
Conference on Mathematics and Applications of Data/Image Coding, Compression, and Encryption III 
SPIE’s International Symposium on Optical Science and Technology, San Diego, CA, July 30 – August 4, 2000 
 

56

Decimation vs. quantization for data compression  
in TDOA systems 

 
Mark L. Fowler† 

 
Department of Electrical Engineering 

State University of New York at Binghamton 
 
 

ABSTRACT 
 

The location of an electromagnetic emitter is commonly estimated by intercepting its signal and then sharing the data 
among several platforms. Doing this in a timely fashion requires effective data compression.  Previous data compression 
efforts have focused on minimizing the mean-square error (MSE) due to compression. However, this criterion is likely to fall 
short because it fails to exploit how the signal's structure impacts the parameter estimates. Because TDOA accuracy depends 
on the signal's RMS bandwidth, compression techniques that can significantly reduce the amount of data while negligibly 
impacting the RMS bandwidth have great potential. We show that it is possible to exploit this idea by balancing the impacts 
of simple filtering/decimation and quantization and derive a criterion that determines an optimal balance between the amount 
of decimation and the level of quantization. This criterion is then used to show that by using a combination of decimation and 
quantization it is possible to meet requirements on data transfer time that can't be met through quantization alone. 
Furthermore, when quantization-alone approaches can meet the data transfer time requirement, we demonstrate that the 
decimation/quantization approach can lead to better TDOA accuracies.  Rate-distortion curves are plotted to show the 
effectiveness of the approach. 
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1. INTRODUCTION 
An effective way to locate electromagnetic emitters is to measure the time-difference-of-arrival (TDOA) between pairs 

of signals received at geographically separated sites1,2,3.  The measurement of TDOA between these signals is done by 
coherently cross-correlating the signal pairs,2,3 and  requires that the signal samples of the two signals are available at a 
common site, which is generally accomplished by transferring the signal samples over a data link from one site to the other 
site.  An important aspect of this that is not widely addressed in the literature is that often the available data link rate is 
insufficient to accomplish the transfer within the time requirement unless some form of lossy data compression is employed.  
For the case of Gaussian signals and noises, Matthiesen and Miller4 established bounds on the rate-distortion performance for 
the TDOA problem and compared them to the performance achievable using scalar quantizers, where distortion is measured 
in terms of lost SNR due to the mean square error (MSE) of lossy compression. However, these results are not applicable 
when locating radar and communication emitters because the signals encountered are not Gaussian.   

 
The two signals to be correlated are the complex envelopes of the received RF signals having RF bandwidth B.  The 

complex envelopes can then be sampled at  complex-valued samples per second; for simplicity here we will assume 
critical sampling, for which .  The signal samples are assumed to be quantized using 2b bits per complex sample (b 
bits for the real part, b bits for the imaginary part), where b is large enough to ensure fine quantization.  The two noisy signals 
to be correlated are notated as 

BFs ≥
BFs =

 

                                                           
† Correspondence: mfowler@binghamton.edu 
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where s(k) and d(k) are the complex baseband signals of interest and n(k) and v(k) are complex white Gaussian noises, each 
with real and imaginary parts notated as indicated.  The signal d(k) is a delayed version of s(k).  The signal-to-noise ratios 
(SNR) for these two signals are denoted SNR and DNR, respectively‡.   
 

To cross correlate these two signals one of them (assumed to be  here) is compressed, transferred to the other site, 
and then decompressed before cross-correlation, as shown in Figure 1.  Signal  has SNR of  after lossy 
compression/decompression

)(ˆ ks

)(ˆ ks SNRSNRq <
5, and the output SNR after cross-correlation is given by 
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where WT is the time-bandwidth product (or coherent processing gain), with W being the noise bandwidth of the receiver and 
T being the duration of the received signal and is a so-called effective SNReffSNR 3.  The accuracies of the TDOA estimates 
are governed by the Cramer-Rao bound (CRB) for TDOA given by3 

 

,
SNR B  2

1  
orms

TDOA π
≥σ                                                                            (3) 

 
where  is the signal’s RMS (or Gabor) bandwidth in Hz given by Brms
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Figure 1: System  Configuration for Compression 

                                                           
‡ SNR (non-italic) represents an acronym for signal-to-noise ratio; SNR (italic) represents the SNR for . )(ˆ ks
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2. NON-MSE DISTORTION CRITERIA 

