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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #40
• C-T Systems: Laplace Transform … Solving Differential Eqs. w/ ICs.
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Two Different Scenarios for LT Analysis

We’ve already used the LT to analyze a CT system described by a Difference 
Equation…

However, our focus there was:
• For inputs that could exist for all time: – < n < 
• For systems that did not have Initial Conditions

Can’t really think of 
ICs if the signal never 

really “starts”…

This is a common view in areas like signal processing and communications…

But in some areas (like control systems) it is more common to consider:
• Inputs that Start at time t = 0     (input x(t) = 0  for t < 0)
• Systems w/ ICs                 (output y(t) has non-zero derivatives @ t = 0)

For that we used the bilateral LT and found:  1( ) ( ) ( )y t H s X s L

For that scenario it is best to use the unilateral LT… 
One sided Laplace Transform

0

( ) ( )  is complex-valuedstX s x t e dt s


 
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Properties of Unilateral LT
Most of the properties are the same as for the bilateral form.
But… an important difference is for unilateral LT of derivatives of causal signals:

Time Differentiation:

( ) ( ) (0 )x t sX s x  
If x(t) is discontinuous x(0-) is 
the limit at 0 “from the left” Very different from FT property 

This LT property allows handling 
of IC’s!!!

2( ) ( ) (0 ) (0 )x t s X s sx x    

( ) 1 2 ( 2) ( 1)( ) ( ) (0 ) (0 ) (0 ) (0 )N N N N N Nx t s X s s x s x sx x             
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)()()( tbxtay
dt

tdy


Solving a First-order Diff. Eq. using the LT

 )()()( tbxtay
dt

tdy LL 






  Apply LT to both sides

   )()()( txbtya
dt

tdy LLL 






 Use Linearity of LT

  )()()0()( sbXsaYyssY  
Use Property for LT of 

Derivative… accounting 
for the IC

)()0()( sX
as

b
as

ysY








Solve algebraic equation 
for Y(s)

Note that (s+a) plays a role in both parts…

Hey!  s+a is the Characteristic Poly!!

Part of sol’n 
driven by IC

“Zero-Input Sol’n”

Part of sol’n 
driven by input

“Zero-State Sol’n”
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Example: RC Circuit
Now we apply these general ideas to solving for the output of the previous 
RC circuit with a unit step input…. )()( tutx 

)(1)(1)( tx
RC

ty
RCdt

tdy
 )(

/1
/1

/1
)0()( sX

RCs
RC

RCs
ysY 












This “transfers” the input X(s) to the output Y(s)

We’ll see this later as “The Transfer Function”

s
sXtutx 1)()()( 

Now… we need the LT of the input…

From the LT table we have:

sRCs
RC

RCs
ysY 1

)/1(
/1

/1
)0()( 
















Now we have “just a function of s” to which we apply the ILT…
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 
























sRCs
RC

RCs
ysY --

)/1(
/1

/1
)0()( 11 LL

So now applying the ILT we have:
Apply LT to 
both sides

































sRCs
RC

RCs
yty --

)/1(
/1

/1
)0()( 11 LL

Linearity of LT

This part (zero-input sol’n) is easy…

Just look it up on the LT Table!!

This part (zero-state sol’n)  is harder…  

It is NOT on the LT Table!!

)(/ tue RCt

t)0( y

So… the part of 
the sol’n due to 
the IC (zero-
input sol’n) 
decays down 
from the IC 
voltage

)()0(
/1

)0( )/(1 tuey
RCs

y RCt- 












L
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































sRCs
RC

RCs
yty --

)/1(
/1

/1
)0()( 11 LL

Now let’s find the other part of the solution… the zero-state sol’n… the part that is 
driven by the input:




















RCss
--

/1
11 11 LL Linearity 

of LT

We can factor this function of s as follows:


































 RCsssRCs

RC --

/1
11

)/1(
/1 11 LL

Can do this with  
“Partial Fraction 

Expansion”, which is 
just a “fool-proof” 

way to factor

Now… each of these terms 
is on the LT table: )(tu )()/( tue RCt

  )(1 )/( tue RCt
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Notice that: 
The IC Part “Decays Away” 

but… 
The Input Part “Persists”

So the zero-state response of this system is:   )(1 )/( tue RCt

  )(1 / tue RCt

t
1

  )(1)()0()( )/()/( tuetueyty RCtRCt  

Now putting this zero-state response together with the zero-input response 
we found gives:

IC Part Input Part
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Here is an example for RC = 0.5 sec and the initial VIC = 5 volts:

Zero-Input 

Response

Zero-State 

Response

Total 

Response
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Second-order case

)()()()()(
01012

2

txb
dt

tdxbtya
dt

tdya
dt

tyd


w/ ICs )0(&)0(  yy 00)(  ttx

0)0( x

Assume Causal Input

Circuits with two energy-storing devices (C & L, or 2 Cs or 2 Ls) are 
described by a second-order Differential Equation…

Take LT of Diff. Equation:

    )()()()0()()0()0()( 0101
2 sXbssXbsYayssYaysysYs   

We solve the 2nd-order case using the same steps:

From 2nd derivative property, 
accounting for ICs

From 1st derivative property, 
accounting for ICs

From 1st derivative 
property, causal signal
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Solve for Y(s): )()0()0()0()(
01

2
01

01
2

1 sX
asas

bsb
asas

yaysysY 
















 

Note: The role the Characteristic Equation plays here!  

It just pops up in the LT method!

