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Two Different Scenarios for LT Analysis

We’ve already used the LT to analyze a CT system described by a Difference
Equation...

However, our focus there was: S el Ul @
: . . ICs if the signal never
« For inputs that could exist for all time: -0 <n < really “starts”
» For systems that did not have Initial Conditions

This is a common view in areas like signal processing and communications...

For that we used the bilateral LT and found: y(t) = fl{H (s) X (s)}

But in some areas (like control systems) it is more common to consider:

e Inputs that Startattimet=0 (inputx(t) =0 fort<0)

o Systems w/ ICs (output y(t) has non-zero derivatives @ t = 0)
For that scenario it is best to use the unilateral LT...

One sided Laplace Transform

X (s) = j x(t)e™dt s is complex-valued
0




Properties of Unilateral LT

Most of the properties are the same as for the bilateral form.
But... an important difference is for unilateral LT of derivatives of causal signals:

Time Differentiation:

X(t) <> sX (s) — x(0")

If x(t) is discontinuous x(0°) is / L
the limit at O “from the left”

Very different from FT property

This LT property allows handling
of IC’sI!!

X(t) & s°X(s)—sx(07) —x(0)

XM (1) o s"X(s)=s"x(07) -s"x(07) - —sxN P (07) = xNP(0)
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Solving a First-order Diff. Eq. using the LT dy(t)

+ay(t) = bx(t)

£} Y+ ay(0) = LI6x(0)}| — Apay LT wbomsives_|
1
£{d)(/jit) } n a[{Y(t)}I bL{x(t)} A Use Linearity of LT }

l—' Use Property for LT of
[SY (s) - y(O‘)] +aY (s) =bX (s) Derivative... accounting
for the IC

...............................................
‘‘‘‘‘‘‘

Y (s) : y(07) + b X (S) 4 Solve algebraic equation }

.sta sta - for Y(s)
7~ J
Part of sol’n Part of sol’n Note that (s+a) plays a role in both parts...
enven oy IE SLTIYER Lo}y 1ol Hey! s+a is the Characteristic Poly!!
“Zero-Input Sol’n”  “Zero-State Sol’n”
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Example: RC Circuit

Now we apply these general ideas to solving for the output of the previous
RC circuit with a unit step input.... X(t) =u(t)

dy(t) ~y(0) 1/RC
dt | RC y()——x(t) - Y(S)_s+1/RC+[s+1/RC}X(S)
/ 4

This “transfers” the input X(s) to the output Y(s)

We’ll see this later as “The Transfer Function”

Now... we need the LT of the input...

From the LT table we have: X(t)=u(t) < X(s)= 1
S

Y(s) = y(0) [ _1/RC |1
~ s+1/RC | (s+1/RC) |s

Now we have “just a function of s” to which we apply the ILT...




So now applying the ILT we have:

1 _ 1) y(0) 1/RC Apply LT to

LYy @)=L {S+1/RC+{(S+1/RC)S:|} % both sides }
(t) = L y(07) 1/RC 4[ Linearity of LT }

=S5 41/RC (s +1/RC)S

J

J

This part (zero-input soI n) is easy...

Just look it up on the LT Table!!

ThIS part (zero-state sol’n) is harder...

It is NOT on the LT Table!!

-y

So... the part of
the sol’n due to
the IC (zero-

(O—)e—ﬂ/RC)u(t)

-
ljl y(o_)
s+1/RC
e—t/RCu(t)
y(07)

input sol’n)
decays down
from the IC

voltage
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Now let’s find the other part of the solution... the zero-state sol’n... the part that is

driven by the input:

y(07)

......................

.........................................

t)=L"
() {s+1/RC

...............................................................