To ensure maximum performance it is necessary to employ a compression method that is designed specifically for this 
application.  However, much of the past effort in developing general lossy compression methods has focused on minimizing 
the MSE due to compression; furthermore, even compression schemes developed for TDOA applications have also limited 
their focus to minimizing the MSE4,5,6.  But when the goal is to estimate TDOA, the minimum MSE criterion is likely to fall 
short because it fails to exploit how the signal’s structure impacts the parameter estimates.  In such applications it is crucial 
that the compression methods minimize the impact on the TDOA estimation performance rather than stressing minimization 
of MSE as is common in many compression techniques.  Achieving significant compression gains for the emitter location 
problem requires exploitation of how signal characteristics impact the TDOA accuracy.  For example, the CRB in (3) shows 
that the TDOA accuracy depends on the signal’s RMS bandwidth.  Thus, compression techniques that can significantly 
reduce the amount of data while negligibly impacting the signal’s RMS bandwidth have great potential.  We show here that it 
is possible to exploit this idea through simple filtering and decimation together with quantization to meet requirements on 
data transfer time that can’t be met through quantization-only approaches designed to minimize MSE.  These results are 
encouraging because it is expected that non-MSE approaches more advanced than simple filtering and decimation will enable 
even larger improvements in performance.   

 
It is desired to minimize TDOAσ  while adhering to a fixed data link rate constraint.  One method for meeting the data rate 

constraint is to further quantize the digital samples to a small number of bits such that the data rate constraint is met5.  This 
coarse quantization process reduces the SNR of the signal sent over the data link and can impact the performance of the 
cross-correlation when the number of bits per sample is made so small that the quantization noise power is comparable to the 
receiver noise power.  Another method for meeting the data rate constraint would retain the full number of bits/sample, but 
would filter and decimate the signal to reduce the samples/second that are required to be sent over the data link.  However, 
reducing the bandwidth of the signal also reduces the performance because the TDOA accuracy depends inversely on the 
signal’s RMS bandwidth.   As a third alternative, it is possible to operate somewhere between these two extremes by 
simultaneously quantizing and decimating, presumably doing each to a lesser degree than would be done in either of the two 
methods mentioned above.  Thus, the goal here is to determine the proper trade off between quantization and decimation. 

 
If we consider that the signals are collected for T seconds, then the total number of bits collected is 2 .  System 

requirements often specify a fixed length of time for the data transmission.  Thus, if the transfer is constrained to occur within 
 seconds and the data link can transfer bits at the rate  bits/second then the total number of bits collected is constrained 

to satisfy .  Equivalently, if we define  as a fixed effective rate and assume equality in the 
constraint (i.e., fully utilize the allocated data link resources) we get 

bBT

lT lR
R =llTRbBT ≤2 TTR ll /

 
.2BbR =                                                                            (4) 

  
This requirement may be achieved in various ways by selecting appropriate values of  B  and b , where different values of 
B  would be obtained by filtering and decimating to a lower sample rate, and different values of b would be obtained through 
coarse quantization.  Equation (4) links the values of B , , andb R  through the data link constraint C specifying any two 
specifies the other.  A subtle aspect of this relationship is that strict application of Equation (4) implies that bandwidth B  is 
allowed to  increase without bound as b  decreases; however, the signal itself imposes an upper bound on this bandwidth, 
which together with the specified rate R  sets a lower bound on the number of bits (quantizing any farther underutilizes the 
available rate).  
 

Our interest lies in the scenario where the required effective rate R  is so low that when Equation (4) is solved for  
under the condition of using the signal’s full bandwidth, the resulting number of bits is extremely small (say 1 or 2 bits per 
real/imaginary signal sample).  In other words, to achieve the required rate while using the signal’s full bandwidth would 
require unreasonably excessive quantization that could result in undesirable effects due to excessive nonlinearity of such a 
quantizer.  For example, consider the case where the required effective rate is 32 kbps and the signal’s bandwidth is 8 kHz.  
Equation (4) suggests that to achieve the required rate while using the signal’s full bandwidth would require 

 bits per sample.  This level of quantization is very likely to be unacceptable due to excessive 
nonlinear effects, so we alternatively quantize 

b

28000)/(21032 3  = b ××=
and decimate.  How do we find the best balance between quantization and 

decimation so as to optimize the accuracy of the TDOA estimate?  We first answer this for the specific case where the system 
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performance is limited by the quantization noise and then develop the general result.  Prior to that, though, we present 
background results for quantization-only and decimation-only. 
 
