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EECE 301 
Signals & Systems
Prof. Mark Fowler

Note Set #35
• C-T Systems: CT Filters - Passive
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Introductory Comments
Recall that we already talked about ideal CT filters:

• |H()| is Constant in Pass band
• |H()| is zero in Stop band   (Transition Band has zero width)
• H() is linear in Pass band

We also saw that such ideal filters can not really exist because they would need 
to be non-causal!!

Here we’ll take a brief look at some of the kinds of CT filters that can be made…
• Note… all CT filter behavior exploits the fact that capacitors and 

inductors have an impedance that varies with frequency!

And we’ll illustrate how to describe such filters using:
• Transfer Function
• Frequency Response
• Pole-Zero Diagrams

Also… keep in mind that although DT filters only need to be examined over 
– to  rad/sample (their Freq Resp repeats outside of that)… CT filters need 
to be examined for how they behave over – to  rad/second.  Thus, we will 
mostly plot them on a log frequency axis… with dB for the magnitude.

“CT Filters” are also 
called “Analog Filters”



Practical Filter Specification
LPF Spec – Version 1

To make filter “more ideal”: 
p 0, s 0, s p

3/18Pass-band Stop-bandTransition 
band

Specs for HPF, BPF, & BSF are similar…

Unlike for DT… for CT we 
need look all the way up to 
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“Decade” = 10x Change

 dB

LPF Spec – Version 2
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Pass-band

Specs for HPF, BPF, & BSF are similar…

Passband cutoff frequency c is 
defined at the “–3 dB point”.

If passband is at other than 0 dB 
the cutoff is at “3 dB down” from 

the passband level.

Log scale

Filter Specs
• Cutoff  Freq @ “–3 dB point”
•  dB per Decade (Rolloff Rate)
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CT Filter Types

Recall that DT filters were categorized as recursive (IIR) vs. non-recursive (FIR).

CT filters don’t have a corresponding categorization… they all have infinite 
duration impulse responses!!!

Instead the main way to categorize CT filters is: Passive vs. Active

Passive:  These filters use only “passive components” (resistors, capacitors, and 
inductors) and do not contain any op amps or transistors.

• One main advantage of such filters is that they can be used in places 
where access to a power supply is not available (e.g., inside a stereo 
speaker to separate the audio into bass and treble before sending it to the 
woofer & tweeter).

Active:  These filters use op amps (and/or transistors) together with resistors, 
capacitors, and inductors. 

• Allows filters to be designed without inductors
• Op amp characteristics enable design by cascading several “stages”

Heavy, Bulky, 
Expensive

• Large Input Impedance
• Small Output Impedance
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“First-Order” Lowpass Filter: RC Circuit
We already analyzed this 
filter using phasor ideas… 
but we’ll take another look 
here.

R

1/Cs




( )Y s( )X s

To analyze this filter in the s-domain:
• Replace input and output by their LT symbols
• Replace components by their s-domain impedances
• Solve for output Y(s) in terms of input X(s)… the thing that multiplies X(s) 

is the TF H(s) 

By voltage divider (the best approach here) we get this 
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>> w=logspace(1,5,1000);
>> wc=100;H=freqs(wc,[1 wc],w);
>> semilogx(w,20*log10(abs(H)))
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“First-Order” Highpass Filter: RC Circuit
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By voltage divider (the best approach here) we get this 

( ) ( )
1

RY s X s
Cs R

 
   

( )
1

RH s
Cs R




( )
1 1

RCs sH s
RCs s RC

 
 

1 Pole @ 
s = -1/RC

1 Zero @ 
s = 0

j

1 RC

RC RC

1st Order

( )
1
sH s

s RC






9/18
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Lowpass Filter Highpass Filter
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A “Second-Order” Lowpass Filter: RLC Circuit

By voltage divider (the best approach here) we get this: 
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Freq Resp Magnitude for Three Cases

Complex Poles (<1)
• Peak @ n
• -40 dB/decade slope

1 5000 rad/secn LC
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0.1 
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3 

Repeated Real Poles (=1)
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• -40 dB/decade slope

Distinct Real Poles (>1)
• Two Breaks @ “Poles”
• -20 dB/dec then -40 dB/dec

–5000
–5000

–858
–29,142

2nd Order has faster rolloff vs 1st Order
(-40 dB/dec vs. -20 dB/dec)
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A “Second-Order” Highpass Filter: RLC Circuit

By voltage divider (the best approach here) we get this: 
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2nd Order has faster rolloff vs 1st Order
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What we are seeing is that we get 20 dB of slope for each order!!!  
(For LPF and HPF…  But see next for BPF…)

So a 3rd Order LPF would (eventually) rolloff at -60 dB/decade!!!

So… the main advantage of higher order filters is that your stop 
band is better due to the faster rolloff!!
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A “Second-Order” Bandpass Filter: RLC Circuit

By voltage divider (the best approach here) we get this: 
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So… unlike for LPF & HPF… 2nd Order 
BPF does NOT have the faster rolloff…  
But, 1st Order can’t even GIVE a BPF!!!

What is happening is that the second order gives you two 20 dB/dec
slopes “available”…

But for a BPF you need one going up and one going down… so 
each only gets one of the two 20 dB slopes!