" Candothiswith )

We can factor this function of s as follows:

“Partial Fraction

1 1/RC ! 1 Expansion”, which is
L =L =— just a “fool-proof”

1 |

ol

1 Linearity

|

i

s+1/RC of LT

Now... each of these terms

\ Y J \
is on the LT table: = u(t)

~
_ e—(t/ RC)u (t)

4

_ [1 B e—(t/RC)}J(t)



So the zero-state response of this system is: [1 — g (/RC) }J(t)
\

L—e "] u(t)

2,

Now putting this zero-state response together with the zero-input response
we found gives:

() = y(0)e " u(t) + f1—e " | u(t)

Y - Y
IC Part Input Part
Notice that: A
The IC Part “Decays Away”
but...
\_ The Input Part “Persists” )




Here is an example for RC = 0.5 sec and the initial V- = 5 volts:

P m

M

y, (1) (volts) y, () (volts)

y(t) (volts)

______________________________________________________________

e 1 Response

................ | Zero-State

................ i Total

I 1 Response

4

/__ | |
0 2 4
| |
0 2 4

t (sec)

Zero-Input
10
Response
10
10



Second-order case

Circuits with two energy-storing devices (C & L, or 2 Cs or 2 Ls) are
described by a second-order Differential Equation...

dy(t) , . dy(t) dx(t)
t)=Dh, b X(t
a2 A T aYO=hmg b ()
Assume Causal Input
w/ICs y(07) & y(07) X(t)=0‘ t<0
X(07)=0

We solve the 2"d-order case using the same steps:

Take LT of Diff. Equation:

[gv (5)— y(07)s - y<o-)J]+ al[s\Y () - y(0) |+ &Y (s) = bysX (s) + by X (5)

—_—

From 2 derivative property,
accounting for ICs

~— ——’
From 15t derivative property, From 15t derivative
accounting for ICs property, causal signal
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...........................

Solve for Y(s): vy (s) = y

...............................
'0

Part of sol’n
driven by IC

‘Zero-Input Sol'n”

it is the
Characteristic

\_ Equation

/Note this shows up
in both places...

Part of sol’n

driven by input

J

“Zero-State Sol’n

It just pops up in the LT method!
The same happened for a 15t-order Diff. Eq...

Note: The role the Characteristic Equation plays here!

...and it happens for all orders

Like before...

to get the solution in the time domain find the Inverse LT of Y(s)
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To get a feel for this let’s look at the zero-input solution for a 2nd-order system:

Y. (s) = y(0)s+y(0)+a,y(0) y(0)s+]y(0)+ay(0),
’ s’ +a,S+a, s’ +a,S+a,

which has... either a 15t-order or 0t-order polynomial in the numerator and...
... a 2"d-order polynomial in the denominator

For such scenarios there are Two LT Pairs that are Helpful:

\

Ae ' sinfla /17 Jt| u(t)
[( : )t] > “ These are not
where: A=—2X% 5% + 24’0) S+ @’ in your book’s
@, \1- ¢ n n table... but
they are on the
Ae—gwntsin[(wn s gz)t . ¢] u() > table on my
website!
2
where : Azﬂ\/%+l Sta ,
o,(1-¢7) | > 4200 s+ @ Otherwise. ..
Ty n n Factor into
$= tanl[u] two terms
a—(,

J



Note the effect of the ICs:

y(0) +a,y(0)

Y

zi

s° +a,S + 4,

(s) = y(0)s+y(0)+a,y(0) y(0)s+

S° +a,S+a,

Ae s sin[(a)nﬂ )t] u(t)

This form gives
y,i(0) = 0 as set by the IC

04

1T y(0) =0

s’ +2{w, S+ @

Ae ! sin[(a)n M )t + ¢] u(t)

S+«

therwise J

s° +2{w, S+




Example of using this type of LT pair: Let y(07)=2 y(0)=4

Then |y, (s)= 25+(4+a12):2{ s+(2+al)}

s’ +a,S + 4, s’ +a,S+a,

Now assume that for our system we have:

Then

Compare to LT:

S+6
Y.(s)=2
i(8) [52+4s+100}

S+«
$° +2{w. S+ @’

Pulled a 2 out from

each term in Num.

to get form just like
inLT Pair. y

And identify:

a=6 pf=2
w:=100 = o, =10
2lw, =4 = (=4/2w,=4/20=0.2

a,=100 & a,; =4




So now we use these parameters in the time-domain side of the LT pair:

a=6 B=2 Assuming output
Is a voltage!
@, =10 \
@) (6 O 2x 10) 1—\4 16 volts
¢ =02 ( ) 100(1-0.2%) =
Ae é““”sm[( w,\1-¢7 )t+¢] u(t) ¢ = tanl[ v 2} tanl(to_“;_zo'lzazl.m rad

. (a-¢a,)
where: A= ﬂ\/W+1

_ 1| Wy 1_42
@ = tan (—a—gmn J

Y, (t) = 2.16e 7> sin[9.80t +1.18] u(t)

/

Notice that the zero-input solution for this 2"d-order system oscillates...
15t-order systems can’t oscillate...
2"d- and higher-order systems can oscillate but might not!!