 
 
 

3. QUANTIZE-ONLY & DECIMATE-ONLY 
 
1. Quantize-Only 

As mentioned above, the number of bits used in the quantization can affect the SNR of the signal quantized and hence 
the output SNR.  If we quantize the real and imaginary parts of  each using b bits then its SNR after quantization 
becomes

s(t)
5 

 ,

3
2    SNR + 1

SNR =bSNR
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2
q









α

)(                                                                   (5) 

 
where α  is the signal’s peak factor (i.e., the ratio of the signal’s peak value to its RMS value).  Thus the impact of 
quantization on TDOA estimation can be assessed by using (5) in (2) and then using the result in (3).   
 

Because the effective link rate constraint is often quite restrictive, a specific example of interest is the case where b is 
small and the quantization noise dominates the receiver noises.  For that case (5) becomes , and when 
it is also much smaller than DNR, the output SNR becomes 
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This then impacts the TDOA accuracy as a function of b according to 
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For insight, we further consider the case where the signal spectrum is flat, for which case we have that BBrms 8.12 =π , 
which then gives 
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If we use the constraint in (4) to fix b at the level needed to achieve the rate constraint, we write  and get 2=2 R/2Bb
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From this we can see the impact of R and B.  For a given signal bandwidth B, TDOAσ  goes according to .  More 

interestingly, for a fixed effective rate R, 

R−2

TDOAσ  goes according to , so increasing bandwidth (i.e., locating 
emitters with larger bandwidths) actually increases the estimation error, which is contrary to the expectation when there is no 
rate constraint that TDOA can be estimated more accurately for larger bandwidth signals.  Thus, when the effective rate is 
constrained, the reduction of the signal’s  bandwidth may actually be helpful.   

2/3/2 BB
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A further argument for bandwidth reduction is when the rate constraint is so severe that it can’t be met without reducing 
the signal’s bandwidth.  For example, if R = 24 kbps and B = 14 kHz, then the rate constraint requires that b<1, which is 
clearly not a feasible approach.  Even when the rate constraint requires that b be on the order of 1 or 2 bits, the severe 
nonlinearity of such coarse quantization can seriously degrade the performance beyond what is indicated by the results 
developed above.  In such cases it is necessary to consider some alternative  to quantization.  One such alternative is filtering 
and decimation. 
 
2. Decimate-Only 

Here we consider the impact of filtering and then decimating the two signals to be cross-correlated.  Here, it is through 
decimation that we strive to meet the rate constraint.   For simplicity we consider using ideal lowpass filters operating on the 
complex-valued baseband signal and we do not restrict the decimation factor to rational values, as would be done in practice. 
Thus, if we choose the filter such that the bandwidth is reduced by some factor γ  with 10 <<γ  then we can reduce the 
sampling rate by the factor γ  also.  Obviously, for practical signals, as we change the filter’s cutoff we will change the 
signal’s SNR and its RMS bandwidth; how these quantities change with the cutoff depends on the signal’s spectral shape.  
Again for simplicity yet insight,  we will assume that the signal’s spectrum is  flat, so that the effective SNR of the filtered 
signals will not change with the cutoff frequency.  In practice though, since the signal’s spectrum typically trails off at high 
frequency, the effective SNR will vary to some degree as the signal is filtered.  If the filter has cutoff frequency W , then 

the RMS bandwidth becomes 

2/f

frms WB 8.12 =π , the time-bandwidth product becomes TW , and the output SNR becomes 

.  Then, the TDOA accuracy as a function of the filtered bandwidth becomes 
f

effffo SNRTWWSNR ×=)(
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From this we see (as expected) that the accuracy becomes worse as we filter and decimate more.  If, however, we put in the 
constraint on effective rate given in (4), namely that for a fixed number of bits b corresponding to the full amount 
available, the amount of filtering needed to meet the effective rate R is  W .  Then, if we filter to this rate-
constrained bandwidth we have that  
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This shows that for the decimation-only case, TDOAσ  goes according to 2/3−R  (an inverse power law) rather than the much 

more rapid  (an exponential law) obtained above for the quantization-only case. R−2
 

4. JOINT DECIMATION AND QUANTIZATION 
Now we’d like to investigate the optimal trade-off between decimation and quantization.  As before, let the received 

signals be filtered and decimated to a bandwidth of W  and assume that the signals= spectra are flat so that the two SNRs 

don’t depend on W .  After filtering and decimation, the signal to be transmitted is quantized using 2b bits per complex 
sample (b bits for the real part and b bits for the imaginary part ). The result is that the decimated and quantized signal has 
SNR given by (5).  Now, the output SNR depends on the filtered bandwidth and the quantization level according to  

f
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where DNR is the SNR of , the signal that is not quantized.  Using Equation (12) in Equation (3) gives a bound on 
TDOA accuracy that depends on the amounts of decimation and quantization, and is given by 

d(t)

