
or

m
al

iz
ed

 |S
(f)

|2   
(d

B
)

-2 -1 0 1 2
-50

-40

-30

-20

-10

0

Frequency (MHz)

N
or

m
al

iz
ed

 |S
(f)

|2   
(d

B
)

S ignal #2

 
Figure 4: Fourier Transform of Signals 
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Figure 5: Simulation results for MSE vs. RMS methods for two radar signals; DNR = 40 dB. 

 
 
 

5. CONCLUSIONS 
The results presented here give another indication of the compression performance improvement available from RMS 

width methods for multiplatform emitter location applications., and give a practical way to exploit the RMS width idea – 
albeit a suboptimal method.  The key points made here is the importance of using the appropriate distortion measure, chosen 
specifically for this application.  By considering the form of the equations for  TDOA/FDOA accuracies it is possible to 
derive new distortion measures that incorporate both the standard MSE measures and RMS durations/bandwidth measures.  
Although the resulting measures are found to be difficult to optimize we showed that it is possible to use them as a guide to 
develop suboptimal WT-based methods that none-the-less outperform the MSE-based WT methods.  The improvements were 
demonstrated using two radar signals – one having a fairly flat spectrum and one that falls off more quickly.  The ability to 
handle non-flat spectra shows that this method is more applicable than the previously reported9 method of joint quantization 
and decimation.  (It should be mentioned, though, that the joint quantization/decimation method is not prohibited from 
operating on non-flat spectra, it is simply that results describing the optimal trade-off between quantization and decimation 
are not currently known for other spectral shapes.) 
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One of the key results put forth here is that the proposed distortion measures given in (6) and (7) can be reduced to 
simpler forms under the conditions that either  or .  In the first case we showed that the 
compression can be done solely to maintain the RMS widths and that the impact on SNR can be ignored.  In the second case 
we showed that the quantity that must be addressed is the squared-frequency-weighted spectrum as shown in (16).  In each of 
these cases these results make it easier to attack the optimization of the new distortion measures.  Future work will address 
this optimization. 

DNRSNR > DNRSNR <
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