The same happened for a 1st-order Diff. Eq… 

…and it happens for all orders

Like before… 

to get the solution in the time domain find the Inverse LT of Y(s)

Part of sol’n 
driven by IC

“Zero-Input Sol’n”

Part of sol’n 
driven by input

“Zero-State Sol’n”

Note this shows up 
in both places…   

it is the 
Characteristic 

Equation 
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To get a feel for this let’s look at the zero-input solution for a 2nd-order system:

 
01

2
1

01
2

1 )0()0()0()0()0()0()(
asas

yaysy
asas

yaysysYzi 







 

which has… either a 1st-order or 0th-order polynomial in the numerator and… 
… a  2nd-order polynomial in the denominator

  
 





























n

n

n

n

n
t

A

tutAe n











2
1

22

2

2

1tan

1
)1(

:where

)(1sin

22 2 nnss
s







For such scenarios there are Two LT Pairs that are Helpful:

These are not 
in your book’s 
table… but 
they are on the 
table on my 
website! 

  
2

2

1
:where

)(1sin











n

n
t

A

tutAe n

22 2 nnss 




For…  
0< || < 1

Otherwise… 
Factor into 
two terms
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 
01

2
1

01
2

1 )0()0()0()0()0()0()(
asas

yaysy
asas

yaysysYzi 







 

Note the effect of the ICs:

   )(1sin 2 tutAe n
tn  

22 2 nnss 



If  y(0-) = 0

This form gives 
yzi(0) = 0 as set by the IC

Otherwise

22 2 nnss
s





   )(1sin 2 tutAe n
tn  
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Example of using this type of LT pair:  Let 4)0(2)0(   yy 

   
















01

2
1

01
2

1 22242)(
asas

as
asas

assYzi
Then

Pulled a 2 out from 
each term in Num. 
to get form just like 

in LT Pair.

Now assume that for our system we have: a0 = 100 &   a1 =4

Then










1004

62)( 2 ss
ssYzi

22 2 nnss
s





Compare to LT:

2.020/42/442

10100

26

2







nn

nn






And identify:
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So now we use these parameters in the time-domain side of the LT pair:

2.0

10

26













n
 

 
 

 

rad18.1
102.06
2.0110tan1tan

volts16.21
2.01100

102.0621
1

2
1

2
1

2

2

2(2

2











































n

n

n

nA









Assuming output 
is a voltage!

  
 

 





























n

n

n

n

n
t

A

tutAe n











2
1

2(2

2

2

1tan

1
1

:where

)(1sin

  )(18.180.9sin16.2)( 2 tutety t
zi  

Notice that the zero-input solution for this 2nd-order system oscillates… 
1st-order systems can’t oscillate…
2nd- and higher-order systems can oscillate but might not!!
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  )(18.180.9sin16.2)( 2 tutety t
zi  

Here is what this zero-input solution looks like:

Notice that it 
satisfies the ICs!!

4)0(2)0(   yy 

Zoom In
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Nth-Order Case

)()()()()(...)()(
01011

1

1 txb
dt

tdxb
dt

tdxbtya
dt

tdya
dt

tyda
dt

tyd
M

M

MN

N

NN

N

 





Diff. eq 
of the 
system

For M  N and 1...,,2,1,00)(

0




Mi
dt

txd

t
i

i















 


ICstheondependsthatsinpolynomialsIC

bsbsbsB

asasassA

M
M

N
N

N

)(

...)(

...)(

01

01
1

1where

Taking LT and re-arranging gives:

)(
)(
)(

)(
)()( sX

sA
sB

sA
sICsY  LT of the solution (i.e. the LT of 

the system output)

“output-side” polynomial

“input-side” polynomial

Recall: For 2nd order case:  )0()0()0()( 1
  yaysysIC 
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Consider the case where the LT of x(t) is rational: 
)(
)()(

sD
sNsX

X

X

)(
)(

)(
)(

)(
)()(

)(
)(

)(
)()(

sD
sN

sA
sB

sA
sICsX

sA
sB

sA
sICsY

X

XThen…

This can be expanded like this:
)(

)(
)(
)(

)(
)()(

sD
sF

sA
sE

sA
sICsY

X



for some resulting polynomials E(s) and F(s)

)(
)(

)(
)(

)(
)()(

sD
sF

sA
sE

sA
sICsY

X



So… for a system with 
)(
)()(

sA
sBsH 

)(
)()(

sD
sNsX

X

Xand input with 

and initial conditions you get:
Zero-Input
Response

Zero-State
Response

Transient
Response

Steady-State
Response

Decays in time domain if 
roots of system char. poly. 

A(s) have negative real parts

Decays in time domain if 
roots of system char. poly. 

A(s) have negative real parts



19/20

If all IC’s are zero (zero state) C(s) = 0

Then:
)(

)(
)()( sX

sA
sBsY 









)(sH
Connection
To Transfer 

Function

Called “Transfer Function” of 
the system… see Sect. 6.5

)(
)(

)(
)()(

sD
sF

sA
sEsY

X



Zero-State
Response

Transient
Response

Steady-State
Response
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BIG PICTURE: The roots of the characteristic equation drive 
the nature of the system response… we can now see that via 
the LT.

We now see that there are three contributions to a system’s 
response:

1. The part driven by the ICs
a. This will decay away if the Ch. Eq. roots have negative 

real parts
2. A part driven by the input that will decay away if the Ch. Eq. 

roots have negative real parts … “Transient Response”
3. A part driven by the input that will persist while the input 

persists… “Steady State Response”

Summary Comments:  

1. From the differential equation one can easily write the H(s) by inspection!

2. The denominator of H(s) is the characteristic equation of the differential equation.

3.The roots of the denominator of H(s) determine the form of the solution…

…recall partial fraction expansions

zero-input 
resp.

zero-state 
resp.