 

.                                                                   (13) 
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This result has no constraint on the effective rate; it simply shows the impact of W and b on the TDOA accuracy.  However, 
we wish to consider the rate constrained case, so the effective rate constraint gives  W , which after use in (13) 

removes the dependence on W  and gives 
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where it is really the bracketed term that is of interest here, since it shows the tradeoff between decimation and quantization, 
and can be considered as a decimation-quantization performance factor (for which smaller is better).  For notational ease we 
introduce a notation for the bracketed term in (14), namely 
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It is important to remember that (14) includes the rate constraint, so for a fixed R, increasing b necessarily decreases W , and 
vice versa.  The nonbracketed term in (14) just scales the result up or down depending on the values of the system parameters 
R and T.  However, one important insight does come from the first term: the bound on  

f

TDOAσ  varies as the -3/2 power of the 
rate  R ; thus, if you double the allowable rate you get almost three times better accuracy, and if you quadruple the allowable 
rate you get eight times better accuracy.  The reason that increasing the data rate improves the accuracy is because we have 
constrained the time available to transmit the data, so increasing the data rate allows an increase in the amount of information 
about the signal that can be transmitted.  This is an important insight into the system design issues. 

To compute the performance factor Γ  for a given set of b, SNR, DNR, and α values we first compute   using 

(5), and the result is used in (15).  Plots of 

)(bSNRq

Γ  versus b, parameterized by α, SNR, and DNR reveal the proper way to choose 
the optimal value of b; that is, how to tradeoff decimation and quantization.  Note that the value of  R  does not affect these 
curves; therefore, the optimal level of quantization is not set by the allowable data rate.  Instead, the optimal degree of 
quantization is set by the interplay between SNR, DNR, and the peak factor α of the signal to be quantized.  Once this optimal 
number of bits b is determined, the appropriate amount of decimation is determined using W , given the allowable 
effective rate R.  To investigate the characteristics  of this result we consider the following examples. 

R/2b = f

 
Example: High SNRs 

 Say we have the following signal scenario: DNR = 60 dB, SNR = 30 dB, α = 3.5, T = 1 s, and the signal’s available 
bandwidth is B = 4 kHz.  Also assume that the original signal samples were done with  b = 10 bits.  Consider the case where 
the data link rate is Rl  = 2.4 kbps and the link time constraint is Tl  = 10 s, then the effective rate is R = 24 kbps.  We now 
consider three ways to achieve this desired effective rate: quantize only, decimate only, and quantize and decimate.  We also 
compare the results for these three cases to the case when no decimation or quantization is needed to meet the limit on the 
rate.  
Quantize Only: We use Equation (4) to determine the number of bits to which we must quantize in order to meet the effective 
rate requirement yet retain the full signal bandwidth:  
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Now using  b = 3 bits, W , and 4000=f 40008.12 ×=rmsBπ along with the other design parameters in Equations (5), (12), 
and (3) gives the lower bound of 

  TDOA
7106.5 −×≥σ  

 
Decimate Only: Here we intend to use all of the available bits (b = 10  bits), but to decimate the signal to meet the data rate 
requirement.  We use Equation (4) to determine the required reduced bandwidth: 

.10/3
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Thus, we must decimate by a factor of 10/3.  Now using b = 10 bits , W , and 1200=f 12008.12 ×=rmsBπ along with the 
other design parameters in Equations (5), (12), and (3) gives  
 

,102.4 7−×≥TDOAσ  
 
which is ¾ of the value achieved using only quantization. 
 
Quantize and Decimate: Here we wish to find the optimum balance between quantization and decimation.  We use the plot of 
Γ vs. b in Figure 2 for the case of DNR = 60 dB, SNR = 30 dB, and 5.3=α to determine that we should quantize to  b = 6 
bits to get the lowest value (optimal) for Γ.  Then using b = 6 in Equation (4) gives the required filtered bandwidth to be 
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Thus the optimal trade-off is to decimate by a factor of 2 and quantize to 6 bits.  Using these values gives 
 

,108.2 7−×≥TDOAσ  
 
which is ½ of the value achieved using quantization alone and 2/3 of the value achieved using decimation alone.  Now if we 
could double the data rate to 48 kbps, then the number of bits we should use does not change, but we could double the 
useable bandwidth to 4 kHz, the full signal bandwidth.  According to the dependence on R shown in (14), this will improve 
the performance by a factor of  , so you get almost three times the accuracy for twice the data rate.   More 
generally, the rate-distortion curve for the quantize/decimate method for this case is shown in Figure 3. 