Here is what this zero-input solution looks like:

2.5 T 1. T 1. r 1.
2 ' ’ ’ ’ I _
15 | Y (1) = 2.16€72'5iN[9.80t +1.18] u(t) |.......]
L S O S S S S _
L1 1 T — -
S 5
R 0 .................................. ;
:;\ﬁ 05H---%---- LL ____________________________________________________ -
-1 IO W LL ____________________________________________________ -
15 LL ____________________________________________________ _
_2 - \..._____4_____________L____________4_____________;L ____________________________________________________ _
25 | 1 | i | 1 |
0 0.5 1 1.5 2 2.5 3 3.5 4

,,,, ; Notice that it

| 5O
] S\O,.-*'/ ............. I
| L satisfies the ICsl!!

y(0')=2 y(0)=4

0 0.05 0.1
t (sec)

‘ 16/20



N®-Order Case

Diff. eq

d"y(t) d"y(t) dy(t) dx™ (t) dX(t)

ofthe |— 2“4 = M/, 4 +a,y(t) =h,, + by x(t

System dtN N-1 dtN -1 a1 dt Oy( ) dt ( )
For M <N and ddi(t) ~0 i=012..M-1

t=0"
Taking LT and re-arranging gives:

Y (s)= IC(S) B(S) X (s) LT of the solution (i.e. the LT of
A(S) A( ) the system output)

where | AG)=s" +a, s" 4. +as+a,

“output-side” polynomial
B(s) =bys" +...+bs+bh, “input-side” polynomial

IC(s) = polynomial in s that depends on the ICs

N

Recall: For 2" order case: 1C(s) = y(07)s+ [y(o—) + aly(O‘)]



Consider the case where the LT of x(t) is rational: X (s) = Nx(s) (5)

D, (s)
Then... Y (s) = IC(s) n B(s) X (s) = IC(s) + B(s) N, (s)
A(s)  Als) A(s)  A(s) Dy (s)

This can be expanded like this: Y (s) = IE((S;) + ig; + [I): ((SS))
S X

for some resulting polynomials E(s) and F(s)

| B(s) N N, (s)
So... forasystemwith H(s)=—-—= and input with X (s) =
A(s) Dy (s)
and Initial conditions you get:
Zero-Input Zero-State
Response .. Response ... .
IC(s) E(s), F(s) |

Y(s):; +

o
..................................................

Decays in time domain if
roots of system char. poly.
A(s) have negative real parts

Transient Steady-State
J Response  Response
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If all IC’s are zero (zero state) C(s) =0

Then:

Connection
To Transfer

Function

Y(s)= B’g} X (s)

LH(s)—

0O

Zero-State

...............................................
. e

..................................................

Transient Steady-State
Response  Response

_—— Called “Transfer Function” of

the system... see Sect. 6.5



Summary Comments:

1. From the differential equation one can easily write the H(s) by inspection!
2. The denominator of H(s) is the characteristic equation of the differential equation.
3.The roots of the denominator of H(s) determine the form of the solution...

...recall partial fraction expansions

BIG PICTURE: The roots of the characteristic equation drive

the nature of the system response... we can now see that via
the LT.

We now see that there are three contributions to a system’s
response:
1. The part driven by the ICs
a. This will decay away if the Ch. Eq. roots have negative
real parts
2. Apart driven by the input that will decay away if the Ch. Eq.
zero-state < roots have negative real parts ... “Transient Response”
resp. 3. Apartdriven by the input that will persist while the input
. persists... “Steady State Response”
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