8.22 2/3 ≈
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No Quantization or Decimation: 
If you further increased the data rate to 80 kbps, then you would not need to perform any quantization or  decimation.  In that 
case you would compute   using Equation (12) and then use it in Equation (2) with  )10,4000(oSNR 40008.12 ×=rmsBπ  
to get  
 

,107.0 7−×≥TDOAσ  
 
which is the best that can be done because there is no rate constraint.  These results are summarized in Table 1. 

Table 1: Summary of Results for High SNR Example 

Method Achieved R 
(kbps) 

b 
(bits) 

BW 
(kHz) 

σTDOA 
(ns) 

Quantize Only 24 3 4 560 
Decimate Only 24 10 1.2 420 
Quantize & Decimate 24 6 2 280 
No Compression 80 10 4 70 

 
Now, why did we not change the number of bits used when we increased the rate from 24 kbps to 48 kbps, but we did 

change it when we further increased the rate 80 kbps?  Because when we hit 48 kbps we were using all of the signal’s 
bandwidth; if we increase the rate beyond that we can no longer gain performance by increasing the useable bandwidth, so 
the only way to take advantage of the increased rate is to spend more bits per sample.  When going from 24 kbps to 48 kbps 
we have a choice of how to use this extra rate: we can use more bandwidth or more bits C our analysis says that we are better 
off increasing the bandwidth and leaving the degree of quantization alone (however, once we increase the bandwidth to 
exploit the signal’s full bandwidth, then we should increase the number of bits).  These ideas are clearly seen in the rate-
distortion curves shown in Figure 3 where for rates above R = 48 kbps it is seen for this case that the quantization & 
decimation method is identical to the quantization only method. 
 
Example: Low SNRs 

We repeat the above example for the case when SNR = 10 dB and DNR = 20 dB; all other parameter values remain the 
same.  Because the SNR values don’t set the number of bits for quantize-only and the filtered bandwidth for decimate-only, 
those values do not change for this case (although the achieved accuracy does change because of the lower SNR values).  For 
the quantize/decimate case, things do change; in particular, the optimal trade-off between quantization and decimation 
changes.  The plot of performance factor Γ for this case is given in Figure 4, where it can be seen that it is monotonically 
increasing with the number of bits b.  Thus it would appear that we should choose b=1; however, such a small value would 
surely lead to poor performance from the excessive nonlinearity due to such extreme quantization, where a reasonable 
minimum value on b is 3 or 4 bits.  Choosing b = 4 bits  then specifies that the filtered bandwidth should be 

 

, 4/3

kHz3

B

  =

b 2
R = W f

=

 

so we would decimate by a factor of 4/3.  A plot of the rate-distortion curves are given in Figure 5, where for rates higher 
than R = 32 kbps it is seen that the quantize/decimate method is identical to the quantize only method. 
 
 

Comparing these two examples provides much insight.  From Figure 2 and Figure 4 we see that the optimal number of 
bits is larger at high SNRs than at low SNRs.  This says that at high SNRs the impact of quantization on becomes 
apparent at higher value of b (see (5)) and therefore the balance between decimation and quantization leans more toward 
decimation; however, at low SNRs the value of b can be made quite small (in theory) before its effect on becomes 
apparent (again see (5)) so the balance between decimation and quantization leans more toward quantization.  In fact, in the 
low SNR case the balance leans so much towards quantization that the value of Γ decreases monotonically as b decreases, 

qSNR

qSNR
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indicating that the balance between quantization and decimation is never really met.  However, due to excessive nonlinear 
effects, such low b values are not recommended and therefore the practical balance must lean more toward decimation than 
the theory states.    

These characteristics are also seen in the rate-distortion curves shown in Figure 3 and Figure 5.  For the high SNR case 
in Figure 3 we see that the quantize/decimate method uniformly outperforms both quantize-only and decimate-only (except at 
rates above 48 kbps where quantize-only and quantize/decimate are equivalent because the quantize/decimate method uses 
the full signal BW for those rates).  It should also be observed that for the high SNR case, decimate-only is better than 
quantize-only at low rates but not at high rates.  Thus, for the high SNR case we see that, both mathematically and 
practically, the quantize/decimate approach is favored at all effective rates.  Figure 6 shows the ratio of TDOAσ  for quantize-
only to TDOAσ  for quantize/decimate for the high SNR case; note that at R = 30 kbps (where from Figure 3 we see that 
quantize only can achieve the rate with a barely allowable b = 3 bits) that quantize/decimate approach gives about three times 
the accuracy as the quantize-only approach.   

For the low SNR case, however, the rate-distortion curves in Figure 5 seem to indicate that quantize-only is nearly 
uniformly preferred over quantize/decimate and decimate-only.  However, it is important to recognize that in this case the 
effective rates at which quantize-only is clearly better are precisely those rates at which the mathematics calls for excessive 
quantization to meet the rate constraint.  Thus, from a practical viewpoint, quantize/decimate is preferred at these lower rates.  
Stated another way, quantize/decimate gives a viable means for meeting the lower rate constraints without suffering 
excessive nonlinearity effects from quantization.  Thus, even in the low SNR case, the quantize/decimate approach is an 
effective way to meet the imposed rate constraint.  These examples point out the following general principles: 

• In a low SNR setting, quantize more and decimate less. 
• In a high SNR  setting, quantize less and decimate more. 
• The quantize/decimate technique is well-suited when (i) SNR, DNR are high, or (ii) rate constraint imposes too 

small a number of bits for the quantization-only approach. 
• The quantize/decimate approach provides a more flexible approach that results in a smooth rate-distortion curve 

whereas the quantize-only approach has a less flexible stepped rate-distortion curve. 
• If the data rate is decreased, do not reduce the number of bits, but rather increase the decimation factor (i.e., reduce 

the bandwidth). 
• If the data rate is increased, do not increase the number of bits, but rather decrease the decimation factor (i.e., 

increase the bandwidth) C until you are using the full bandwidth, then increase the number of bits used. 
Of course, it should be remembered that the results presented above are for the case of flat signal spectra.  For non-flat 
spectra the general conclusions still apply; however, it is likely that decimation would be favored even more than in the flat 
spectra case, because spectra that decay at high frequencies will lose RMS bandwidth at a slower rate as they are filtered to 
lower bandwidths.  Also, the SNR is likely to change as the signals are filtered.  The ideas presented above can be extended 
to handle these more general cases and provide algorithms that can properly trade-off quantization and decimation for the 
general case. 
 

5. CONCLUSIONS 
We have demonstrated that for TDOA-based emitter location, a combination of quantization and decimation is preferable 

to quantization alone when operating under a rate constraint. We have proposed a rate constraint in terms of an effective rate 
measure that we defined as .  This constraint is well suited to this problem because it encapsulates the system 
parameters of link rate R

TTRR ll /=
l , link time Tl , and signal collection time T into a single constraint.  We then argued that unlike in 

past investigations, it is desirable to consider a non-MSE distortion criteria for the TDOA estimation problem and proposed 
the use of the Cramer-Rao bound for TDOA standard deviation.  It was pointed out that this distortion criteria depends on 
both the compressed signal’s SNR and its RMS bandwidth, from which we argued that a simple approach to exploiting this 
criterion is to simultaneously quantize and decimate the signal.  Under the simplifying assumption of a flat signal spectrum 
we derived expressions that characterized the optimal trade-off between quantization and decimation.  We showed that for 
the high SNR case, the quantize/decimate approach uniformly outperforms the quantize-only approach from an effective rate-
distortion point of view.  For the low SNR case we showed that there are effective rates below which the quantize-only 
approach can’t work due to severe nonlinearity of the quantization; however, the quantize/decimate approach operates well at 
these low rates.  Thus, the quantize/decimate approach provides an effective means for low-rate operation. 

Obviously, lowpass filtering and decimation used here is the simplest way to exploit the RMS bandwidth’s effect on 
TDOA accuracy.  The results presented here point the way to more general filtering/decimation approaches for TDOA-only  
and the use of  the wavelet transform to exploit the joint effect of RMS bandwidth and RMS duration for systems that 
supplement  TDOA with frequency-difference-of-arrival (FDOA)7. 
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Figure 2: Performance Factor for High SNR Case 
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Figure 3: Rate-Distortion Curve for High SNR Case 
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Figure 4: Performance Factor for Low SNR Case 
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Figure 5: Rate-Distortion Curve for Low SNR Case 
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Figure 6: Ratio of Std. Dev. for Quantize Only and Quantize/Decimate 
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